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Altogether, we get a map α that realizes F1 → F0 in Hk. So using it as an attaching map produces
a CW complex X with H̃q(X) = A for q = k and 0 otherwise. Write M(A, k) for a CW complex
produced in this way.

Finally, given a graded abelian group A∗, form the wedge over k of the spaces M(Ak, k).

Such a spaceM(A, k), with H̃q(M(A, k)) = A for q = k and 0 otherwise, is called a Moore space
of type (A, k) [9]. The notation is a bit deceptive, since M(A, k) cannot be made into a functor
Ab→ HoTop.

19 Coefficients

Abelian groups can be quite complicated, even finitely generated ones. Vector spaces over a field
are so much simpler! A vector space is determined up to isomorphism by a single cardinality, its
dimension. Wouldn’t it be great to have a version of homology that took values in the category of
vector spaces over a field?

We can do this, and more. Let R be any commutative ring at all. Instead of forming the free
abelian group on Sin∗(X), we could just as well form the free R-module:

S∗(X;R) = RSin∗(X)

This gives, first, a simplicial object in the category of R-modules. Forming the alternating sum of
the face maps produces a chain complex of R-modules: Sn(X;R) is an R-module for each n, and
d : Sn(X;R)→ Sn−1(X;R) is an R-module homomorphism. The homology groups are then again
R-modules:

Hn(X;R) =
ker(d : Sn(X;R)→ Sn−1(X;R))

im(d : Sn+1(X;R)→ Sn(X;R))
.

This is the singular homology of X with coefficients in the commutative ring R. It satisfies all
the Eilenberg-Steenrod axioms, with

Hn(∗;R) =

{
R for n = 0

0 otherwise .

(We could actually have replaced the ring R by any abelian group here, but this will become much
clearer after we have the tensor product as a tool.) This means that all the work we have done
for “integral homology” carries over to homology with any coefficients. In particular, if X is a
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CW complex we have the cellular homology with coefficients in R, C∗(X;R), and its homology is
isomorphic to H∗(X;R).

The coefficient rings that are most important in algebraic topology are simple ones: the integers
and the prime fields Fp and Q; almost always a PID.

As an experiment, let’s compute H∗(RPn;R) for various rings R. Let’s start with R = F2, the
field with 2 elements. This is a favorite among algebraic topologists, because using it for coefficients
eliminates all sign issues. The cellular chain complex has Ck(RPn; F2) = F2 for 0 ≤ k ≤ n, and
the differential alternates between multiplication by 2 and by 0. But in F2, 2 = 0: so d = 0, and
the cellular chains coincide with the homology:

Hk(RPn; F2) =

{
F2 for 0 ≤ k ≤ n
0 otherwise .

On the other hand, suppose that R is a ring in which 2 is invertible. The universal case is Z[1/2],
but any subring of the rationals containing 1/2 would do just as well, as would Fp for p odd. Now
the cellular chain complex (in dimensions 0 through n) looks like

R
0←− R

∼=←− R 0←− R
∼=←− · · ·

∼=←− R

for n even, and
R

0←− R
∼=←− R 0←− R

∼=←− · · · 0←− R

for n odd. Therefore for n even

Hk(RPn;R) =

{
R for k = 0

0 otherwise

and for n odd

Hk(RPn;R) =


R for k = 0

R for k = n

0 otherwise .

You get a much simpler result: Away from 2, even projective spaces look like points, and odd 
projective spaces look like spheres!

I’d like to generalize this process a little bit, and allow coefficients not just in a commutative 
ring, but more generally in a module M over a commutative ring; in particular, any abelian group. 
This is most cleanly done using the mechanism of the tensor product. That mechanism will also let 
us address the following natural question:

Question 19.1. Given H∗(X; R), can we deduce H∗(X; M) for an R-module M?

The answer is called the “universal coefficient theorem”. I’ll spend a few days developing what 
we need to talk about this.
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