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11 The Eilenberg Steenrod axioms and the locality principle

Before we proceed to prove the excision theorem, let’s review the properties ofsingular homology 
as we have developed them. They are captured by a set of axioms, due to Sammy Eilenberg and 
Norman Steenrod [5].

Definition 11.1. A homology theory (on Top) is:

• a sequence of functors hn : Top2 → Ab for all n ∈ Z and

• a sequence of natural transformations ∂ : hn(X,A)→ hn−1(A,∅)

such that:

• If f0, f1 : (X,A)→ (Y,B) are homotopic, then f0∗ = f1∗ : hn(X,A)→ hn(Y,B).

• Excisions induce isomorphisms.

• For any pair (X,A), the sequence

· · · → hq+1(X,A)
∂−→ hq(A)→ hq(X)→ hq(X,A)

∂−→ · · ·

is exact, where we have written hq(X) for hq(X,∅).
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26 CHAPTER 1. SINGULAR HOMOLOGY

• (The dimension axiom): The group hn(∗) is nonzero only for n = 0.

We add the following “Milnor axiom” [8] to our definition. To state it, let I be a set and suppose
that for each i ∈ I we have a space Xi. We can form their disjoint union or coproduct

∐
Xi. The

inclusion maps Xi →
∐
Xi induce maps hn(Xi)→ hn(

∐
Xi), and these in turn induce a map from

the direct sum, or coproduct in Ab:

α :
⊕
i∈I

hn(Xi)→ hn

(∐
i∈I

Xi

)
.

Then:

• The map α is an isomorphism for all n.

Ordinary singular homology satisfies these, with h0(∗) = Z. We will soon add “coefficents” to
homology, producing a homology theory whose value on a point is any prescribed abelian group.
In later developments, it emerges that the dimension axiom is rather like the parallel postulate in
Euclidean geometry: it’s “obvious,” but, as it turns out, the remaining axioms accomodate extremely
interesting alternatives, in which hn(∗) is nonzero for infinitely many values of n (both positive and
negative).

Excision is a statement that homology is “localizable.” To make this precise, we need some
definitions.

Definition 11.2. Let X be a topological space. A family A of subsets of X is a cover if X is the
union of the interiors of elements of A.

Definition 11.3. Let A be a cover of X. An n-simplex σ is A-small if there is A ∈ A such that
the image of σ is entirely in A.

Notice that if σ : ∆n → X is A-small, then so is diσ; in fact, for any simplicial operator φ,
φ∗σ is again A-small. Let’s denote by SinA

∗ (X) the graded set of A-small simplices. This us a
sub-simplicial set of Sin∗(X). Applying the free abelian group functor, we get the subcomplex

SA
∗ (X)

of A-small singular chains. Write HA
∗ (X) for its homology.

Theorem 11.4 (The locality principle). The inclusion SA
∗ (X) ⊆ S∗(X) induces an isomorphism

in homology, HA
∗ (X)

∼=−→ H∗(X).

This will take a little time to prove. Let’s see right now how it implies excision.
Suppose X ⊃ A ⊃ U is excisive, so that U ⊆ IntA, or Int(X − U) ∪ IntA = X. This if we let

B = X − U , then A = {A,B} is a cover of X. Rewriting in terms of B,

(X − U,A− U) = (B,A ∩B) ,

so we aim to show that
S∗(B,A ∩B)→ S∗(X,A)
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induces an isomorphism in homology. We have the following diagram of chain complexes with exact
rows:

0 // S∗(A)

=

��

// SA
∗ (X)

��

// SA
∗ (X)/S∗(A)

��

// 0

0 // S∗(A) // S∗(X) // S∗(X,A) // 0

The middle vertical induces an isomorphism in homology by the locality principle, so the homology
long exact sequences combine with the five-lemma to show that the right hand vertical is also a
homology isomorphism. But

SA
n (X) = Sn(A) + Sn(B) ⊆ Sn(X)

and a simple result about abelian groups provides an isomorphism

Sn(B)

Sn(A ∩B)
=

Sn(B)

Sn(A) ∩ Sn(B)

∼=−→ Sn(A) + Sn(B)

Sn(A)
=
SA
n (X)

Sn(A)
,

so excision follows.
This case of a cover with two elements leads to another expression of excision, known as the

“Mayer-Vietoris sequence.” In describing it we will use the following notation for the various inclu-
sion.

A ∩B j1 //

j2
��

A

i1
��

B
i2

// X

Theorem 11.5 (Mayer-Vietoris). Assume that A = {A,B} is a cover of X. There are natural
maps ∂ : Hn(X)→ Hn−1(A ∩B) such that the sequence

· · · β // Hn+1(X)

∂

rr
Hn(A ∩B)

α // Hn(A)⊕Hn(B)
β // Hn(X)

∂

rr
Hn−1(A ∩B)

α // · · ·

is exact, where

α =

[
j1∗
−j2∗

]
, β = [ i1∗ i2∗ ] .

Proof. This is the homology long exact sequence associated to the short exact sequence of chain
complexes

0→ S∗(A ∩B)
α−→ S∗(A)⊕ S∗(B)

β−→ SA
∗ (X)→ 0 ,

combined with the locality principle.
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The Mayer-Vietoris theorem follows from excision as well, via the following simple observation.
Suppose we have a map of long exact sequences

· · · // C ′n+1
k //

h

��

A′n //

f

��

B′n //

∼=
��

C ′n //

h

��

· · ·

· · · // Cn+1
k // An // Bn // Cn // · · ·

in which every third arrow is an isomorphism as indicated. Define a map

∂ : An → Bn
∼=←− B′n → C ′n .

An easy diagram chase shows:

Lemma 11.6. The sequence

· · · −→ C ′n+1

 h
−k


−−−−−−→ Cn+1 ⊕A′n

[
k f

]
−−−−−−→ An

∂−−→ C ′n −→ · · ·

is exact.

To get the Mayer-Vietoris sequence, let {A,B} be a cover of X and apply the lemma to

· · · // Hn(A ∩B)

��

// Hn(B)

��

// Hn(B,A ∩B)

∼=
��

// Hn−1(A ∩B)

��

// Hn−1(B)

��

// · · ·

· · · // Hn(A) // Hn(X) // Hn(X,A) // Hn−1(A) // Hn−1(X) // · · · .
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