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This integer χ(X) is called the Euler characteristic of X. We will prove this theorem by show-
ing that χ(X) equals a number computed from the homology groups of X, which are themselves
homotopy invariants.

We’ll need a little bit of information about the structure of finitely generated abelian groups.
Let A be an abelian group. The set of torsion elements of A,

Tors(A) = {a ∈ A : na = 0 for some n 6= 0} ,

is a subgroup of A. A group is torsion free if Tors(A) = 0. For any A the quotient group A/Tors(A)
is torsion free.

For a general abelian group, that’s about all you can say. But now assume A is finitely generated.
Then Tors(A) is a finite abelian group and A/Tors(A) is a finitely generated free abelian group,
isomorphic to Zr for some integer r called the rank of A. Pick elements of A that map to a set
of generators of A/Tors(A), and use them to define a map A/TorsA → A splitting the projection
map. This shows that if A is finitely generated then

A ∼= Tors(A)⊕ Zr .

A finite abelian group A is necessarily of the form

Z/n1 ⊕ Z/n2 ⊕ · · · ⊕ Z/nt where n1|n2| · · · |nt .

The ni are the “torsion coefficients” of A. They are well defined natural numbers.

Lemma 18.2. Let 0 → A → B → C → 0 be a short exact sequence of finitely generated abelian
groups. Then

rankA− rankB + rankC = 0 .

Theorem 18.3. Let X be a finite CW complex. Then

χ(X) =
∑
k

(−1)krankHk(X) .

Proof. Pick a CW-structure with, say, ak k-cells for each k. We have the cellular chain complex
C∗. Write H∗, Z∗, and B∗ for the homology, the cycles, and the boundaries, in this chain complex.
From the definitions, we have two families of short exact sequences:

0→ Zk → Ck → Bk−1 → 0

and
0→ Bk → Zk → Hk → 0 .

Let’s use them and facts about rank rewrite the alternating sum:∑
k

(−1)kak =
∑
k

(−1)krank(Ck)

=
∑
k

(−1)k(rank (Zk) + rank (Bk−1))

=
∑
k

(−1)k(rank (Bk) + rank (Hk) + rank (Bk−1))

The terms rankBk + rankBk−1 cancel because it’s an alternating sum. This leaves
∑

k(−1)krankHk.
But Hk

∼= Hsing
k (X).

18 Euler characteristic and homology approximation

Theorem 18.1. Let X be a finite CW-complex with an n-cells. Then

χ(X) =
∑∞

(−1)kak
k=0

depends only on the homotopy type of X; it is independent of the choice of CW structure.



46 CHAPTER 2. COMPUTATIONAL METHODS

In the early part of the 20th century, “homology groups” were not discussed. It was Emmy
Noether who first described things that way. Instead, people worked mainly with the sequence of
ranks,

βk = rankHk(X) ,

which are known (following Poincaré) as the Betti numbers of X.
Given a CW-complexX of finite type, can we give a lower bound on the number of k-cells in terms

of the homology of X? Let’s see. Hk(X) is finitely generated because Ck(X)←↩ Zk(X)� Hk(X).
Thus

Hk(X) =

t(k)⊕
i=1

Z/ni(k)Z⊕ Zr(k)

where the n1(k)| · · · |nt(k)(k) are the torsion coefficients of Hk(X) and r(k) is the rank.
The minimal chain complex with Hk = Zr and Hq = 0 for q 6= k is just the chain complex with 0

everywhere except for Zr in the kth degree. The minimal chain complex of free abelian groups with
Hk = Z/nZ and Hq = 0 for q 6= k is the chain complex with 0 everywhere except in dimensions
k + 1 and k, where we have Z

n−→ Z These small complexes are called elementary chain complexes.
This implies that a lower bound on the number of k-cells is

r(k) + t(k) + t(k − 1) .

The first two terms give generators for Hk, and the last gives relations for Hk−1.
These elementary chain complexes can be realized as the reduced cellular chains of CW complexes

(at least if k > 0). A wedge of r copies of Sk has a CW structure with one 0-cell and r k-cells, so
its cellular chain complex has Zr in dimension k and 0 in other positive dimensions. To construct a
CW complex with cellular chain complex given by Z

n−→ Z in dimensions k+ 1 and k and 0 in other
positive dimensions, start with Sk as k-skeleton and attach a k + 1-cell by a map of degree n. For
example, when k = 1 and n = 2, you have RP2. These CW complexes are called “Moore spaces.”

This maximally efficient construction of a CW complex in a homotopy type can in fact be
achieved, at least in the simply connected case:

Theorem 18.4 (Wall, [10]). Let X be a simply connected CW-complex of finite type. Then there
exists a CW complex Y with r(k) + t(k) + t(k − 1) k-cells, for all k, and a homotopy equivalence
Y → X.

We will prove this theorem in 18.906.
The construction of Moore spaces can be generalized:

Proposition 18.5. For any graded abelian group A∗ with Ak = 0 for k ≤ 0, there exists a CW
complex X with H̃∗(X) = A∗.

Proof. Let A be any abelian group. Pick generators for A. They determine a surjection from a free
abelian group F0. The kernel F1 of that surjection is free, being a subgroup of a free abelian group.
Write G0 for minimal set of generators of F0, and G1 for a minimal set of generators for F1.

Let k ≥ 1. Define Xk to be the wedge of |G0| copies of Sk, so Hk(Xk) = ZG0. Now define an
attaching map

α :
∐
b∈G1

Skb → Xk
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by specifying it on each summand Skb . The generator b ∈ G1 is given by a linear combination of the
generators of F0, say

b =
s∑
i=1

niai .

We want to mimic this in topology. To do this, first map Sk →
∨s Sk by pinching (s− 1) tangent

circles to points. In homology, this map takes a generator of Hk(S
k) to the sum of the generators

of the k-dimensional homology of the various spheres in the bouquet. Map the ith sphere in the
wedge to Skai ⊆ Xk by a map of degree ni. The map on the summand Skb is then the composite of
these two maps,

Skb →
s∨
i=1

Sk →
∨
a

Ska .

Altogether, we get a map α that realizes F1 → F0 in Hk. So using it as an attaching map produces
a CW complex X with H̃q(X) = A for q = k and 0 otherwise. Write M(A, k) for a CW complex
produced in this way.

Finally, given a graded abelian group A∗, form the wedge over k of the spaces M(Ak, k).

Such a spaceM(A, k), with H̃q(M(A, k)) = A for q = k and 0 otherwise, is called a Moore space
of type (A, k) [9]. The notation is a bit deceptive, since M(A, k) cannot be made into a functor
Ab→ HoTop.

19 Coefficients

Abelian groups can be quite complicated, even finitely generated ones. Vector spaces over a field
are so much simpler! A vector space is determined up to isomorphism by a single cardinality, its
dimension. Wouldn’t it be great to have a version of homology that took values in the category of
vector spaces over a field?

We can do this, and more. Let R be any commutative ring at all. Instead of forming the free
abelian group on Sin∗(X), we could just as well form the free R-module:

S∗(X;R) = RSin∗(X)

This gives, first, a simplicial object in the category of R-modules. Forming the alternating sum of
the face maps produces a chain complex of R-modules: Sn(X;R) is an R-module for each n, and
d : Sn(X;R)→ Sn−1(X;R) is an R-module homomorphism. The homology groups are then again
R-modules:

yunpeng
Rectangle
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