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The cross-product that this procedure constructs is not unique; it depends on a choice a choice
of the chain ιp × ιq for each pair p, q with p + q > 1. The cone construction in the proof that
star-shaped regions have vanishing homology provids us with a specific choice; but it turns out that
any two choices are equivalent up to natural chain homotopy.

We return to homotopy invariance. To define our chain homotopy hX : Sn(X)→ Sn+1(X × I),
pick any 1-simplex ι : ∆1 → I such that d0ι = c0

1 and d1ι = c0
0, and define

hXσ = (−1)nσ × ι .

Let’s compute:
dhXσ = (−1)nd(σ × ι) = (−1)n(dσ)× ι+ σ × (dι)

But dι = c0
1 − c0

0 ∈ S0(I), which means that we can continue (remembering that |∂σ| = n− 1):

= −hXdσ + (σ × c0
1 − σ × c0

0) = −hXdσ + (ι1∗σ − ι0∗σ) ,

using the normalization axiom of the cross-product. This is the result.

7 Homology cross product

In the last lecture we proved homotopy invariance of homology using the construction of a chain
level bilinear cross-product

× : Sp(X)× Sq(Y )→ Sp+q(X × Y )

that satisfied the Leibniz formula

d(a× b) = (da)× b+ (−1)pa× (db)

What else does this map give us?
Let’s abstract a little bit. Suppose we have three chain complexes A∗, B∗, and C∗, and suppose

we have maps × : Ap×Bq → Cp+q that satisfy bilinearity and the Leibniz formula. What does this
induce in homology?

Lemma 7.1. These data determine a bilinear map × : Hp(A)×Hq(B)→ Hp+q(C).

Proof. Let a ∈ Zp(A) and b ∈ Zq(B). We want to define [a] × [b] ∈ Hp+q(C). We hope that
[a]× [b] = [a×b]. We need to check that a×b is a cycle. By Leibniz, d(a×b) = da×b+(−1)pa×db,
which vanishes becauxe a, b are cycles.

Now we need to check that homology class depends only on the homology classes we started
with. So pick other cycles a′ and b′ in the same homology classes. We want [a × b] = [a′ × b′]. In
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16 CHAPTER 1. SINGULAR HOMOLOGY

other words, we need to show that a× b differs from a′× b′ by a boundary. We can write a′ = a+da
and b′ = b+ db, and compute, using bilinearity:

a′ × b′ = (a+ da) + (b+ db) = a× b+ a× db+ (da)× b+ (da)× (db)

We need to deal with the last three terms here. But since da = 0,

d(a× b) = (−1)pa× (db) .

Since db = 0,
d((a)× b) = (da)× b .

And since d2b = 0,
d(a× b) = (da)× (db) .

This means that a′ × b′ and a× b differ by

d
(
(−1)p(a× b) + a× b+ a× db

)
,

and so are homologous.
The last step is to check bilinearity, which is left to the listener.

This gives the following result.

Theorem 7.2. There is a map

× : Hp(X)×Hq(Y )→ Hp+q(X × Y )

that is natural, bilinear, and normalized.

We will see that this map is also uniquely defined by these conditions, unlike the chain-level
cross product.

I just want to mention an explicit choice of ιp × ιq. This is called the Eilenberg-Zilber chain.
You’re highly encouraged to think about this yourself. It comes from a triangulation of the prism.

The simplices in this triangulation are indexed by order preserving injections

ω : [p+ q]→ [p]× [q]

Injectivity forces ω(0) = (0, 0) and ω(p + q) = (p, q). Each such map determines an affine map
∆p+q → ∆p × ∆q of the same name. These will be the singular simplices making up ιp × ιq. To
specify the coefficients, think of ω as a staircase in the rectangle [0, p]× [0, q]. Let A(ω) denote the
area under that staircase. Then the Eilenberg-Zilber chain is given by

ιp × ιq =
∑

(−1)A(ω)ω

0

1 2

3

0

1

2 3

0

1

2 3
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This chain is due to Eilenberg and Mac Lane; the description appears in a paper [4] by Eilenberg 
and Moore. It’s very pretty, but it’s combinatorially annoying to check that this satisfies the 
conditions of the theorem. It provides an explicit chain map

βX,Y : S∗(X) × S∗(Y ) → S∗(X × Y )

that satisfies many good properties on the nose and not just up to chain homotopy. For example, 
it’s associative –

S∗(X)× S∗(Y )× S∗(Z)
βX,Y ×1

//

1×βY,Z
��

S∗(X × Y )× S∗(Z)

βX×Y,Z

��
S∗(X)× S∗(Y × Z)

βX,Y×Z // S∗(X × Y × Z)

commutes – and commutative –

S∗(X)× S∗(Y )
βX,Y //

T
��

S∗(X × Y )

S∗(T )

��
S∗(Y )× S∗(X)

βY,X // // S∗(X × Y )

commutes, where on spaces T (x, y) = (y, x), and on chain complexes T (a, b) = (−1)pq(b, a) when a
has degree p and b has degree q.

We will see that these properties hold up to chain homotopy for any choice of chain-level cross
product.

8 Relative homology

An ultimate goal of algebraic topology is to find means to compute the set of homotopy classes
of maps from one space to another. This is important because many geometrical problems can be
rephrased as such a computation. It’s a lot more modest than wanting to characterize, somehow,
all continuous maps from X to Y ; but the very fact that it still contains a great deal of interesting
information means that it is still a very challenging problem.

Homology is in a certain sense the best “additive” approximation to this problem; and its ad-
ditivity makes it much more computable. To justify this, we want to describe the sense in which
homology is “additive.” Here are two related aspects of this claim.
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