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Proof of the Well-ordering Theorem B.1

Wa foll‘ow the pattern outlined in Exercises 2-7 on pp. 72-73 of the text.

Thecrem B.1. Iet J and E be well-ordered sets; let h: J~%E. Then

the following are equivalent:
(i) h 1is order preserving and h(J) equals E or a section

of E. _ v
(ii) hi«) = smallest [E - h(s, V] fer each « .

Proof. Suppose (i) holds. Let /2 be: an arbitrary element of J;
let

0

and suppose that h(ﬁ) # ey
It cannot be true that h( /3) < eqyr for that would imply that h(pg)

iies in ‘n(Sﬁ ), so that h(ﬂ) = h(«) for some o(<'//% ;  this in turn

e = smallest [E - h(Slg Y1,

would contradict the fact that h is injective. Hence h(’g )y > ey
Thus h(J) contains an element greater than eg-
Now we show that h{(J) does not contain ey- Since h((,3)>eG
and h is order preserving, then for all o(Zﬁ, we have hi(« )> -
On the other hand, if </3, then h(«) belongs to h(Sﬂ ), sc that
hio )} # ey by definition of e
Thus h(J) ccntains an element greater than o but does not contain

e.. This contradicts the fact that h(J) ecuals E or a section of E.
Suppoge (ii) holds.  we first show that h is injective; this follows

from the fact that if o£<[$ ;, then h(«) 1lies in h(sﬂ’ Y}, while by
(ii)) h(p)) dces not. We then show that h 1is order preserving: Supposs

c>¢<{é. The set h(S ) does not contain h( ﬁ ), since the statement
"h(P) =h(¥) for some B<A " would contradict the fact that h is
injective. Since h(K ) is the smallest element not in h(S %)+ we have
h(« ) < h( /_), ); equality cannot hold because h is injective.
If h(J) = E, the proof is complete. Suppose that h(J) # E; let e
be the smallest element not in h(J). Then h(J) contains every element less
than e. Arnd h(J) cannot contain any &lement greater than e for if h( ﬁ) >e,
then the fact that h( ﬁ ) 1s the smallest element not in h(%) would imply
that e belongs‘to h(S’[,> ) and hence to h(J). We conclude that h(J) = Se' Ul
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Corollary B.2. Iet J ard E be well-ordered sets. There is at most one

mep h:J-»E that is order preserving and whose image is E or a section

of E.

Cerollary B.3. If J is a well-ordered set, no section of J has

the order type of J; nor can two different sections of J hive the same order

type.
Proof. If S, is a section of J, then inclusion i:s&-é J satisfies

the conditions specified for the map h of the preceding corollary.
Hence there is no surjective order-preserving map h: S 2 I Similarly,
if 9{4/3 , then inclusion i : So(——y Sﬁ satisfies these same conditions, so

there is no surjective ordep -preserving map h: S i S /B . D

Theorem B.4. Tet J ard E be well-ordered sets. If there is an

order-preserving map k : J— E, then there is an order -preserving map

h: J—>E whose image is E or a section of E.

Proof. Choose 24 in E. By the principle of recursive definition, we

may define a function h: J—E by setting
(+) h(«) = smallest[E - h(S, )]

whenever E - h(So(_) is nonempty, and hi(x) = e otherwise.

Now, given F:, consider the following conditions:

(i) h(«L) < k(L) for all a&‘ﬁ.

(i1) E- h(SB ) is not empty.

(i11) h(g) 5 K(B).
We show that (i) implies (ii) and (iii). Given (i), we have the inequalities
h(&)ﬁk(.&)<k({3) for o(<ﬂ , which imply that k(.(;) does not belong
to h(S@ ). Thus (ii) holds. It then follows from the definition of h
that, since h((g,) is the smallest element of E not in h(Sﬁ ), we have
h((}; ) < x( [?7 ).

The fact that (i) implies (iii) shows, by induction, that h{ad ) £ k()
for all o . The fact that (i) implies (ii) then shows that h satisifes (%)
for all o . We then apply Theorem B.1. [}



Theorem B.5 (Comparability theorem). Iet A and B be well-ordered

sets. BEsactly one of the following conditions holds:
(i) A has the order type of B.
(ii) A hes the order type of a section of B.
(iii) B has the order type of a section of A.

Proof. Assume without loss of generality that A and B are disjoint. |
Order the set C = AUB by using the order relations on A and ort B, and by
declaring that a<b for a in A and b in B. It is easy to see that C
is well-ordered.

Iet b, be the smallest element of B. Then A eguals the section of C

0
by b,. Inclusion 1i: B—>C is order preserving; it follows from the preceding

theorgm that there is an order-preserving map h : B-—>(C whose image is C

or a section of C. If h(B) equals the section of C by an element of A,
then B has the order type of a section of A. If h(B) ecuals the section
of C by b., thten B has the order type of A. And if h(B) equals

the section of C by an element b> Db, of B, or if h(B) ecuals all of C,

0
then A has the order type of a section of B.
The preceding corollary implies that only one of the conditions (i)-(iii)

can hold .[]}

lemma B.6. Let X be a set; let A b the collection of all pairs
(A, <}, wvhere A iz a subset of X and < is a well-ordering of A.
Define
(a,<) < (@, <"

if (A,<) équals a section of (A',<'). Then < is a strict partial
order on . 1If ﬂ? is a simply ordered subcollection of A, 1let ¢ ecual.
the union of the sets B, for all (B,<) in @; and let <,
union of the relations <, fcr all (B, <) in ﬁ) Then (C,<C) is an
upper bound #6r B in A .

equal the

Proof. We check the conditions for astrict partial order. Nenreflexivity
is immediate, for A cannot equal a section of itself. Transitivity is also

immediate, since if A, is a section of A, and A, is a section of A,, then

Al is a section of A3.
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Ncw consider the set C. Given two distinct elements bo ard b1
of C, there is an element (B,<) of ’ﬁ such that B contains both
of them (because 7& is simply ordered by < ). One of these elements is less
than the other under <<, and which relation holds is independent of the choice
of (B,<<), again because “E? is simply ordered. Hence one is less than the
other under < o

Since the relation b<b cannot hold in B, for any (B,<) in ﬁ ’

we cannot have b< o b.

Finally, suppose BO’ bl’ and ’62 are elements of C such that
Pp €c PL<c Py
Because B is simply ordered, there is an element (B,<) in 233 such that

bO’ bl’ and b2 all bélong to B and the relations bo< b1 ard b1< b2
hold in B. Then the relation b0< b2 holds in B, sc¢ that we have

< .
b0 ¢ P

Therefore C is simply ordered; we show C 18 well-ordered. Iet D be
an arbitrary nonempty subset of C. Then D intersects soma set BO’

where (B belongs to B . Let us take the smallest element 4

Ol 4O)
of DN BC' in the well-ordered set (BO,< O). This element is independent of
the choice of BO' For if (Bl' <1) is another elemenrt of *8 such that D

intersects B then one of (BO, <O) and (Bl’ <1) equals a section

1!
of the other, so that the smallest elements of D[IBO and DAaO B] are
the same. A similar argument shows that d is the smallest element of C.

Finally, we must show that (C,<.) 1is an upper bound for { ; that is,

C
given an element (B,<) of 4, either (B,<) eguals (C, <C) or it equals
a section of (C,<C). We know that Bc<C and that << is contained in <C.

Suppose that equality does not hold. Iet < be the smallest element of C
that is not in B. Then B ccntains the section of C by <. We show that
B coontains no element ¢, of C that 1is greater than c¢; this implies that

0
B ecuals. the section of C by c.

S suppose B contains cO> c. As before, there is an element (BO, <O)

of 33 such that By contains both S and c. By cannot be a section of
B because B does not contain. ¢ . 2Arnd B cannot be a section of BG
because B contains CO but not the smaller élement <. Thus we reach a

centradiction to the fact that 3 is simply ordered. (1
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Theorem B.7. The maximum principle is equivalent to the well-ordering

theorem.

Proof. We have sketched in the text (p.70) how one can use the principle
of recursive definition to show that the well-ordering theorem implies the
maximum principie.

The preceding lemma provides a proof of tlereverse implication. Given
a set X, one proceeds as in the lemma. The maximum principle gives one
a maximal subcollection ﬂz\ that is simply ordered by <. Its upper bound C
must equal all of X, for if x were an element of X not in C, one
¢ould form a larger weliordered set D by adjoining x to C and declaring
X to be larger than every element of C. Then C would equal the section of
D by x. Adjoining D to the collection 65: wculd give us a simply
ordered subcollection of uA that properly contains ”tf, contradicting

maximality. [)

Theorem B.8. The choice axiom is equivalent to the well-ordering

theorem.

Proof. It is immediate that the well-ordering theorem implies the choice

axiom. We prove the convérse.
Given X, 1let c be a choice function for the nonempty subsets of X.

If T is a subset of X and < 1is a relation on T, we:.say that (T,<)

is a tower in X if < is a well-ordering of T and if for each x in T,
x = cofX - SX(T)),

where SX(T) is the section of T by x.

Step 1. Given two towers (T1,<:1) and (T2,<:2) in X, either they
are equal or one equals a section of the other.
Switching indices if necessary, the comparability theorem tells us there is
an order-preserving map
h: Tl*?‘TE

whose image is either T2 or a section of TZ' Theorem B.l tells us that h
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mist be given by the formula

(*) h(x) = smallest[T2 - h(SX(Tl))].
This in turn implies that h(x) = x for all x in Tl’ as we now show:
We proceed by transfinite induction. Suppose that y is in TI and
. that h(x) = x for all x<y. We show h(y) =y.
Consider the restricted function h: Sy(Tl)“$ TZ. Because (*) holds, the
image must be a section of T?. (It cannot equal TZ’ because it does not

contain h(y).) This section is of course the section by the element

smallest [T2 - h(Sy(Tl))]'
which by (*) is just h(y). Thus

h(Sy(Tl)) = Sh(y)(TZ)'

It follows that

(X~ Sh(y)

= X - h(sy(Tl)) as just noted,

h(y) (Tz)) by definition of a tower,

= ofX - Sy<T1)) because h(x) = x for =x<vy,

y by definition of a tower.

Thus h(x) = x for all x in Tl’ It follows that h(Tl) = Tl’ sc¢ that
T1 equals either T2 or a section of TZ'

Step 2. ILet (Ti’<:i) be the collection of all towers in X. lLet T
be the union of all the sets T, and let < be the union of all the relations
<:i . We show that (T,<) 1is a tower in X.

We showed in Step 1 that the collection of all towers in X is simply
ordered by the relation ‘(' of Lemma B.B. It follows from this lemma that
(T,<) 1is a well-ordered set. We show that it is actually a tower.

Tnis is in fact easy. Given x in T, we must show that

 x = c(X-'sX(T)).
Now there is a tower (T1,<<1) in X such that Tj centains x. By Lemma B.6,
T, equals T or a section of T. Therefore, Sx(Tl) = SX(T). Because
T, 1is a tower,

x = c(X - S (T)));

our desired result follows.
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Step 3. We: show that T =X. If T is not all of X, we can set
y=cX-T),
and make the set ’I‘Ufy} into a well-ordered set by declaring y>x for every
x in T. Then not only is this set well-ordered, it is also a tower in X.
This contradicts the fact that T is obtained by taking the union of all

towers in X. (J

EXERCISES

1. Suppose we alter the statement of Lemma B.6 by declaring that
(a,<) < (A', <') if A 1is contained in A' and < is contained in <'.
Show that the resulting set C is simply ordered. Give an example to show that

it need not be well-ordered.

2. Let ¥ be a collection of sets. Let us define two sets to be equivalent
if there is a bijection between them; the equivalence classes are called

cardinal numbers. Let us denote the eqﬁivalence class of the set A by

c(A); and let us define c¢(A)<c(B) if there is an injection i: A—B

but no injection of B into A. Show that this is a well-defined relation,

and that this collection of cardinal numbers is well-ordered by this relation.
The cardinal number of the positive integers is commonly denoted }{O'

(Read "aleph naught.") The next cardinal number after this one is denoted

(surprise!) }{1. The cardinal number of the reals is denoted ¢ ("the

cardinality of the continuum®"). The continuum hypothesis is the statement that
/
g, =c.

[Tt is tempting to try to construct the collection of all cardinal numbers
by beginning with the collection-of all sets and introducing the above equivalence
relation. Tre problem is that the collection of all sets is a contradictory
notion. See Exercise 6 of §9. Logicians have formulated a way around this

difficulty, so that they can consider arbitrarily large car dinal numbers. |



