38 Applications

Today we harvest consequences of Poincaré duality. We'll use the form
Theorem 38.1. Let M be an n-manifold and K a compact subset. An R-orientation along K determines a fundamental class $[M]_{K} \in H_{n}(M, M-K)$, and capping gives an isomorphism:

$$
\cap[M]_{K}: \check{H}^{n-q}(K ; R) \xrightarrow{\cong} H_{q}(M, M-K ; R) .
$$

Corollary 38.2. $\check{H}^{p}(K ; R)=0$ for $p>n$.
We can contrast this with singular (co)homology. Here's an example:
Example 38.3 (Barratt-Milnor, 回). A two-dimensional version K of the Hawaiian earring, i.e., nested spheres all tangent to a point whose radii are going to zero. What they proved is that $H_{q}(K ; \mathbf{Q})$ is uncountable for every $q>1$. But Čech cohomology is much more well-behaved.

Theorem 38.4 (Alexander duality). For any compact subset K of \mathbf{R}^{n}, the composite

$$
\check{H}^{n-q}(K ; R) \xrightarrow{\cap\left[\mathbf{R}^{n}\right]_{K}} H_{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-K ; R\right) \xrightarrow{\partial} \widetilde{H}_{q-1}\left(\mathbf{R}^{n}-K ; R\right)
$$

is an isomorphism.
Proof. $\widetilde{H}^{*}\left(\mathbf{R}^{n} ; R\right)=0$.
This is extremely useful! For example
Corollary 38.5. If K is a compact subset of \mathbf{R}^{n} then $\check{H}^{n}(K ; R)=0$.
Corollary 38.6. The complement of a knot in S^{3} is a homology circle.
Example 38.7. Take the case $q=1$:

$$
\check{H}^{n-1}(K ; R) \xlongequal{\cong} \widetilde{H}_{0}\left(\mathbf{R}^{n}-K ; R\right)=\operatorname{ker}\left(\varepsilon: R \pi_{0}\left(\mathbf{R}^{n}-K\right) \rightarrow R\right) .
$$

The augmentation is a split surjection, so this is a free R-module. This shows, for example, that $\mathbf{R P}^{2}$ can't be embedded in \mathbf{R}^{3} - at least not with a regular neighborhood.

If we take $n=2$ and suppose that $\check{H}^{*}(K)=H^{*}\left(S^{1}\right)$, we find that the complement of K has two path components. This is the Jordan Curve Theorem.

There is a useful purely cohomological consequence of Poincaré duality, obtained by combining it with the universal coeffient theorem

$$
0 \rightarrow \operatorname{Ext}_{\mathbf{Z}}^{1}\left(H_{q-1}(X), \mathbf{Z}\right) \rightarrow H^{q}(X) \rightarrow \operatorname{Hom}\left(H_{q}(X), \mathbf{Z}\right) \rightarrow 0
$$

First, note that $\operatorname{Hom}\left(H_{q}(X), \mathbf{Z}\right)$ is always torsion-free. If I assume that $H_{q-1}(X)$ is finitely generated, then $\operatorname{Ext}_{\mathbf{Z}}^{1}\left(H_{q-1}(X), \mathbf{Z}\right)$ is a finite abelian group. So the UCT is providing the short exact sequence

$$
0 \rightarrow \operatorname{tors} H^{q}(X) \rightarrow H^{q}(X) \rightarrow H^{q}(X) / \text { tors } \rightarrow 0
$$

- that is,

$$
H^{q}(X) / \text { tors } \xrightarrow{\cong} \operatorname{Hom}\left(H_{q}(X) / \text { tors }, \mathbf{Z}\right) .
$$

That is to say, the Kronecker pairing descends to a perfect pairing

$$
\frac{H^{q}(X)}{\text { tors }} \otimes \frac{H_{q}(X)}{\text { tors }} \rightarrow \mathbf{Z} .
$$

Let's combine this with Poincaré duality. Let $X=M$ be a compact oriented n-manifold, so that

$$
\cap[M]: H^{n-q}(M) \stackrel{\cong}{\leftrightarrows} H_{q}(M) .
$$

We get a perfect pairing

$$
\frac{H^{q}(X)}{\text { tors }} \otimes \frac{H^{n-q}(X)}{\text { tors }} \rightarrow \mathbf{Z} .
$$

And what is that pairing? It's given by the composite

and we've seen that

$$
\langle a, b \cap[M]\rangle=\langle a \cup b,[M]\rangle
$$

We have used $R=\mathbf{Z}$, but the same argument works for any PID - in particular for any field, in which case $\operatorname{tors} V=0$. We have proven:

Theorem 38.8. Let R be a PID an M a compact R-oriented n-manifold. Then

$$
a \otimes b \mapsto\langle a \cup b,[M]\rangle
$$

induces a perfect pairing (with $p+q=n$)

$$
\frac{H^{p}(M ; R)}{\text { tors }} \otimes_{R} \frac{H^{q}(M ; R)}{\text { tors }} \rightarrow R .
$$

Example 38.9. Complex projective 2-space is a compact 4-manifold, orientable since it is simply connected. It has a cell structure with cells in dimensions 0,2 , and 4 , so its homology is \mathbf{Z} in those dimensions and 0 elsewhere, and so the same is true of its cohomology. Up till now the cup product structure has been a mystery. But now we know that

$$
H^{2}\left(\mathbf{C P}^{2}\right) \otimes H^{2}\left(\mathbf{C P}^{2}\right) \rightarrow H^{4}\left(\mathbf{C P}^{2}\right)
$$

is a perfect pairing. So if we write a for a generator of $H^{2}\left(\mathbf{C P}^{2}\right)$, then $a \cup a=a^{2}$ is a free generator for $H^{4}\left(\mathbf{C P}^{2}\right)$. We have discovered that

$$
H^{*}\left(\mathbf{C P}^{2}\right)=\mathbf{Z}[a] / a^{3} .
$$

By the way, notice that if we had chosen $-a$ as a generator, we would still produce the same generator for $H^{4}\left(\mathbf{C P}^{2}\right)$: so there is a preferred orientation, the one whose fundamental class pairs to 1 against a^{2}.

This calculation shows that while $\mathbf{C P}{ }^{2}$ and $S^{2} \vee S^{4}$ are both simply connected and have the same homology, they are not homotopy equivalent. This implies that the attaching map $S^{3} \rightarrow S^{2}$ for the top cell in $\mathbf{C P}^{2}$ - the Hopf map - is essential.

How about $\mathbf{C P}^{3}$? It just adds a 6 -cell, so now $H^{6}\left(\mathbf{C P}^{3}\right) \cong \mathbf{Z}$. The pairing $H^{2}\left(\mathbf{C P}^{3}\right) \otimes$ $H^{4}\left(\mathbf{C P}^{3}\right) \rightarrow H^{6}\left(\mathbf{C P}^{3}\right)$ is perfect, so we find that a^{3} generates $H^{6}\left(\mathbf{C P}^{3}\right)$. Continuing in this way, we have

$$
H^{*}\left(\mathbf{C P}^{n}\right)=\mathbf{Z}[a] /\left(a^{n+1}\right) .
$$

Example 38.10. Exactly the same argument shows that

$$
H^{*}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}[a] /\left(a^{n+1}\right)
$$

where $|a|=1$.
I'll end with the following application.
Theorem 38.11 (Borsuk-Ulam). Think of S^{n} as the unit vectors in \mathbf{R}^{n+1}. For any continuous function $f: S^{n} \rightarrow \mathbf{R}^{n}$, there exists $x \in S^{n}$ such that $f(x)=f(-x)$.

Proof. Suppose that no such x exists. Then we may define a continuous function $g: S^{n} \rightarrow S^{n-1}$ by

$$
g: x \mapsto \frac{f(x)-f(-x)}{\|f(x)-f(-x)\|}
$$

Note that $g(-x)=-g(x): g$ is equivariant with respect to the antipodal action. It descends to a $\operatorname{map} \bar{g}: \mathbf{R} \mathbf{P}^{n} \rightarrow \mathbf{R} \mathbf{P}^{n-1}$.

We claim that $\bar{g}_{*}: H_{1}\left(\mathbf{R} \mathbf{P}^{n}\right) \rightarrow H_{1}\left(\mathbf{R} \mathbf{P}^{n-1}\right)$ is nontrivial. To see this, pick a basepoint $b \in S^{n}$ and choose a 1-simplex $\sigma: \Delta^{1} \rightarrow S^{n}$ such that $\sigma\left(e_{0}\right)=b$ and $\sigma\left(e_{1}\right)=-b$. The group $H_{1}\left(\mathbf{R P}^{n}\right)$ is generated by the cycle $p \sigma$. The image of this cycle in $H_{1}\left(\mathbf{R} \mathbf{P}^{n-1}\right)$ is represented by the loop $g p \sigma$ at $\bar{b}=p b$, which is the image of the 1-simplex $g \sigma$ joining $g b$ to $g(-b)=-g(b)$. The class of this 1-simplex thus generates $H_{1}\left(\mathbf{R} \mathbf{P}^{n-1}\right)$.

Therefore \bar{g} is nontrivial in $H_{1}\left(-; \mathbf{F}_{2}\right)$, and hence also in $H^{1}\left(-; \mathbf{F}_{2}\right)$. Writing a_{n} for the generator of $H^{1}\left(\mathbf{R} \mathbf{P}^{n} ; \mathbf{F}_{2}\right)$, we must have $a_{n}=g^{*} a_{n-1}$, and consequently $a_{n}^{n}=\left(g^{*} a_{n-1}\right)^{n}=g^{*}\left(a_{n-1}^{n}\right)$. But $H^{n}\left(\mathbf{R} \mathbf{P}^{n-1} ; \mathbf{F}_{2}\right)=0$, so $a_{n-1}^{n}=0$; while $a_{n}^{n} \neq 0$. This is a contradiction.

Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293-297.
[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199-236.
[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337-341.
[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549-557.
[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56-69.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

