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16 Homology of CW-complexes

The skeleton filtration of a CW complex leads to a long exact sequence in homology, showing that the 
relative homology H∗(Xk, Xk−1) controls how the homology changes when you pass from Xk−1 to Xk. 
What is this relative homology? If we pick a set of attaching maps, we get the following diagram.
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� � // Xk ∪f B // Xk/Xk−1

where
∨

is the wedge sum (disjoint union with all basepoints identified):
∨
α S

k
α is a bouquet of

spheres. The dotted map exists and is easily seen to be a homeomorphism.
Luckily, the inclusion Xk−1 ⊆ Xk satisfies what’s needed to conclude that

Hq(Xk, Xk−1)→ Hq(Xk/Xk−1, ∗)

is an isomorphism. After all, Xk−1 is a deformation retract of the space you get from Xk by deleting
the center of each k-cell.

We know Hq(Xk/Xk−1, ∗) very well:

Hq(
∨
α∈Ak

Skα, ∗) ∼=

{
Z[Ak] q = k

0 q 6= k
.

Lesson: The relative homology Hk(Xk, Xk−1) keeps track of the k-cells of X.

Definition 16.1. The group of cellular n-chains in a CW complex X is

Ck(X) := Hk(Xk, Xk−1) = Z[Ak] .

If we put the fact that Hq(Xk, Xk−1) = 0 for q 6= k, k+ 1 into the homology long exact sequence
of the pair, we find first that

Hq(Xk−1)
∼=−→ Hq(Xk) for q 6= k, k − 1 ,

and then that there is a short exact sequence

0→ Hk(Xk)→ Ck(X)→ Hk−1(Xk−1)→ 0 .

So if we fix a dimension q, and watch how Hq varies as we move through the skelata of X, we
find the following picture. Say q > 0. Since X0 is discrete, Hq(X0) = 0. Then Hq(Xk) continues to
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be 0 till you get up to Xq. Hq(Xq) is a subgroup of the free abelian group Cq(X) and hence is free
abelian. Relations may get introduced into it when we pass to Xq+1; but thereafter all the maps

Hq(Xq+1)→ Hq(Xq+2)→ · · ·

are isomorphisms. All the q-dimensional homology of X is created on Xq, and all the relations in
Hq(X) occur by Xq+1.

This stable value of Hq(Xk) maps isomorphically to Hq(X), even if X is infinite dimensional.
This is because the union of the images of any finite set of singular simplices in X is compact and so
lies in a finite subcomplex and in particular lies in a finite skeleton. So any chain in X is the image
of a chain in some skeleton. Since Hq(Xk)

∼=−→ Hq(Xk+1) for k > q, we find that Hq(Xq)→ Hq(X)
is surjective. Similarly, if c ∈ Sq(Xk) is a boundary in X, then it’s a boundary in X` for some ` ≥ k.
This shows that the map Hq(Xq+1)→ Hq(X) is injective. We summarize:

Proposition 16.2. Let k, q ≥ 0. Then

Hq(Xk) = 0 for k < q

and
Hq(Xk)

∼=−→ Hq(X) for k > q .

In particular, Hq(X) = 0 if q exceeds the dimension of X.

We have defined the cellular n-chains of a CW complex X,

Cn(X) = Hn(Xn, Xn−1) ,

and found that it is the free abelian group on the set of n cells. We claim that these abelian groups
are related to each other; they form the groups in a chain complex.

What should the boundary of an n-cell be? It’s represented by a characteristic map Dn → Xn

whose boundary is the attaching map α : Sn−1 → Xn−1. This is a lot of information, and hard to
interpret because Xn−1 is itself potentially a complicated space. But things get much simpler if I
pinch out Xn−2. This suggests defining

d : Cn(X) = Hn(Xn, Xn−1)
∂−→ Hn−1(Xn)→ Hn−1(Xn−1, Xn−2) = Cn−1(X) .

The fact that d2 = 0 is embedded in the following large diagram, in which the two columns and
the central row are exact.

Cn+1(X) = Hn+1(Xn+1, Xn)

∂n
��

d

++

0 = Hn−1(Xn−2)

��
Hn(Xn) //

jn //

��

Cn(X) = Hn(Xn, Xn−1)
∂n−1 //

d

++

Hn−1(Xn−1)

jn−1

��
Hn(Xn+1)

��

Cn−1(X) = Hn−1(Xn−1, Xn−2)

0 = Hn(Xn+1, Xn)

Now, ∂n−1 ◦ jn = 0. So the composite of the diagonals is zero, i.e., d2 = 0, and we have a chain
complex! This is the “cellular chain complex” of X.
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We should compute the homology of this chain complex, Hn(C∗(X)) = ker d/ im d. Now

ker d = ker(jn−1 ◦ ∂n−1) .

But jn−1 is injective, so
ker d = ker ∂n−1 = im jn = Hn(Xn) .

On the other hand
im d = jn(im ∂n) = im ∂n ⊆ Hn(Xn) .

So
Hn(C∗(X)) = Hn(Xn)/ im ∂n = Hn(Xn+1)

by exactness of the left column; but as we know this is exactly Hn(X)! We have proven the following
result.

Theorem 16.3. For a CW complex X, there is an isomorpphism

H∗(C∗(X)) ∼= H∗(X)

natural with respect to filtration-preserving maps between CW complexes.

This has an immediate and surprisingly useful corollary.

Corollary 16.4. Suppose that the CW complex X has only even cells – that is, X2k ↪→ X2k+1 is
an isomorphism for all k. Then

H∗(X) ∼= C∗(X) .

That is, Hn(X) = 0 for n odd, is free abelian for all n, and the rank of Hn(X) for n even is the
number of n-cells.

Example 16.5. Complex projective space CPn has a CW structure in which

Sk2kCPn = Sk2k+1CPn = CPk .

The attaching S2k−1 → CPk sends v ∈ S2k−1 ⊆ Cn to the complex line through v. So

Hk(CPn) =

{
Z for 0 ≤ k ≤ 2n, k even
0 otherwise .

Finally, notice that in our proof of Theorem 16.3 we used only properties contained in the
Eilenberg-Steenrod axioms. As a result, any construction of a homology theory satisfying the
Eilenberg-Steenrod axioms gives you the same values on CW complexes as singular homology.

17 Real projective space

Let’s try to compute H∗(RPn). This computation will invoke a second way to think of the cellular
chain group Cn(X). Each cell has a characteristic map Dn → Xn, and we have the diagram
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