We follow the pattern outlined in Exercises 2-7 on pp. 72-73 of the text.

<u>Theorem B.1</u>. Let J and E be well-ordered sets; let h: $J \rightarrow E$. Then the following are equivalent:

(i) h is order preserving and h(J) equals E or a section of E.

(ii) $h(\measuredangle) = \text{smallest} [E - h(S_{\measuredangle})]$ for each \measuredangle .

<u>Proof</u>. Suppose (i) holds. Let β be an arbitrary element of J; let

$$e_0 = \text{smallest} [E - h(S_\beta)],$$

and suppose that $h(\beta) \neq e_0$.

It cannot be true that $h(\beta) < e_0$, for that would imply that $h(\beta)$ lies in $h(S_\beta)$, so that $h(\beta) = h(\measuredangle)$ for some $\measuredangle < \beta$; this in turn would contradict the fact that h is injective. Hence $h(\beta) > e_0$. Thus h(J) contains an element greater than e_0 .

Now we show that h(J) does not contain e_0 . Since $h(\beta) > e_0$ and h is order preserving, then for all $\not < \beta$, we have $h(\alpha) > e_0$. On the other hand, if $\not < \beta$, then $h(\alpha)$ belongs to $h(S_\beta)$, so that $h(\alpha) \neq e_0$ by definition of e_0 .

Thus h(J) contains an element greater than e_0 , but does not contain e_0 . This contradicts the fact that h(J) equals E or a section of E.

Suppose (ii) holds. We first show that h is injective; this follows from the fact that if $\alpha < \beta$, then $h(\alpha)$ lies in $h(S_{\beta})$, while by (ii), $h(\beta)$ does not. We then show that h is order preserving: Suppose $\alpha < \beta$. The set $h(S_{\alpha})$ does not contain $h(\beta)$, since the statement " $h(\beta) = h(\beta)$ for some $\beta < \alpha$ " would contradict the fact that h is injective. Since $h(\alpha)$ is the smallest element not in $h(S_{\alpha})$, we have $h(\alpha) \leq h(\beta)$; equality cannot hold because h is injective.

If h(J) = E, the proof is complete. Suppose that $h(J) \neq E$; let e be the smallest element not in h(J). Then h(J) contains every element less than e. And h(J) cannot contain any element greater than e; for if $h(\beta) > e$, then the fact that $h(\beta)$ is the smallest element not in $h(S_{\beta})$ would imply that e belongs to $h(S_{\beta})$ and hence to h(J). We conclude that $h(J) = S_e$. \Box <u>Corollary B.2</u>. Let J and E be well-ordered sets. There is at most one map $h: J \rightarrow E$ that is order preserving and whose image is E or a section of E.

<u>Ccrollary B.3</u>. If J is a well-ordered set, no section of J has the order type of J; nor can two different sections of J have the same order type.

<u>Proof.</u> If S_{χ} is a section of J, then inclusion $i:S_{\chi} \to J$ satisfies the conditions specified for the map h of the preceding corollary. Hence there is no surjective order-preserving map $h: S_{\chi} \to J$. Similarly, if $\chi < \beta$, then inclusion $i: S_{\chi} \to S_{\beta}$ satisfies these same conditions, so there is no surjective order preserving map $h: S_{\chi} \to S_{\beta}$.

<u>Theorem B.4</u>. Let J and E be well-ordered sets. If there is an order-preserving map $k: J \rightarrow E$, then there is an order -preserving map $h: J \rightarrow E$ whose image is E or a section of E.

<u>Proof.</u> Choose e_0 in E. By the principle of recursive definition, we may define a function $h: J \rightarrow E$ by setting

(*) $h(\alpha) = \text{smallest}[E - h(S_{\alpha})]$

whenever $E - h(S_{\chi})$ is nonempty, and $h(\alpha) = e_0$ otherwise.

Now, given β , consider the following conditions:

(i) $h(\alpha) \leq k(\alpha)$ for all $\alpha < \beta$.

(ii) $E - h(S_{\beta})$ is not empty.

(iii) $h(\beta) \leq k(\beta)$.

We show that (i) implies (ii) and (iii). Given (i), we have the inequalities $h(\boldsymbol{\lambda}) \leq k(\boldsymbol{\lambda}) < k(\boldsymbol{\beta})$ for $\boldsymbol{\langle < \beta}$, which imply that $k(\boldsymbol{\beta})$ does not belong to $h(\boldsymbol{\varsigma}_{\boldsymbol{\beta}})$. Thus (ii) holds. It then follows from the definition of h that, since $h(\boldsymbol{\beta})$ is the smallest element of E not in $h(\boldsymbol{\varsigma}_{\boldsymbol{\beta}})$, we have $h(\boldsymbol{\beta}) \leq k(\boldsymbol{\beta})$.

The fact that (i) implies (iii) shows, by induction, that $h(\boldsymbol{\lambda}) \leq k(\boldsymbol{\lambda})$ for all $\boldsymbol{\lambda}$. The fact that (i) implies (ii) then shows that h satisifes (*) for all $\boldsymbol{\lambda}$. We then apply Theorem B.1. \square Theorem B.5 (Comparability theorem). Let A and B be well-ordered sets. Exactly one of the following conditions holds:

(i) A has the order type of B.

(ii) A has the order type of a section of B.

(iii) B has the order type of a section of A.

<u>Proof</u>. Assume without loss of generality that A and B are disjoint. Order the set C = AVB by using the order relations on A and on B, and by declaring that a < b for a in A and b in B. It is easy to see that C is well-ordered.

Let b_0 be the smallest element of B. Then A equals the section of C by b_0 . Inclusion $i: B \rightarrow C$ is order preserving; it follows from the preceding theorem that there is an order-preserving map $h: B \rightarrow C$ whose image is C or a section of C. If h(B) equals the section of C by an element of A, then B has the order type of a section of A. If h(B) equals the section of C by b_0 , then B has the order type of A. And if h(B) equals the section of C by an element $b > b_0$ of B, or if h(B) equals all of C, then A has the order type of a section of B.

The preceding corollary implies that only one of the conditions (i)-(iii) can hold \Box

Lemma B.6. Let X be a set; let \mathcal{A} be the collection of all pairs (A,<), where A is a subset of X and < is a well-ordering of A. Define

$$(A,<) \prec (A',<')$$

if (A,<) equals a section of (A',<'). Then \prec is a strict partial order on A. If \mathcal{B} is a simply ordered subcollection of A, let C equal the union of the sets B, for all (B,<) in \mathcal{B} ; and let $<_{C}$ equal the union of the relations <, for all (B,<) in \mathcal{B} . Then $(C,<_{C})$ is an upper bound for \mathcal{B} in A.

<u>Proof</u>. We check the conditions for a strict partial order. Nonreflexivity is immediate, for A cannot equal a section of itself. Transitivity is also immediate, since if A_1 is a section of A_2 and A_2 is a section of A_3 , then A_1 is a section of A_3 . Now consider the set C. Given two distinct elements b_0 and b_1 of C, there is an element (B,<) of \mathcal{B} such that B contains both of them (because \mathcal{B} is simply ordered by \prec). One of these elements is less than the other under <, and which relation holds is independent of the choice of (B,<), again because \mathcal{B} is simply ordered. Hence one is less than the other under $<_{C}$.

Since the relation b < b cannot hold in B, for any (B, <) in \mathcal{C} , we cannot have $b <_C b$.

Finally, suppose b_0 , b_1 , and b_2 are elements of C such that $b_0 <_C b_1 <_C b_2$.

Because \mathfrak{B} is simply ordered, there is an element (B,<) in \mathfrak{B} such that b_0 , b_1 , and b_2 all belong to B and the relations $b_0 < b_1$ and $b_1 < b_2$ hold in B. Then the relation $b_0 < b_2$ holds in B, so that we have $b_0 < c \ b_2$.

Therefore C is simply ordered; we show C is well-ordered. Let D be an arbitrary nonempty subset of C. Then D intersects some set B_0 , where (B_0, \leq_0) belongs to \mathcal{B} . Let us take the smallest element d of $D \cap B_0$ in the well-ordered set (B_0, \leq_0) . This element is independent of the choice of B_0 . For if (B_1, \leq_1) is another element of \mathcal{B} such that D intersects B_1 , then one of (B_0, \leq_0) and (B_1, \leq_1) equals a <u>section</u> of the other, so that the smallest elements of $D \cap B_0$ and $D \cap B_1$ are the same. A similar argument shows that d is the smallest element of C.

Finally, we must show that $(C, <_C)$ is an upper bound for \mathcal{B} ; that is, given an element (B, <) of \mathcal{B} , either (B, <) equals $(C, <_C)$ or it equals a section of $(C, <_C)$. We know that B < C and that < is contained in $<_C$. Suppose that equality does not hold. Let c be the smallest element of C that is not in B. Then B contains the section of C by c. We show that B contains no element c_0 of C that is greater than c; this implies that B equals the section of C by c.

So suppose B contains $c_0 > c$. As before, there is an element $(B_0, <_0)$ of \mathcal{B} such that B_0 contains both c_0 and c. B_0 cannot be a section of B because B does not contain c. And B cannot be a section of B_0 because B contains c_0 but not the smaller element c. Thus we reach a contradiction to the fact that \mathcal{B} is simply ordered.

Theorem B.7. The maximum principle is equivalent to the well-ordering theorem.

<u>Proof</u>. We have sketched in the text (p.70) how one can use the principle of recursive definition to show that the well-ordering theorem implies the maximum principle.

The preceding lemma provides a proof of the reverse implication. Given a set X, one proceeds as in the lemma. The maximum principle gives one a <u>maximal</u> subcollection \mathcal{B} that is simply ordered by \prec . Its upper bound C must equal all of X, for if x were an element of X not in C, one could form a larger well-ordered set D by adjoining x to C and declaring x to be larger than every element of C. Then C would equal the section of D by x. Adjoining D to the collection \mathcal{B} would give us a simply ordered subcollection of \mathcal{A} that properly contains \mathcal{B} , contradicting maximality.

<u>Theorem B.8</u>. The choice axiom is equivalent to the well-ordering theorem.

<u>Proof</u>. It is immediate that the well-ordering theorem implies the choice axiom. We prove the converse.

Given X, let c be a choice function for the nonempty subsets of X. If T is a subset of X and < is a relation on T, we say that (T, <) is a tower in X if < is a well-ordering of T and if for each x in T,

$$x = c(X - S_{X}(T)),$$

where $S_{v}(T)$ is the section of T by x.

<u>Step 1</u>. Given two towers $(T_1, <_1)$ and $(T_2, <_2)$ in X, either they are equal or one equals a section of the other.

Switching indices if necessary, the comparability theorem tells us there is an order-preserving map

$$h: T_1 \rightarrow T_2$$

whose image is either ${\rm T}_2$ or a section of ${\rm T}_2.$ Theorem B.1 tells us that h

must be given by the formula

(*)
$$h(x) = smallest[T_2 - h(S_x(T_1))].$$

This in turn implies that h(x) = x for all x in T_1 , as we now show: We proceed by transfinite induction. Suppose that y is in $T_{\overline{1}}$ and that h(x) = x for all x < y. We show h(y) = y.

Consider the restricted function $h: S_y(T_1) \rightarrow T_2$. Because (*) holds, the image must be a section of T_2 . (It cannot equal T_2 , because it does not contain h(y).) This section is of course the section by the element

smallest $[T_2 - h(S_y(T_1))]$, which by (*) is just h(y). Thus

$$h(S_{y}(T_{1})) = S_{h(y)}(T_{2}).$$

It follows that

$$\begin{split} h(y) &= c(X - S_{h(y)}(T_2)) \text{ by definition of a tower,} \\ &= c(X - h(S_y(T_1)) \text{ as just noted,} \\ &= c(X - S_y(T_1)) \text{ because } h(x) = x \text{ for } x < y, \\ &= y \text{ by definition of a tower.} \end{split}$$

Thus h(x) = x for all x in T_1 . It follows that $h(T_1) = T_1$, so that T_1 equals either T_2 or a section of T_2 .

Step 2. Let $(T_i, <_i)$ be the collection of all towers in X. Let T be the union of all the sets T_i and let < be the union of all the relations $<_i$. We show that (T, <) is a tower in X.

We showed in Step 1 that the collection of all towers in X is simply ordered by the relation \prec of Lemma B.6. It follows from this lemma that (T, <) is a well-ordered set. We show that it is actually a tower.

This is in fact easy. Given x in T, we must show that

$$\mathbf{x} = \mathbf{c}(\mathbf{X} - \mathbf{S}_{\mathbf{x}}(\mathbf{T})).$$

Now there is a tower $(T_1, <_1)$ in X such that T_j contains x. By Lemma B.6, T_1 equals T or a section of T. Therefore, $S_x(T_1) = S_x(T)$. Because T_1 is a tower,

 $x = c(X - S_x(T_1));$

our desired result follows.

Step 3. We show that T = X. If T is not all of X, we can set y = c(X - T),

and make the set $T \cup \{y\}$ into a well-ordered set by declaring y > x for every x in T. Then not only is this set well-ordered, it is also a <u>tower</u> in X. This contradicts the fact that T is obtained by taking the union of <u>all</u> towers in X.

EXERCISES

1. Suppose we alter the statement of Lemma B.6 by declaring that $(A, <) \prec (A', <')$ if A is contained in A' and < is contained in <'. Show that the resulting set C is simply ordered. Give an example to show that it need not be well-ordered.

2. Let U be a collection of sets. Let us define two sets to be equivalent if there is a bijection between them; the equivalence classes are called <u>cardinal numbers</u>. Let us denote the equivalence class of the set A by c(A); and let us define c(A) < c(B) if there is an injection $i: A \rightarrow B$ but no injection of B into A. Show that this is a well-defined relation, and that this collection of cardinal numbers is well-ordered by this relation.

The cardinal number of the positive integers is commonly denoted \mathcal{H}_0 . (Read "aleph naught.") The next cardinal number after this one is denoted (surprise!) \mathcal{H}_1 . The cardinal number of the reals is denoted <u>c</u> ("the cardinality of the continuum"). The continuum hypothesis is the statement that $\mathcal{H}_1 = c$.

[It is tempting to try to construct the collection of <u>all</u> cardinal numbers by beginning with the collection of <u>all</u> sets and introducing the above equivalence relation. The problem is that the collection of all sets is a contradictory notion. See Exercise 6 of §9. Logicians have formulated a way around this difficulty, so that they can consider arbitrarily large car dinal numbers.]