5 Homotopy, star-shaped regions

We've computed the homology of a point. Let's now compare the homology of a general space X to this example. There's always a unique map $X \rightarrow *: *$ is a "terminal object" in Top. We have an induced map

$$
H_{n}(X) \rightarrow H_{n}(*)= \begin{cases}\mathbf{Z} & n=0 \\ 0 & \text { otherwise }\end{cases}
$$

Any formal linear combination $c=\sum a_{i} x_{i}$ of points of X is a 0 -cycle. The map to $*$ sends c to $\sum a_{i} \in \mathbf{Z}$. This defines the augmentation $\epsilon: H_{*}(X) \rightarrow H_{*}(*)$. If X is nonempty, the map $X \rightarrow *$ is split by any choice of point in X, so the augmentation is also split epi. The kernel of ϵ is the reduced homology $\widetilde{H}_{*}(X)$ of X, and we get a canonical splitting

$$
H_{*}(X) \cong \widetilde{H}_{*}(X) \oplus \mathbf{Z}
$$

Actually, it's useful to extend the definition to the empty space by the following device. Extend the singular chain complex for any space to include \mathbf{Z} in dimension -1 , with $d: S_{0}(X) \rightarrow S_{-1}(X)$ given by the augmentation ϵ sending each 0 -simplex to $1 \in \mathbf{Z}$. Let's write $\widetilde{S}_{*}(X)$ for this chain complex, and $\widetilde{H}_{*}(X)$ for its homology. When $X \neq \varnothing, \epsilon$ is surjective and you get the same answer as above. But

$$
\widetilde{H}_{q}(\varnothing)= \begin{cases}\mathbf{Z} & \text { for } q=-1 \\ 0 & \text { for } q \neq-1 .\end{cases}
$$

This convention is not universally accepted, but I find it useful. $\widetilde{H}_{*}(X)$ is the reduced homology of X.

What other spaces have trivial homology? A slightly non-obvious way to reframe the question is this:

When do two maps $X \rightarrow Y$ induce the same map in homology?
For example, when do $1_{X}: X \rightarrow X$ and $X \rightarrow * \rightarrow X$ induce the same map in homology? If they do, then $\epsilon: H_{*}(X) \rightarrow \mathbf{Z}$ is an isomorphism.

The key idea is that homology is a discrete invariant, so it should be unchanged by deformation. Here's the definition that makes "deformation" precise.

Definition 5.1. Let $f_{0}, f_{1}: X \rightarrow Y$ be two maps. A homotopy from f_{0} to f_{1} is a map $h: X \times I \rightarrow Y$ (continuous, of course) such that $h(x, 0)=f_{0}(x)$ and $f(x, 1)=f_{1}(x)$. We say that f_{0} and f_{1} are homotopic, and that h is a homotopy between them. This relation is denoted by $f_{0} \simeq f_{1}$.

Homotopy is an equivalence relation on maps from X to Y. Transitivity follows from the gluing lemma of point set topology. We denote by $[X, Y]$ the set of homotopy classes of maps from X to Y. A key result about homology is this:

Theorem 5.2 (Homotopy invariance of homology). If $f_{0} \simeq f_{1}$, then $H_{*}\left(f_{0}\right)=H_{*}\left(f_{1}\right)$: homology cannot distinguish between homotopic maps.

Suppose I have two maps $f_{0}, f_{1}: X \rightarrow Y$ with a homotopy $h: f_{0} \simeq f_{1}$, and a map $g: Y \rightarrow Z$. Composing h with g gives a homotopy between $g \circ f_{0}$ and $g \circ f_{1}$. Precomposing also works: If
$g: W \rightarrow X$ is a map and $f_{0}, f_{1}: X \rightarrow Y$ are homotopic, then $f_{0} \circ g \simeq f_{1} \circ g$. This lets us compose homotopy classes: we can complete the diagram:

Definition 5.3. The homotopy category (of topological spaces) Ho (Top) has the same objects as Top, but $\operatorname{Ho}(\mathbf{T o p})(X, Y)=[X, Y]=\operatorname{Top}(X, Y) / \simeq$.

We may restate Theorem 5.2 as follows:
For each n, the homology functor $H_{n}: \mathbf{T o p} \rightarrow \mathbf{A b}$ factors as $\operatorname{Top} \rightarrow \mathrm{Ho}(\mathbf{T o p}) \rightarrow \mathbf{A b}$; it is a "homotopy functor."

We will prove this in the next lecture, but let's stop now and think about some consequences.
Definition 5.4. A map $f: X \rightarrow Y$ is a homotopy equivalence if $[f] \in[X, Y]$ is an isomorphism in $\mathrm{Ho}(\mathbf{T o p})$. In other words, there is a map $g: Y \rightarrow X$ such that $f g \simeq 1_{Y}$ and $g f \simeq 1_{X}$.

Such a map g is a homotopy inverse for f; it is well-defined only up to homotopy.
Most topological properties are not preserved by homotopy equivalences. For example, compactness is not a homotopy-invariant property: Consider the inclusion $i: S^{n-1} \subseteq \mathbf{R}^{n}-\{0\}$. A homotopy inverse $p: \mathbf{R}^{n}-\{0\} \rightarrow S^{n-1}$ can be obtained by dividing a (always nonzero!) vector by its length. Clearly $p \circ i=1_{S^{n-1}}$. We have to find a homotopy $i \circ p \simeq 1_{\mathbf{R}^{n}-\{0\}}$. This is a map $\left(\mathbf{R}^{n}-\{0\}\right) \times I \rightarrow \mathbf{R}^{n}-\{0\}$, and we can use $(v, t) \mapsto t v+(1-t) \frac{v}{\|v\|}$.

On the other hand:
Corollary 5.5. Homotopy equivalences induce isomorphisms in homology.
Proof. If f has homotopy inverse g, then f_{*} has inverse g_{*}.
Definition 5.6. A space X is contractible if the map $X \rightarrow *$ is a homotopy equivalence.
Corollary 5.7. Let X be a contractible space. The augmentation $\epsilon: H_{*}(X) \rightarrow \mathbf{Z}$ is an isomorphism.
Homotopy equivalences in general may be somewhat hard to visualize. A particularly simple and important class of homotopy equivalences is given by the following definition.

Definition 5.8. An inclusion $A \hookrightarrow X$ is a deformation retract provided that there is a map h : $X \times I \rightarrow X$ such that $h(x, 0)=x$ and $h(x, 1) \in A$ for all $x \in X$ and $h(a, t)=a$ for all $a \in A$ and $t \in I$.

For example, S^{n-1} is a deformation retract of $\mathbf{R}^{n}-\{0\}$.
We now set about constructing a proof of homotopy invariance of homology. The first step is to understand the analogue of homotopy on the level of chain complexes.

Definition 5.9. Let C_{*}, D_{*} be chain complexes, and $f_{0}, f_{1}: C_{*} \rightarrow D_{*}$ be chain maps. A chain homotopy $h: f_{0} \simeq f_{1}$ is a collection of homomorphisms $h: C_{n} \rightarrow D_{n+1}$ such that $d h+h d=f_{1}-f_{0}$.

This relation takes some getting used to. It is an equivalence relation. Here's a picture (not a commutive diagram).

Lemma 5.10. If $f_{0}, f_{1}: C_{*} \rightarrow D_{*}$ are chain homotopic, then $f_{0 *}=f_{1 *}: H_{*}(C) \rightarrow H_{*}(D)$.
Proof. We want to show that for every $c \in Z_{n}\left(C_{*}\right)$, the difference $f_{1} c-f_{0} c$ is a boundary. Well,

$$
f_{1} c-f_{0} c=(d h+h d) c=d h c+h d c=d h c .
$$

So homotopy invariance of homology will follow from
Proposition 5.11. Let $f_{0}, f_{1}: X \rightarrow Y$ be homotopic. Then $f_{0 *}, f_{1 *}: S_{*}(X) \rightarrow S_{*}(Y)$ are chain homotopic.

To prove this we will begin with a special case.
Definition 5.12. A subset $X \subseteq \mathbf{R}^{n}$ is star-shaped with respect to $b \in X$ if for every $x \in X$ the interval

$$
\{t b+(1-t) x: t \in[0,1]\}
$$

lies in X.

Any nonempty convex region is star shaped. Any star-shaped region X is contractible: A homotopy inverse to $X \rightarrow *$ is given by sending $* \mapsto b$. One composite is perforce the identity. A homotopy from the other composite to the identity 1_{X} is given by $(x, t) \mapsto t b+(1-t) x$.

So we should expect that $\epsilon: H_{*}(X) \rightarrow \mathbf{Z}$ is an isomorphism if X is star-shaped. In fact, using a piece of language that the reader can interpret:

Proposition 5.13. $S_{*}(X) \rightarrow \mathbf{Z}$ is a chain homotopy equivalence.
Proof. We have maps $S_{*}(X) \xrightarrow{\epsilon} \mathbf{Z} \xrightarrow{\eta} S_{*}(X)$ where $\eta(1)=c_{b}^{0}$. Clearly $\epsilon \eta=1$, and the claim is that $\eta \epsilon \simeq 1: S_{*}(X) \rightarrow S_{*}(X)$. The chain map $\eta \epsilon$ concentrates everything at the point $b: \eta \epsilon \sigma=c_{b}^{n}$ for all $\sigma \in \operatorname{Sin}_{n}(X)$. Our chain homotopy $h: S_{q}(X) \rightarrow S_{q+1}(X)$ will actually send simplices to
simplices. For $\sigma \in \operatorname{Sin}_{q}(X)$, define the chain homotopy evaluated on σ by means of the following "cone construction": $h(\sigma)=b * \sigma$, where

$$
(b * \sigma)\left(t_{0}, \ldots, t_{q+1}\right)=t_{0} b+\left(1-t_{0}\right) \sigma\left(\frac{\left(t_{1}, \ldots, t_{q+1}\right)}{1-t_{0}}\right) .
$$

Explanation: The denominator $1-t_{0}$ makes the entries sum to 1 , as they must if we are to apply σ to this vector. When $t_{0}=1$, this isn't defined, but it doesn't matter since we are multiplying by $1-t_{0}$. So $(b * \sigma)(1,0, \ldots, 0)=b$; this is the vertex of the cone.

Setting $t_{0}=0$, we find

$$
d_{0} b * \sigma=\sigma .
$$

Setting $t_{i}=0$ for $i>0$, we find

$$
d_{i} b * \sigma=h d_{i-1} \sigma
$$

Using the formula for the boundary operator, we find

$$
d b * \sigma=\sigma-b * d \sigma
$$

\ldots unless $q=0$, when

$$
d b * \sigma=\sigma-c_{b}^{0}
$$

This can be assembled into the equation

$$
d b *+b * d=1-\eta \epsilon
$$

which is what we wanted.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

