6 Homotopy invariance of homology

We now know that the homology of a star-shaped region is trivial: in such a space, every cycle with augmentation 0 is a boundary. We will use that fact, which is a special case of homotopy invariance of homology, to prove the general result, which we state in somewhat stronger form:

Theorem 6.1. A homotopy $h: f_{0} \simeq f_{1}: X \rightarrow Y$ determines a natural chain homotopy $f_{0 *} \simeq f_{1 *}: S_{*}(X)$ $\rightarrow S_{*}(Y)$.

The proof uses naturality (a lot). For a start, notice that if $k: g_{0} \simeq g_{1}: C_{*} \rightarrow D_{*}$ is a chain homotopy, and $j: D_{*} \rightarrow E_{*}$ is another chain map, then the composites $j \circ k_{n}: C_{n} \rightarrow E_{n+1}$ give a chain homootpy $j \circ g_{0} \simeq j \circ g_{1}$. So if we can produce a chain homotopy between the chain maps induced by the two inclusions $i_{0}, i_{1}: X \rightarrow X \times I$, we can get a chain homotopy k between $f_{0 *}=h_{*} \circ i_{0 *}$ and $f_{1 *}=h_{*} \circ i_{1 *}$ in the form $h_{*} \circ k$.

So now we want to produce a natural chain homotopy, with components $k_{n}: S_{n}(X) \rightarrow S_{n+1}(X \times$ $I)$. The unit interval hosts a natural 1 -simplex given by an identification $\Delta^{1} \rightarrow I$, and we should imagine k as being given by "multiplying" by that 1 -chain. This "multiplication" is a special case of a chain map

$$
\times: S_{*}(X) \times S_{*}(Y) \rightarrow S_{*}(X \times Y),
$$

defined for any two spaces X and Y, with lots of good properties. It will ultimately be used to compute the homology of a product of two spaces in terms of the homology groups of the factors.

Here's the general result.
Theorem 6.2. There exists a map $\times: S_{p}(X) \times S_{q}(Y) \rightarrow S_{p+q}(X \times Y)$, the cross product, that is:

- Natural, in the sense that if $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$, and $a \in S_{p}(X)$ and $b \in S_{p}(Y)$ so that $a \times b \in S_{p+q}(X \times Y)$, then $f_{*}(a) \times g_{*}(b)=(f \times g)_{*}(a \times b)$.
- Bilinear, in the sense that $\left(a+a^{\prime}\right) \times b=(a \times b)+\left(a^{\prime} \times b\right)$, and $a \times\left(b+b^{\prime}\right)=a \times b+a \times b^{\prime}$.
- The Leibniz rule is satisfied, i.e., $d(a \times b)=(d a) \times b+(-1)^{p} a \times d b$.
- Normalized, in the following sense. Let $x \in X$ and $y \in Y$. Write $j_{x}: Y \rightarrow X \times Y$ for $y \mapsto(x, y)$, and write $i_{y}: X \rightarrow X \times Y$ for $x \mapsto(x, y)$. If $b \in S_{q}(Y)$, then $c_{x}^{0} \times b=\left(j_{x}\right)_{*} b \in$ $S_{q}(X \times Y)$, and if $a \in S_{p}(X)$, then $a \times c_{y}^{0}=\left(i_{y}\right)_{*} a \in S_{p}(X \times Y)$.

The Leibniz rule contains the first occurence of the "topologist's sign rule"; we'll see these signs appearing often. Watch for when it appears in our proof.

Proof. We're going to use induction on $p+q$; the normalization axiom gives us the cases $p+q=0,1$. Let's assume that we've constructed the cross-product in total dimension $p+q-1$. We want to define $\sigma \times \tau$ for $\sigma \in S_{p}(X)$ and $\tau \in S_{q}(Y)$.

Note that there's a universal example of a p-simplex, namely the identity map $\iota_{p}: \Delta^{p} \rightarrow \Delta^{p}$. It's universal in the sense any p-simplex $\sigma: \Delta^{p} \rightarrow X$ can be written as $\sigma_{*}\left(\iota_{p}\right)$ where $\sigma_{*}: \operatorname{Sin}_{p}\left(\Delta^{p}\right) \rightarrow$ $\operatorname{Sin}_{p}(X)$ is the map induced by σ. To define $\sigma \times \tau$ in general, then, it suffices to define $\iota_{p} \times \iota_{q} \in$ $S_{p+q}\left(\Delta^{p} \times \Delta^{q}\right)$; we can (and must) then take $\sigma \times \tau=(\sigma \times \tau)_{*}\left(\iota_{p} \times \iota_{q}\right)$.

Our long list of axioms is useful in the induction. For one thing, if $p=0$ or $q=0$, normalization provides us with a choice. So now assume that both p and q are positive. We want the cross-product to satisfy the Leibnitz rule:

$$
d\left(\iota_{p} \times \iota_{q}\right)=\left(d \iota_{p}\right) \times \iota_{q}+(-1)^{p} \iota_{p} \times d \iota_{q} \in S_{p+q-1}\left(\Delta^{p} \times \Delta^{q}\right)
$$

Since $d^{2}=0$, a necessary condition for $\iota_{p} \times \iota_{q}$ to exist is that $d\left(\left(d \iota_{p}\right) \times \iota_{q}+(-1)^{p} \iota_{p} \times d \iota_{q}\right)=0$. Let's compute what this is, using the Leibnitz rule in dimension $p+q-1$ where we have it by the inductive assumption:
$d\left(\left(d \iota_{p}\right) \times \iota_{q}+(-1)^{p} \iota_{p} \times\left(d \iota_{q}\right)\right)=\left(d^{2} \iota_{p}\right) \times \iota_{q}+(-1)^{p-1}\left(d \iota_{p}\right) \times\left(d \iota_{q}\right)+(-1)^{p}\left(d \iota_{p}\right) \times\left(d \iota_{q}\right)+(-1)^{q} \iota_{p} \times\left(d^{2} \iota_{q}\right)=0$
because $d^{2}=0$. Note that this calculation would not have worked without the sign!

The subspace $\Delta^{p} \times \Delta^{q} \subseteq \mathbf{R}^{p+1} \times \mathbf{R}^{q+1}$ is convex and nonempty, and hence star-shaped. Therefore we know that $H_{p+q-1}\left(\Delta^{p} \times \Delta^{q}\right)=0$ (remember, $p+q>1$), which means that every cycle is a boundary. In other words, our necessary condition is also sufficient! So, choose any element with the right boundary and declare it to be $\iota_{p} \times \iota_{q}$.

The induction is now complete provided we can check that this choice satisfies naturality, bilinearity, and the Leibniz rule. I leave this as a relaxing exercise for the listener.

The essential point here is that the space supporting the universal pair of simplices $-\Delta^{p} \times \Delta^{q}$ - has trivial homology. Naturality transports the result of that fact to the general situation.

The cross-product that this procedure constructs is not unique; it depends on a choice a choice of the chain $\iota_{p} \times \iota_{q}$ for each pair p, q with $p+q>1$. The cone construction in the proof that star-shaped regions have vanishing homology provids us with a specific choice; but it turns out that any two choices are equivalent up to natural chain homotopy.

We return to homotopy invariance. To define our chain homotopy $h_{X}: S_{n}(X) \rightarrow S_{n+1}(X \times I)$, pick any 1-simplex $\iota: \Delta^{1} \rightarrow I$ such that $d_{0} \iota=c_{1}^{0}$ and $d_{1} \iota=c_{0}^{0}$, and define

$$
h_{X} \sigma=(-1)^{n} \sigma \times \iota .
$$

Let's compute:

$$
d h_{X} \sigma=(-1)^{n} d(\sigma \times \iota)=(-1)^{n}(d \sigma) \times \iota+\sigma \times(d \iota)
$$

But $d \iota=c_{1}^{0}-c_{0}^{0} \in S_{0}(I)$, which means that we can continue (remembering that $|\partial \sigma|=n-1$):

$$
=-h_{X} d \sigma+\left(\sigma \times c_{1}^{0}-\sigma \times c_{0}^{0}\right)=-h_{X} d \sigma+\left(\iota_{1 *} \sigma-\iota_{0 *} \sigma\right),
$$

using the normalization axiom of the cross-product. This is the result.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

