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You get a much simpler result: Away from 2, even projective spaces look like points, and odd
projective spaces look like spheres!

I’d like to generalize this process a little bit, and allow coefficients not just in a commutative
ring, but more generally in a module M over a commutative ring; in particular, any abelian group.
This is most cleanly done using the mechanism of the tensor product. That mechanism will also let
us address the following natural question:

Question 19.1. Given H∗(X;R), can we deduce H∗(X;M) for an R-module M?

The answer is called the “universal coefficient theorem”. I’ll spend a few days developing what
we need to talk about this.

20 Tensor product

The category of R-modules is what might be called a “categorical ring,” in which addition corre-
sponds to the direct sum, the zero element is the zero module, 1 is R itself, and multiplication is
. . . well, the subject for today. We care about the tensor product for two reasons: First, it allows
us to deal smoothly with bilinear maps such that the cross-product. Second, and perhaps more
important, it will allow us relate homology with coefficients in an any R-module to homology with 
coefficients in the PID R; for example, relate H∗(X; M) to H∗(X), where M is any abelian group.

Let’s begin by recalling the definition of a bilinear map over a commutative ring R.

Definition 20.1. Given three R-modules, M, N, P , a bilinear map (or, to be explicit, R-bilinear 
map) is a function β : M × N → P such that

β(x + x′, y) = β(x, y) + β(x′, y) , β(x, y + y′) = β(x, y) + β(x, y′) ,

and
β(rx, y) = rβ(x, y) , β(x, ry) = rβ(x, y) ,

for x, x′ ∈ M , y, y′ ∈ N , and r ∈ R.

Example 20.2. Rn × Rn → R given by the dot product is an R-bilinear map. The cross product 
R3 × R3 → R3 is R-bilinear. If R is a ring, the multiplication R × R → R is R-bilinear, and the 
multiplication on an R-module M given by R × M → M is R-bilinear. This enters into topology 
because the cross-product Hm(X; R) × Hn(Y ; R) −×→ Hm+n(X × Y ; R) is R-bilinear.

Wouldn’t it be great to reduce stuff about bilinear maps to linear maps? We’re going to do this 
by means of a universal property.

Definition 20.3. Let M, N be R-modules. A tensor product of M and N is an R-module P and a 
bilinear map β0 : M ×N → P such that for every R-bilinear map β : M ×N → Q there is a unique 
factorization
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important, it will allow us relate homology with coefficients in an any R-module to homology with
coefficients in the PID R; for example, relate H∗(X;M) to H∗(X), where M is any abelian group.

Let’s begin by recalling the definition of a bilinear map over a commutative ring R.

Definition 20.1. Given three R-modules, M,N,P , a bilinear map (or, to be explicit, R-bilinear
map) is a function β : M ×N → P such that

β(x+ x′, y) = β(x, y) + β(x′, y) , β(x, y + y′) = β(x, y) + β(x, y′) ,

and
β(rx, y) = rβ(x, y) , β(x, ry) = rβ(x, y) ,

for x, x′ ∈M , y, y′ ∈ N , and r ∈ R.

Example 20.2. Rn ×Rn → R given by the dot product is an R-bilinear map. The cross product
R3 ×R3 → R3 is R-bilinear. If R is a ring, the multiplication R × R → R is R-bilinear, and the
multiplication on an R-module M given by R ×M → M is R-bilinear. This enters into topology
because the cross-product Hm(X;R)×Hn(Y ;R)

×−→ Hm+n(X × Y ;R) is R-bilinear.

Wouldn’t it be great to reduce stuff about bilinear maps to linear maps? We’re going to do this
by means of a universal property.

Definition 20.3. Let M,N be R-modules. A tensor product of M and N is an R-module P and a
bilinear map β0 : M ×N → P such that for every R-bilinear map β : M ×N → Q there is a unique
factorization

M ×N β0 //

β

##

P

f
��
Q

through an R-module homomorphism f .

We should have pointed out that the composition f ◦ β0 is indeed again R-bilinear; but this is
easy to check.

So β0 is a universal bilinear map out ofM×N . Instead of β0 we’re going to write⊗ : M×N → P .
This means that β(x, y) = f(x ⊗ y) in the above diagram. There are lots of things to say about
this. When you have something that is defined via a universal property, you know that it’s unique
. . . but you still have to check that it exists!

Construction 20.4. I want to construct a univeral R-bilinear map out ofM×N . Let β : M×N →
Q be any R-bilinear map. This β isn’t linear. Maybe we should first extend it to a linear map.
There is a unique R-linear extension over the free R-module R〈M×N〉 generated by the setM×N :

M ×N β //

[−]

&&

Q

R〈M ×N〉

β

::

The map [−], including a basis, isn’t bilinear. So we should quotient R〈M ×N〉 by a submodule S
of relations to make it bilinear. So S is the sub R-module generated by the four familes of elements
(corresponding to the four relations in the definition of R-bilinearity):
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1. [(x+ x′, y)]− [(x, y)]− [(x′ − y)]

2. [(x, y + y′)]− [(x, y)]− [(x, y′)]

3. [(rx, y)]− r[(x, y)]

4. [(x, ry)]− r[(x, y)]

for x, x′ ∈ M , y, y′ ∈ N , and r ∈ R. Now the composite M × N → R〈M × N〉/S is R-bilinear -
we’ve quotiented out by all things that prevented it from being so! And the map R〈M ×N〉 → Q

factors as R〈M ×N〉 → R〈M ×N〉/S f−→ Q, where f is R-linear, and uniquely because the map to
the quotient is surjective. This completes the construction.

If you find yourself using this construction, stop and think about what you’re doing. You’re
never going to use this construction to compute anything. Here’s an example: for any abelian group
A,

A× Z/nZ→ A/nA , (a, b) 7→ ba mod nA

is clearly bilinear, and is universal as such. Just look: If β : A × Z/nZ → Q is bilinear then
β(na, b) = nβ(a, b) = β(a, nb) = β(a, 0) = 0, so β factors through A/nA; and A × Z/nZ → A/nA
is surjective. So A⊗ Z/nZ = A/nA.

Remark 20.5. The image of M ×N in R〈M ×N〉/S generates it as an R-module. These elements
x⊗ y are called “decomposable tensors.”

What are the properties of such a universal bilinear map?

Property 20.6 (Uniqueness). Suppose β0 : M ×N → P and β′0 : M ×N → P ′ are both universal.
Then there’s a linear map f : P → P ′ such that β′0 = fβ0 and a linear map f ′ : P ′ → P such that
β0 = f ′β′0. The composite f ′f : P → P is a linear map such that f ′fβ0 = f ′β′0 = β0. The identity
map is another. But by universality, there’s only one such linear map, so f ′f = 1P . An identical
argument shows that ff ′ = 1P ′ as well, so they are inverse linear isomorphism. In brief:

The target of a univeral R-bilinear map β0 : M × N → P is unique up to a unique
R-linear isomorphism compatible with the map β0.

This entitles us to speak of “the” universal bilinear map out ofM×N , and give the target a symbol:
M ⊗R N . If R is the ring of integers, or otherwise understood, we will drop it from the notation.

Property 20.7 (Functoriality). Suppose f : M →M ′ and : N → N ′. Study the diagram

M ×N
f×g
��

⊗ //

&&

M ⊗N
f⊗g
��

M ′ ×N ′ ⊗ //M ′ ⊗N ′

There is a unique R-linear map f⊗g because the diagonal map is R-bilinear and the mapM×N →
M⊗N is the universal R-bilinear map out ofM×N . You are invited to show that this construction
is functorial.
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Property 20.8 (Unitality, associativity, commutativity). I said that this was going to be a “cate-
gorical ring,” so we should check various properties of the tensor product. For example, R ⊗R M
should be isomorphic to M . Let’s think about this for a minute. We have an R-bilinear map
R ×M → M , given by multiplication. We just need to check the universal property. Suppose we
have an R-bilinear map β : R ×M → P . We have to construct a map f : M → P such that
β(r, x) = f(rx) and show it’s unique. Our only choice is f(x) = β(1, x), and that works.

Similarly, we should check that there’s a unique isomorphism L ⊗ (M ⊗ N)
∼=−→ (L ⊗M) ⊗ N

that’s compatible with L × (M × N) ∼= (L × M) × N , and that there’s a unique isomorphism
M ⊗N → N ⊗M that’s compatible with the switch map M ×N → N ×M . There are a few other
things to check, too: Have fun!

Property 20.9 (Sums). What happens with M ⊗
(⊕

α∈ANα

)
? This might be a finite direct sum,

or maybe an uncountable collection. How does this relate to
⊕

α∈A(M ⊗ Nα)? Let’s construct a
map

f :
⊕
α∈A

(M ⊗Nα)→M ⊗

(⊕
α∈A

Nα

)
.

We just need to define maps M ⊗Nα →M ⊗
(⊕

α∈ANα

)
because the direct sum is the coproduct.

We can use 1⊗ inα where inα : Nα →
⊕

α∈ANα. These give you a map f .
What about a map the other way? We’ll define a map out of the tensor product using the

universal property. So we need to define a bilinear map out of M ×
(⊕

α∈ANα

)
. By linearity in

the second factor, it will suffice to say where to send elements of the form (x, y) ∈ M ⊗ Nβ . Just
send it to x ⊗ inβy, where inβ : Nβ →

⊕
α∈ANα is the inclusion of a summand. It’s up to you to

check that these are inverses.

Property 20.10 (Distributivity). Suppose f : M ′ →M , r ∈ R, and g0, g1 : N ′ → N . Then

f ⊗ (g0 + g1) = f ⊗ g0 + f ⊗ g1 : M ′ ⊗N ′ →M ⊗N

and
f ⊗ rg0 = r(f ⊗ g0) : M ′ ⊗N ′ →M ⊗N .

Again I’ll leave this to you to check.

Our immediate use of this construction is to give a clean definition of “homology with coefficients
in M ,” where M is any abelian group. First, endow singular chains with coefficients in M like this:

S∗(X;M) = S∗(X)⊗M

Then we define
Hn(X;M) = Hn(S∗(X;M)) .

Since Sn(X) = ZSinn(X), Sn(X;M) is a direct sum of copies ofM indexed by the n-simplices in X.
If M happens to be a ring, this coincides with the notation used in the last lecture. The boundary
maps are just d⊗ 1 : Sn(X)⊗M → Sn−1(X)⊗M .

As we have noted, the sequence

0→ Sn(A)→ Sn(X)→ Sn(X,A)→ 0

is split short exact, and therefore applying the functor − ⊗M to it produces another split short
exact sequence. So

Sn(X,A)⊗M = Sn(A;M)/Sn(X;M) ,
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and it makes sense to use the notation Sn(X,A;M) for this. This is again a chain complex (by
functoriality of the tensor product), and we define

Hn(X,A;M) = Hn(Sn(X,A;M)) .

Notice that

Hn(∗;M) =

{
M for n = 0

0 otherwise .

The following result is immediate:

Proposition 20.11. For any abelian group M , (X,A) 7→ H∗(X,A;M) provides a homology theory
satisfying the Eilenberg-Steenrod axioms with H0(∗;M) = M .

Suppose R is a commutative ring and A is an abelian group. Then A ⊗ R is naturally an R-
module. So S∗(X;R) is a chain complex of R-modules – free R-modules. We can go a little further:
suppose that M is an R-module. Then A ⊗M is an R-module; and S∗(X;M) is a chain complex
of R-modules. We can also write

S∗(X;M) = S∗(X;R)⊗RM .

This construction is natural in the R-module M ; and, again using the fact that sums of exact
sequences are exact, a short exact sequence of R-modules

0→M ′ →M →M ′′ → 0

leads to a short exact sequence of chain complexes

0→ S∗(X;M ′)→ S∗(X;M)→ S∗(X;M ′′)→ 0

and hence to a long exact sequence in homology, a “coefficient long exact sequence”:

· · · // Hn+1(X;M ′′)

∂

ss
Hn(X;M ′) // Hn(X;M) // Hn(X;M ′′)

∂

ss
Hn−1(X;M ′) // · · · .

A particularly important case is when R is a field; then S∗(X;R) is a chain complex of vector
spaces over R, and H∗(X;R) is a graded vector space over R.

Question 20.12. A reasonable question is this: Suppose we know H∗(X). Can we compute
H∗(X;M) for an abelian group M? More generally, suppose we know H∗(X;R) and M is an
R-module. Can we compute H∗(X;M)?
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