
Proof of the Well-ordering Theorem B. 1


We follow the pattern outlined in Exercises 2-7 on pp. 72-73 of the text.


Theorem B.1. Let J ar;d E be well-ordered sets; let h: J-YE. Then


the following are equivalent:


(i) h is order preserving and h(J) equals E or a section


of E.


(ii) hj(,) = smallest [E - h(S4 )] for each ·


Proof. Suppose (i) holds. Let be an arbitrary element of J; 

let 

e0 = smallest [E - h(SB )], 

and suppose that h( ) e0.


for that would imply that h( )
It cannot be true that h(p) c eO, 


lies in hS6 ), so that h() = h ( ) for some A/S ; tlhis in turn 

would contradict the fact that h is injective. Hence h(A ) e@.


Thus h(J) contains an element greater than e0.


Now we show that h(J) does not contain eO. Since h(l )>e 0


and h is order preserving, then for all Kz_, we have h(o )> eC.


On the other hand, if </3 , then h(c) belongs to h(Sp ), so that


h(di) / e0 by definition of e0. 

Thus h(J) contains an element greater than eO, but does not contain


h(J) equals E or a section of E.
e0. This contradicts the fact that 


first show that h is injective; this follows
Suppose (ii) holds. TWec 


then h(ol) lies in h(S, ), wlhile by
from the fact that if o , 


(ii)> h(P ) does not. We then show that h is order preserving: Suppose


t< . The set h(S ) does not contain h(P ), s:nce the statement


"h( ) = h( ) for some $<c ,, would contradict the fact that h is


injective. Since h(p ) is the smallest element not in h(S<), we have


h(, ) h(A ); equality cannot hold because h is injective.


If h(J) = E, te proof is complete. Suppose that h(J) X E; let e 

be the smallest element not in h(J). Then h(J) contains every element less


than e. And h(J) cannot contain any element greater than e) for if h(A) e,


then the fact that h( ) is the smallest element not in h(Se) would imply


that e belongsto h(S& ) ar;d hence to h(J). We conclude that h(J) = Se.
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Corollary B.2. Let J and E be well-ordered sets. There is at most one 

map h:J- E thlat is order preserving and whose image is E or a section 

of E. 

Ccrollary B.3. If J is a well-ordered set, no section of J has


the order type of J; nor can two different sections of J have the same order


type.


Proof. If Sd is a section of J, then inclusion i:S,- J satisfies 

the conditions specified for the map h of the preceding corollary.


Hence there is no surjective order-preserving map h: S --~ J. Similarly,


if 4i-3 , then inclusion i : S - S satisfies these same conditions, so


there is no surjective order -preserving map h: S--> S ·


Theorem B.4. TLct J and E be well-ordered sets. If there is an


order-preserving map k : J-- E, then there is an order -preserving map


h : J-- E -whose image is E or a section of E. 

Proof. Coose e0 in E. B the principle of recursive definition, we 

may define a function h: J E by setting


(*) h(oC) = smallest[E - h(S4 )]


whenever E - h(S_) is nonempty, and h(o<) = e0 otherwise.


Now, given p, consider the following conditions:


(i) h(4) f k(4) for all o(c. 

(ii) E- h(S ) is not empty.


(iii) h( ) k( ).


We show that (i) implies (ii) and (iii). Given (i), we have the inequalities


h(dL)4k(&)- k(o) for 4<< , which imply that k((3) does not belong 

to h(Sn ). Thus (ii) holds. It then follows from the definition of h


that, since h(( ) is the smallest element of E not in h(SA ), we have


h( ) c k( ).


The fact that (i) implies (iii) shows, by induction, that h(id) < k(o) 

for all d,. The fact that (i) implies (ii) then shows that h satisifes (8) 

for all . We then apply Theorem B.l. l
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Theorem B.5 (Comparability theorem). Let A and B be well-ordered


sets. Eactly one of the following conditions holds:


(i) A has the order type of B.


(ii) A has the order type of a section of B.


(iii) B has the order type of a section of A.


Proof. Assume without loss of generality that A and B are disjoint.


Order the set C = A B by using the order relations on A and on B; and by


declaring that a<b for a in A and b in B. It is easy to see that C


is well-ordered.


Let b0 be the smallest element of B. Then A equals the section of C


Inclusion i : B--C is order preserving; it follows from the preceding
by b0 .


theorem that there is an order-preserving map h : B- C whose image is C


or a section of C. If h(B) equals the section of C by an element of A.


then B has the order type of a section of A. If h(B) equals the section


of C by b0, then B has the order type of A. And if h(B) equals


the section of C by an element b> b of B, or if h(B) equals all of C,


then A has the order type of a section of B.


The preceding corollary implies that only one of the conditions (i)-(iii)


can hold .n 

Lenma B.6. Let X be a set; let bej the collection of all pairs 

(A,< )r, where A is a subset of X and < is a well-ordering of A. 

Define 

(A,<) < (A',<C') 

if (A,<) equals a section of (A', <'). Then - is a strict partial 

order on a . If 3 is a simply ordered subcollection of , let C ecual, 

the union of the sets B, fr all (B,<) in ; and let < C equal the


union of the relations < , fcr all (B,--) in . Then (C,<C) is an


upper bound fr in A .


Proof. We,check the conditions for a.strict partial order. Nonreflexivity


is immediate, for A cannot equal a section of itself. Transitivity is also


immediate, since if A! is a section of A2 and A2 is a section of A, then


Al is a section of A3.




Now consider the set C. Given two distinct elements b0 and bl


of C, there is an element (B,<) of D such that B contains both 

of them (because ib is simply ordered by -< ). One of these elements is less 

than the other under C<, arid which relation holds is independent of the choice


of (B,<), again because is simply ordered. Hence one is less than the


other under < C


Since the relation b<b cannot hold in B, for any (B,) in ,


we cannot have b<C b.


Finally, suppose b0, b1, and b, are elements of C such that


be0C bl C b2 

Because is simply ordered, there is an element (B, ) in 43 such that 

b0 b and b- all belong to B anid the relations b0 bl and b1 b2


hold in B. Then the relation bo b2 holds in B, sco that we have
0


b0 <C b


Therefore C is simply ordered; we show C iS well-ordered. Let D be


an arbitrary nonempty subset of C. Then D intersects soma set B0,


where (B0, <0) belongs to- . Let us take the smallest element d


0 0 , < 0). This element is independent of
of D BO in the well-ordered set (Bo


the choice of B . For if (Bl', 1) is another element of such that D


intersects B1, then one of (B0, <C0 and (B1, <1
) equals a section


of the other, so that the smallest elements of DOB and D B are


the same. A similar argument shows that d is the smallest element of C.


Finally, we must show that (C,<C) is an upper bound for ' ; that is, 

given an element (B,<) of - , either (B,<) equals (C,<C) or it equals 

a section of (C,< '. We know that BcC and that < is contained in <C.


Suppose that equality does not hold. DLt c be the smallest element of 


tlat is not in B. Then B contains the section of C by c. We show that


B contains no element co of C that is greater than c; this implies that


B equals. the section of C by c.


o c. As before, there is an element (B0, O)
So suppose B contains c0


of such that B contains both cO and c. B0 cannot be a section of


B because B does not contain. c . And B cannot be a section of B0 

because B contains cO but not the smaller element c. Th-,us we reach a


contradiction to the fact that is simply ordered. ­


C 
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Theorem B.7. The maximum principle is equivalent to the well-ordering


theorem.


Proof. We have sketched in the text (p.70) how one can use the principle


of recursive definition to show that the well-ordering theorem implies the


maximum principle.


Thl preceding lemma provides a proof of tiereverse implication. Given


a set X, one proceeds as in the lemma. The maximum principle gives one


a maximal subcollection that is simply ordered by . Its upper bound C


must equal all of X, for if x were an element of X not in C, one


could form a larger well'ordered set D by adjoining x to C and declaring


x to be larger than every element of C. Ten C would equal the section of


D by x. Adjoining D to the collection wculd give us a simply


ordered subcollection of LA that properly contains d , contradicting 

maximality. 


Tl-eorem B 8. The choice axiom is equivalent to the well-ordering


theorem.


Proof. It is immediate that the well-ordering theorem implies the choice


axiom. We prove the converse.


Given X, let c be a choice function for the nonempty subsets of X.


If T i a subset of X ar;d < is a relation on T, wsay that (T,< ) 

is a tower in X if < is a well-ordering of T and if for each x in T,


x = c(X - S(T)), 

where S (T) is the section of T by x.


Step 1. Given two towers (T1, ' 1) and (T, < 2) in X, either they


are equal or one equals a section of the other.


Switching indices if necessary, the comparability theorem tells us there is


an order-preserving map


h: T T2


whose image is either T2 or a section of T2. Theorem B.1 tells us that h
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rmst be given y the formula


( ) h(x) = sm:allest[T2 - h(Sx(T1))].


This in turn implies that h(x) = x for all x in T1, as we now show:


We proceed by transfinite induction. Suppose that y is in T] and


that h(x) = x for all x<y. We show h(y) = y.


Consider the restricted function h: Sy(T1)- T2. Because (*) holds, the


image must be a section of T2. (It cannot equal T2, because it does not


contain h(y).) This section is of course the section by the element


smallest [T2 - h(Sy(Tl))],


which by (*) is just h(y). Thbls


h(Sy(T1)) = Sh(y)(T 2) 

It follows that


h(y) = c(X- Sh(y)(T 2)) by definition of a tower,


= c(X - h(Sy(T 1)) as just noted,


= c(X - Sy(TI)) because h(x) = x for x<y, 

= y byt definition of. a tower.


Thus h(x) = x for all x in T1. It follows that h(T 1) = T1, so that


T1 equals either T2 or a section of T2.


Step 2. LE!t (T.<i) be the collection of all towers in X. ALt T


be the union of all the sets Ti ard let < be the union of all the relations 

< i . We show that (T, ) is a tower in X. 

We showed in Step 1 that the collection of all towers in X is simply


ordered by the relation -< of Lemma B.6. It follows from this lemma that 

(T,<) is a well-ordered set. We show that it is actually a tower.


This is in fact easy. Given x in T, w must show that


x = c(X - Sx(T)). 

)
Now there is a tower (T1, l1 in X such that Tg contains x. By Lemma B.6,


TI equals T or a section of T. Therefore, Sx(T 1) = Sx(T). Because 

T1 is a tower, 

x = c(X - Sx(T1)); 

our desired result follows.
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Step 3. We show that T = X. If T is not all of X we can set


y = c(X - T),


and make the set T uhy} into a well-ordered set by declaring y x for every


x in T. Then not only is this set well-ordered, it is also a tower in X.


This contradicts the fact that T is obtained by, taking the union of all


towers in X a 

EXERCISES


1. Suppose we alter the statement of Lemma B.6 by declaring that


(A,<) • (A', <') if A is contained in A' and < is contained in '. 

Show that the resulting set C is simply ordered. Give an example to show that


it need not be well-ordered.


2. LIet be a collection of sets. Let us define two sets to be equivalent


if there is a bijection between them; the equivalence classes are called


cardinal numbers. Let us denote the equivalence class of the set A by


c(A); and let us define c(A)< c(B) if there is an injection i : A- B


but no injection of B into A Show that this is a well-defined relation,


and that this collection of cardinal numbers is well-ordered by this relation.


The cardinal number of the positive integers is commonly denoted 10


(Read "aleph naught.") The next cardinal number after this one is denoted


(surprise!) (i1. Thle cardinal number of the reals is denoted c ("the


cardinality of the continuum")' The continuum hypothesis is the statement that


=c.


[It is tempting to try to construct the collection of all cardinal numbers


by beginning with the collection-of all sets and introducing the above equivalence


relation. Te problem is that the collection of all sets is a contradictory


notion. See Exercise 6 of §9. Logicians have formulated a way around this


difficulty, so that they can consider arbitrarily large car dinal numbers. .] 


