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38 Applications

Today we harvest consequences of Poincaré duality. We’ll use the form

Theorem 38.1. Let M be an n-manifold and K a compact subset. An R-orientation along K
determines a fundamental class [M ]K ∈ Hn(M,M −K), and capping gives an isomorphism:

∩[M ]K : Ȟn−q(K;R)
∼=−→ Hq(M,M −K;R) .

Corollary 38.2. Ȟp(K;R) = 0 for p > n.

We can contrast this with singular (co)homology. Here’s an example:

Example 38.3 (Barratt-Milnor, [1]). A two-dimensional version K of the Hawaiian earring, i.e.,
nested spheres all tangent to a point whose radii are going to zero. What they proved is that
Hq(K; Q) is uncountable for every q > 1. But Čech cohomology is much more well-behaved.

Theorem 38.4 (Alexander duality). For any compact subset K of Rn, the composite

Ȟn−q(K;R)
∩[Rn]K−−−−−→ Hq(R

n,Rn −K;R)
∂−→ H̃q−1(Rn −K;R)

is an isomorphism.

Proof. H̃∗(Rn;R) = 0.

This is extremely useful! For example

Corollary 38.5. If K is a compact subset of Rn then Ȟn(K;R) = 0.

Corollary 38.6. The complement of a knot in S3 is a homology circle.

Example 38.7. Take the case q = 1:

Ȟn−1(K;R)
∼=−→ H̃0(Rn −K;R) = ker(ε : Rπ0(Rn −K)→ R) .

The augmentation is a split surjection, so this is a free R-module. This shows, for example, that
RP2 can’t be embedded in R3 – at least not with a regular neighborhood.

If we take n = 2 and suppose that Ȟ∗(K) = H∗(S1), we find that the complement of K has two
path components. This is the Jordan Curve Theorem.

There is a useful purely cohomological consequence of Poincaré duality, obtained by combining
it with the universal coeffient theorem

0→ Ext1
Z(Hq−1(X),Z)→ Hq(X)→ Hom(Hq(X),Z)→ 0 .

First, note that Hom(Hq(X),Z) is always torsion-free. If I assume that Hq−1(X) is finitely gen-
erated, then Ext1

Z(Hq−1(X),Z) is a finite abelian group. So the UCT is providing the short exact
sequence

0→ torsHq(X)→ Hq(X)→ Hq(X)/tors→ 0

– that is,
Hq(X)/tors

∼=−→ Hom(Hq(X)/tors,Z) .
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That is to say, the Kronecker pairing descends to a perfect pairing

Hq(X)

tors
⊗ Hq(X)

tors
→ Z .

Let’s combine this with Poincaré duality. Let X = M be a compact oriented n-manifold, so
that

∩[M ] : Hn−q(M)
∼=−→ Hq(M) .

We get a perfect pairing
Hq(X)

tors
⊗ Hn−q(X)

tors
→ Z .

And what is that pairing? It’s given by the composite

Hq(M)⊗Hn−q(M) //

1⊗(−∩[M ])

��

Z

Hq(M)⊗Hq(M)

〈−,−〉

77

and we’ve seen that
〈a, b ∩ [M ]〉 = 〈a ∪ b, [M ]〉

We have used R = Z, but the same argument works for any PID – in particular for any field, in
which case torsV = 0. We have proven:

Theorem 38.8. Let R be a PID an M a compact R-oriented n-manifold. Then

a⊗ b 7→ 〈a ∪ b, [M ]〉

induces a perfect pairing (with p+ q = n)

Hp(M ;R)

tors
⊗R

Hq(M ;R)

tors
→ R .

Example 38.9. Complex projective 2-space is a compact 4-manifold, orientable since it is simply
connected. It has a cell structure with cells in dimensions 0, 2, and 4, so its homology is Z in those
dimensions and 0 elsewhere, and so the same is true of its cohomology. Up till now the cup product
structure has been a mystery. But now we know that

H2(CP2)⊗H2(CP2)→ H4(CP2)

is a perfect pairing. So if we write a for a generator of H2(CP2), then a∪a = a2 is a free generator
for H4(CP2). We have discovered that

H∗(CP2) = Z[a]/a3 .

By the way, notice that if we had chosen −a as a generator, we would still produce the same
generator for H4(CP2): so there is a preferred orientation, the one whose fundamental class pairs
to 1 against a2.

This calculation shows that while CP2 and S2 ∨ S4 are both simply connected and have the
same homology, they are not homotopy equivalent. This implies that the attaching map S3 → S2

for the top cell in CP2 – the Hopf map – is essential.
How about CP3? It just adds a 6-cell, so now H6(CP3) ∼= Z. The pairing H2(CP3) ⊗

H4(CP3) → H6(CP3) is perfect, so we find that a3 generates H6(CP3). Continuing in this way,
we have

H∗(CPn) = Z[a]/(an+1) .
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Example 38.10. Exactly the same argument shows that

H∗(RPn; F2) = F2[a]/(an+1)

where |a| = 1.

I’ll end with the following application.

Theorem 38.11 (Borsuk-Ulam). Think of Sn as the unit vectors in Rn+1. For any continuous
function f : Sn → Rn, there exists x ∈ Sn such that f(x) = f(−x).

Proof. Suppose that no such x exists. Then we may define a continuous function g : Sn → Sn−1 by

g : x 7→ f(x)− f(−x)

||f(x)− f(−x)||
.

Note that g(−x) = −g(x): g is equivariant with respect to the antipodal action. It descends to a
map g : RPn → RPn−1.

We claim that g∗ : H1(RPn)→ H1(RPn−1) is nontrivial. To see this, pick a basepoint b ∈ Sn
and choose a 1-simplex σ : ∆1 → Sn such that σ(e0) = b and σ(e1) = −b. The group H1(RPn) is
generated by the cycle pσ. The image of this cycle in H1(RPn−1) is represented by the loop gpσ
at b = pb, which is the image of the 1-simplex gσ joining gb to g(−b) = −g(b). The class of this
1-simplex thus generates H1(RPn−1).

Therefore g is nontrivial in H1(−; F2), and hence also in H1(−; F2). Writing an for the generator
of H1(RPn; F2), we must have an = g∗an−1, and consequently ann = (g∗an−1)n = g∗(ann−1). But
Hn(RPn−1; F2) = 0, so ann−1 = 0; while ann 6= 0. This is a contradiction.
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