7 Homology cross product

In the last lecture we proved homotopy invariance of homology using the construction of a chain level bilinear cross-product

$$
\times: S_{p}(X) \times S_{q}(Y) \rightarrow S_{p+q}(X \times Y)
$$

that satisfied the Leibniz formula

$$
d(a \times b)=(d a) \times b+(-1)^{p} a \times(d b)
$$

What else does this map give us?
Let's abstract a little bit. Suppose we have three chain complexes A_{*}, B_{*}, and C_{*}, and suppose we have maps $\times: A_{p} \times B_{q} \rightarrow C_{p+q}$ that satisfy bilinearity and the Leibniz formula. What does this induce in homology?

Lemma 7.1. These data determine a bilinear map $\times H_{p}(A) \times H_{q}(B) \rightarrow H_{p+q}(C)$.
Proof. Let $a \in Z_{p}(A)$ and $b \in Z_{q}(B)$. We want to define $[a] \times[b] \in H_{p+q}(C)$. We hope that $[a] \times[b]=[a \times b]$. We need to check that $a \times b$ is a cycle. By Leibniz, $d(a \times b)=d a \times b+(-1)^{p} a \times d b$, which vanishes becauxe a, b are cycles.

Now we need to check that homology class depends only on the homology classes we started with. So pick other cycles a^{\prime} and b^{\prime} in the same homology classes. We want $[a \times b]=\left[a^{\prime} \times b^{\prime}\right]$. In
other words, we need to show that $a \times b$ differs from $a^{\prime} \times b^{\prime}$ by a boundary. We can write $a^{\prime}=a+d \bar{a}$ and $b^{\prime}=b+d \bar{b}$, and compute, using bilinearity:

$$
a^{\prime} \times b^{\prime}=(a+d \bar{a})+(b+d \bar{b})=a \times b+a \times d \bar{b}+(d \bar{a}) \times b+(d \bar{a}) \times(d \bar{b})
$$

We need to deal with the last three terms here. But since $d a=0$,

$$
d(a \times \bar{b})=(-1)^{p} a \times(d \bar{b}) .
$$

Since $d \bar{b}=0$,

$$
d((\bar{a}) \times b)=(d \bar{a}) \times b .
$$

And since $d^{2} \bar{b}=0$,

$$
d(a \times \bar{b})=(d \bar{a}) \times(d \bar{b}) .
$$

This means that $a^{\prime} \times b^{\prime}$ and $a \times b$ differ by

$$
d\left((-1)^{p}(a \times \bar{b})+\bar{a} \times b+\bar{a} \times d \bar{b}\right),
$$

and so are homologous.
The last step is to check bilinearity, which is left to the listener.
This gives the following result.
Theorem 7.2. There is a map

$$
\times: H_{p}(X) \times H_{q}(Y) \rightarrow H_{p+q}(X \times Y)
$$

that is natural, bilinear, and normalized.
We will see that this map is also uniquely defined by these conditions, unlike the chain-level cross product.

I just want to mention an explicit choice of $\iota_{p} \times \iota_{q}$. This is called the Eilenberg-Zilber chain. You're highly encouraged to think about this yourself. It comes from a triangulation of the prism.

The simplices in this triangulation are indexed by order preserving injections

$$
\omega:[p+q] \rightarrow[p] \times[q]
$$

Injectivity forces $\omega(0)=(0,0)$ and $\omega(p+q)=(p, q)$. Each such map determines an affine map $\Delta^{p+q} \rightarrow \Delta^{p} \times \Delta^{q}$ of the same name. These will be the singular simplices making up $\iota_{p} \times \iota_{q}$. To specify the coefficients, think of ω as a staircase in the rectangle $[0, p] \times[0, q]$. Let $A(\omega)$ denote the area under that staircase. Then the Eilenberg-Zilber chain is given by

$$
\iota_{p} \times \iota_{q}=\sum(-1)^{A(\omega)} \omega
$$

This chain is due to Eilenberg and Mac Lane; the description appears in a paper [4] by Eilenberg and Moore. It's very pretty, but it's combinatorially annoying to check that this satisfies the conditions of the theorem. It provides an explicit chain map

$$
\beta_{X, Y}: S_{*}(X) \times S_{*}(Y) \rightarrow S_{*}(X \times Y)
$$

that satisfies many good properties on the nose and not just up to chain homotopy. For example, it's associative -

$$
\begin{array}{r}
S_{*}(X) \times S_{*}(Y) \times S_{*}(Z) \xrightarrow{\beta_{X, Y} \times 1} S_{*}(X \times Y) \times S_{*}(Z) \\
{ }_{\downarrow} 1 \times \beta Y, Z
\end{array} \begin{array}{|l}
\left.\right|^{\beta_{X \times Y, Z}}
\end{array}
$$

commutes - and commutative -

commutes, where on spaces $T(x, y)=(y, x)$, and on chain complexes $T(a, b)=(-1)^{p q}(b, a)$ when a has degree p and b has degree q.

We will see that these properties hold up to chain homotopy for any choice of chain-level cross product.

Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293-297.
[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199-236.
[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337-341.
[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549-557.
[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56-69.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

