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βn = dimQHn(X; Q)

and discuss the Euler characteristic entirely in terms of the rational vector spaces making up the
rational homology of X.

24 Universal coefficient theorem

Suppose that we are givenH∗(X; Z). Can we computeH∗(X; Z/2Z)? This is non-obvious. Consider
the map RP2 → S2 that pinches RP1 to a point. Now H2(RP2; Z) = 0, so in H2 this map is zero.
But in Z/2Z-coefficients, in dimension 2, this map gives an isomorphism. This shows that there’s
no functorial determination of H∗(X; Z/2) in terms of H∗(X; Z); the effect of a map in integral
homology does not determine its effect in mod 2 homology. So how do we go between different
coefficients?

Let R be a commutative ring and M an R-module, and suppose we have a chain complex C∗ of
R-modules. It could be the singular complex of a space, but it doesn’t have to be. Let’s compare
Hn(C∗)⊗M with Hn(C∗⊗M). (Here and below we’ll just write ⊗ for ⊗R.) The latter thing gives
homology with coefficients in M . How can we compare these two? Let’s investigate, and build up
conditions on R and C∗ as we go along.

First, there’s a natural map

α : Hn(C∗)⊗M → Hn(C∗ ⊗M) ,

sending [z] ⊗m to [z ⊗m]. We propose to find conditions under which it is injective. The map α
fits into a commutative diagram with exact columns like this:
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0 0

Hn(C∗)⊗M α //

OO

Hn(C∗ ⊗M)

OO

Zn(C∗)⊗M //

OO

Zn(C∗ ⊗M)

OO

Cn+1 ⊗M = //

OO

Cn+1 ⊗M .

OO

Now, Zn(C∗ ⊗M) is a submodule of Cn ⊗M , but the map Zn(C) ⊗M → Cn ⊗M need not be
injective . . . unless we impose more restrictions. If we can guarantee that it is, then a diagram chase
shows that α is a monomorphism.

So let’s assume that R is a PID and that Cn is a free R-module for all n. Then the submodule
Bn−1(C∗) ⊆ Cn−1 is again free, so the short exact sequence

0 // Zn(C∗) // Cn //

d

$$

Bn−1(C∗) //

��

0

Cn−1

splits. So Zn(C∗)→ Cn is a split monomorphism, and hence Zn(C∗)⊗M → Cn ⊗M is too.

In fact, a little thought shows that this argument produces a splitting of the map α.

Now, α is not always an isomorphism. But it certainly is if M = R, and it’s compatible with
direct sums, so it certainly is if M is free. The idea is now to resolve M by frees, and see where
that idea takes us.

So let

0→ F1 → F0 →M → 0

be a free resolution of M . Again, we’re using the assumption that R is a PID, to guarantee that
ker(F0 →M) is free. Again using the assumption that each Cn is free, we get a short exact sequence
of chain complexes

0→ C∗ ⊗ F1 → C∗ ⊗ F0 → C∗ ⊗M → 0 .

In homology, this gives a long exact sequence. Unsplicing it gives the left-hand column in the



25. KÜNNETH AND EILENBERG-ZILBER 63

following diagram.

0

��

0

��
coker(Hn(C∗ ⊗ F1)→ Hn(C∗ ⊗ F0))

��

∼= // coker(Hn(C∗)⊗ F1 → Hn(C∗)⊗ F0))

��
Hn(C∗ ⊗M)

∂
��

= // Hn(C∗ ⊗M)

��
ker(Hn−1(C∗ ⊗ F1)→ Hn−1(C∗ ⊗ F0))

∼= //

��

ker(Hn−1(C∗)⊗ F1 → Hn−1(C∗)⊗ F0)

��
0 0

The right hand column occurs because α is an isomorphism when the module involved is free. But

coker(Hn(C∗)⊗ F1 → Hn(C∗)⊗ F0)) = Hn(C∗)⊗M

and
ker(Hn−1(C∗)⊗ F1 → Hn−1(C∗)⊗ F0) = TorR1 (Hn−1(C∗),M) .

We have proved the following theorem.

Theorem 24.1 (Universal Coefficient Theorem). Let R be a PID and C∗ a chain complex of R-
modules such that Cn is free for all n. Then there is a natural short exact sequence of R-modules

0→ Hn(C∗)⊗M
α−→ Hn(C∗ ⊗M)

∂−→ TorR1 (Hn−1(C∗),M)→ 0

that splits (but not naturally).

Example 24.2. The pinch map RP2 → S2 induces the following map of universal coefficient short
exact sequences:

0 // H2(RP2)⊗ Z/2Z

0
��

// H2(RP2; Z/2Z)

∼=
��

∼= // Tor1(H1(RP2),Z/2Z)

0
��

// 0

0 // H2(S2)⊗ Z/2Z
∼= // H2(S2; Z/2Z) // Tor1(H1(S2),Z/2Z) // 0

This shows that the splitting of the universal coefficient short exact sequence cannot be made
natural, and it explains the mystery that we began with.

Exercise 24.3. The hypotheses are essential. Construct two counterexamples: one with R = Z
but in which the groups in the chain complex are not free, and one in which R = k[d]/d2 and the
modules in C∗ are free over R.

25 Künneth and Eilenberg-Zilber

We want to compute the homology of a product. Long ago, in Lecture 7, we constructed a bilinear
map Sp(X) × Sq(Y ) → Sp+q(X × Y ), called the cross product. So we get a linear map Sp(X) ⊗
Sq(Y )→ Sp+q(X × Y ), and it satisfies the Leibniz formula, i.e., d(x× y) = dx× y + (−1)px× dy.
The method we used works with any coefficient ring, not just the integers.
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