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33 A plethora of products

We are now heading towards a statement of Poincaré duality.
Recall that we have the Kronecker pairing

〈−,−〉 : Hp(X;R)⊗Hp(X;R)→ R .

It’s obviously not “natural,” because Hp is contravariant while homology is covariant. But given
f : X → Y , b ∈ Hp(Y ), and x ∈ Hp(X), we can ask: How does 〈f∗b, x〉 relate to 〈b, f∗x〉?

Claim 33.1. 〈f∗b, x〉 = 〈b, f∗x〉.

Proof. This is easy! I find it useful to write out diagrams to show where things are. We’re going to
work on the chain level.

Hom(Sp(Y ), R)⊗ Sp(X)
1⊗f∗ //

f∗⊗1

��

Hom(Sp(Y ), R)⊗ Sp(Y )

〈−,−〉
��

Hom(Sp(X), R)⊗ Sp(X)
〈−,−〉 // R

We want this diagram to commute. Suppose [β] = b and [ξ] = x. Then going to the right and then
down gives

β ⊗ ξ 7→ β ⊗ f∗(ξ) 7→ β(f∗ξ) .

The other way gives
β ⊗ ξ 7→ f∗(β)⊗ ξ = (β ◦ f∗)⊗ ξ 7→ (β ◦ f∗)(ξ) .

This is exactly β(f∗ξ).

There’s actually another product in play here:

µ : H(C∗)⊗H(D∗)→ H(C∗ ⊗D∗)

given by [c]⊗[d] 7→ [c⊗d]. I used it to pass from the chain level computation we did to the homology
statement.

We also have the two cross products:

× : Hp(X)⊗Hq(Y )→ Hp+q(X × Y )

and
× : Hp(X)⊗Hq(Y )→ Hp+q(X × Y ) .

You might think this is fishy because both maps are in the same direction. But it’s OK, because we
used different things to make these constructions: the chain-level cross product (or Eilenberg-Zilber
map) for homology and the Alexander-Whitney map for cohomology. Still, they’re related:

Lemma 33.2. Let a ∈ Hp(X), b ∈ Hq(Y ), x ∈ Hp(X), y ∈ Hq(Y ). Then:

〈a× b, x× y〉 = (−1)|x|·|b|〈a, x〉〈b, y〉 .
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Proof. Look at the chain-level cross product and the Alexander-Whitney maps:

× : S∗(X)⊗ S∗(Y )� S∗(X × Y ) : α

They are inverse isomorphisms in dimension 0, and both sides are projective resolutions with respect
to the models (∆p,∆q); so by acyclic models they are natural chain homotopy inverses.

Say [f ] = a, [g] = b, [ξ] = x, [η] = y. Write fg for the composite

Sp(X)⊗ Sq(Y )
×−→ Sp+q(X × Y )

f⊗g−−→ R⊗R→ R .

Then:
(f × g)(ξ × η) = (fg)α(ξ × η) ' (fg)(ξ ⊗ η) = (−1)pqf(ξ)g(η) .

We can use this to prove a restricted form of the Künneth theorem in cohomology.

Theorem 33.3. Let R be a PID. Assume that Hp(X) is a finitely generated free R-module for all
p. Then

× : H∗(X;R)⊗R H∗(Y ;R)→ H∗(X × Y ;R)

is an isomorphism.

Proof. Write M∨ for the linear dual of an R-module M . By our assumption about Hp(X), the map

Hp(X)∨ ⊗Hq(Y )∨ → (Hp(X)⊗Hq(Y ))∨ ,

sending f ⊗ g to (x ⊗ y 7→ (−1)pqf(x)g(y)), is an isomorphism. The homology Künneth theorem
guarantees that the bottom map in the following diagram is an isomorphism.⊕

p+q=nH
p(X)⊗Hq(Y )

× //

∼=
��

Hn(X × Y )

∼=
��⊕

p+q=nHp(X)∨ ⊗Hq(Y )∨
∼= //

(⊕
p+q=nHp(X)⊗Hq(Y )

)∨
Hn(X × Y )∨

∼=oo

Commutativity of this diagram is exactly the content of Lemma 33.2.

We saw before that × is an algebra map, so under the conditions of the theorem it is an
isomorphism of algebras. You do need some finiteness assumption, even if you are working over a
field. For example let T be an infinite set, regarded as a space with the discrete topology. Then
H0(T ;R) = Map(T,R). But

Map(T,R)⊗Map(T,R)→ Map(T × T,R)

sending f ⊗ g to (s, t)→ f(s)g(t) is not surjective; the characteristic function of the diagonal is not
in the image, for example (unless R = 0).

There are more products around. For example, there is a map

Hp(Y )⊗Hq(X,A)→ Hp+q(Y ×X,Y ×A) .

Constructing this is on your homework. Suppose Y = X. Then I get

∪ : H∗(X)⊗H∗(X,A)→ H∗(X ×X,X ×A)
∆∗−−→ H∗(X,A)
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where ∆ : (X,A) → (X × X,X × A) is the “relative diagonal.” This relative cup product makes
H∗(X,A) into a module over the graded algebra H∗(X). The relative cohomology is not a ring –
it doesn’t have a unit, for example – but it is a module. And the long exact sequence of the pair is
a sequence of H∗(X)-modules.

I want to introduce you to one more product, one that will enter into our expression of Poincaré
duality. This is the cap product. What can I do with Sp(X) ⊗ Sn(X)? Well, I can form the
composite:

∩ : Sp(X)⊗ Sn(X)
1×(α◦∆∗)−−−−−−→ Sp(X)⊗ Sp(X)⊗ Sn−p(X)

〈−,−〉⊗1−−−−−→ Sn−p(X)

Using our explicit formula for α, we can write:

∩ : β ⊗ σ 7→ β ⊗ (σ ◦ αp)⊗ (σ ◦ ωq) 7→ (β(σ ◦ αp)) (σ ◦ ωq)

We are evaluating the cochain on part of the chain, leaving a lower dimensional chain left over.
This composite is a chain map, and so induces a map in homology:

∩ : Hp(X) ⊗ Hn(X) → Hn−p(X) .

Notice how the dimensions work. Long ago a bad choice was made: If cohomology were graded 
with negative integers, the way the gradations work here would look better.

There are also two slant products. Maybe I won’t talk about them. In the next lecture, I’ll 
check a few things about cap products, and then get into the machinery of Poincaré duality.
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