25 Künneth and Eilenberg-Zilber

We want to compute the homology of a product. Long ago, in Lecture 7, we constructed a bilinear $\operatorname{map} S_{p}(X) \times S_{q}(Y) \rightarrow S_{p+q}(X \times Y)$, called the cross product. So we get a linear map $S_{p}(X) \otimes$ $S_{q}(Y) \rightarrow S_{p+q}(X \times Y)$, and it satisfies the Leibniz formula, i.e., $d(x \times y)=d x \times y+(-1)^{p} x \times d y$. The method we used works with any coefficient ring, not just the integers.

Definition 25.1. Let C_{*}, D_{*} be two chain complexes. Their tensor product is the chain complex with

$$
\left(C_{*} \otimes D_{*}\right)_{n}=\bigoplus_{p+q=n} C_{p} \otimes D_{q}
$$

The differential $\left(C_{*} \otimes D_{*}\right)_{n} \rightarrow\left(C_{*} \otimes D_{*}\right)_{n-1}$ sends $C_{p} \otimes D_{q}$ into the submodule $C_{p-1} \otimes D_{q} \oplus C_{p} \otimes D_{q-1}$ by

$$
x \otimes y \mapsto d x \otimes y+(-1)^{p} x \otimes d y .
$$

So the cross product is a map of chain complexes $S_{*}(X) \otimes S_{*}(Y) \rightarrow S_{*}(X \times Y)$. There are two questions:
(1) Is this map an isomorphism in homology?
(2) How is the homology of a tensor product of chain complexes related to the tensor product of their homologies?

It's easy to see what happens in dimension zero, because $\pi_{0}(X) \times \pi_{0}(Y)=\pi_{0}(X \times Y)$ implies that $H_{0}(X) \otimes H_{0}(Y) \xrightarrow{\cong} H_{0}(X \times Y)$.

Let's dispose of the purely algebraic question (2) first.
Theorem 25.2. Let R be a PID and C_{*}, D_{*} be chain complexes of R-modules. Assume that C_{n} is a free R-module for all n. There is a short exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(C) \otimes H_{q}(D) \rightarrow H_{n}\left(C_{*} \otimes D_{*}\right) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}_{1}^{R}\left(H_{p}(C), H_{q}(D)\right) \rightarrow 0
$$

natural in these data, that splits (but not naturally).
Proof. This is exactly the same as the proof for the UCT. It's a good idea to work through this on your own.

Corollary 25.3. Let R be a PID and assume C_{n}^{\prime} and C_{n} are R free for all n. If $C_{*}^{\prime} \rightarrow C_{*}$ and $D_{*}^{\prime} \rightarrow D_{*}$ are homology isomorphisms then so is $C_{*}^{\prime} \otimes D_{*}^{\prime} \rightarrow C_{*} \otimes D_{*}$.

Our attack on question (1) is via the method of "acyclic models." This is really a special case of the Fundamental Theorem of Homological Algebra, Theorem 22.1.

Definition 25.4. Let \mathcal{C} be a category, and fix a set \mathcal{M} of objects in \mathcal{C}, to be called the "models." A functor $F: \mathcal{C} \rightarrow \mathbf{A b}$ is \mathcal{M}-free if it is the free abelian group generated by a coproduct of corepresentable functors. That is, F is a direct sum of functors of the form $\mathbf{Z C}(M,-)$ where $M \in \mathcal{M}$.

Example 25.5. Since we are interested in the singular homology of a product of two spaces, it may be sensible to take as \mathcal{C} the category of ordered pairs of spaces, $\mathcal{C}=\operatorname{Top}^{2}$, and for \mathcal{M} the set of pairs of simplicies, $\mathcal{M}=\left\{\left(\Delta^{p}, \Delta^{q}\right): p, q \geq 0\right\}$. Then

$$
S_{n}(X \times Y)=\mathbf{Z}\left[\mathbf{T o p}\left(\Delta^{n} \times X\right) \times \operatorname{Top}\left(\Delta^{n}, Y\right)\right]=\mathbf{Z T o p}^{2}\left(\left(\Delta^{n}, \Delta^{n}\right),(X, Y)\right) .
$$

is \mathcal{M}-free.
Example 25.6. With the same category and models,

$$
\left(S_{*}(X) \otimes S_{*}(Y)\right)_{n}=\bigoplus_{p+q=n} S_{p}(X) \otimes S_{q}(Y)
$$

is \mathcal{M}-free, since the tensor product has as free basis the set

$$
\coprod_{p+q=n} \operatorname{Sin}_{p}(X) \times \operatorname{Sin}_{q}(Y)=\coprod_{p+q=n} \operatorname{Top}^{2}\left(\left(\Delta^{p}, \Delta^{q}\right),(X, Y)\right) .
$$

Definition 25.7. A natural transformation of functors $\theta: F \rightarrow G$ is an \mathcal{M}-epimorphism if $\theta_{M}: F(M) \rightarrow G(M)$ is a surjection of abelian groups for every $M \in \mathcal{M}$. A sequence of natural transformations is a composable pair $G^{\prime} \rightarrow G \rightarrow G^{\prime \prime}$ with trivial composition. Let K be the objectwise kernel of $G \rightarrow G^{\prime \prime}$. There is a factorization $G^{\prime} \rightarrow K$. The sequence is \mathcal{M}-exact if $G^{\prime} \rightarrow K$ is a \mathcal{M}-epimorphism. Equivalently, $G^{\prime}(M) \rightarrow G(M) \rightarrow G^{\prime \prime}(M)$ is exact for all $M \in \mathcal{M}$.

Example 25.8. We claim that

$$
\cdots \rightarrow S_{n}(X \times Y) \rightarrow S_{n-1}(X \times Y) \rightarrow \cdots \rightarrow S_{0}(X \times Y) \rightarrow H_{0}(X \times Y) \rightarrow 0
$$

is \mathcal{M}-exact. Just plug in $\left(\Delta^{p}, \Delta^{q}\right)$: you get an exact sequence, since $\Delta^{p} \times \Delta^{q}$ is contractible.
Example 25.9. The sequence
$\cdots \rightarrow\left(S_{*}(X) \otimes S_{*}(Y)\right)_{n} \rightarrow\left(S_{*}(X) \otimes S_{*}(Y)\right)_{n-1} \rightarrow \cdots \rightarrow S_{0}(X) \otimes S_{0}(Y) \rightarrow H_{0}(X) \otimes H_{0}(Y) \rightarrow 0$.
is also \mathcal{M}-exact, by Corollary 25.3 .
The terms " \mathcal{M}-free" and " \mathcal{M}-exact" relate to each other in the expected way:
Lemma 25.10. Let \mathcal{C} be a category with a set of models \mathcal{M} and let $F, G, G^{\prime}: \mathcal{C} \rightarrow \mathbf{A b}$ be functors. Suppose that F is \mathcal{M}-free, let $G^{\prime} \rightarrow G$ be a \mathcal{M}-epimorphism, and let $f: F \rightarrow G$ be any natural transformation. Then there is a lifting:

Proof. Clearly we may assume that $F(X)=\mathbf{Z C}(M, X)$. Suppose that $X=M \in \mathcal{M}$. We get:

Consider $1_{M} \in \mathbf{Z C}(M, M)$. Its image $f_{M}\left(1_{\underline{M}}\right) \in G(M)$ is hit by some element in $c_{M} \in G^{\prime}(M)$, since $G^{\prime} \rightarrow G$ is an \mathcal{M}-epimorphism. Define $\bar{f}_{M}\left(1_{M}\right)=c_{M}$.

Now we exploit naturality! Any $\varphi: M \rightarrow X$ produces a commutative diagram

Chase 1_{M} around the diagram, to see what the value of $\bar{f}_{X}(\varphi)$ must be:

$$
\bar{f}_{X}(\varphi)=\bar{f}_{X}\left(\varphi_{*}\left(1_{M}\right)\right)=\varphi_{*}\left(\bar{f}_{M}\left(1_{M}\right)\right)=\varphi_{*}\left(c_{M}\right) .
$$

Now extend linearly. You should check that this does define a natural transformation.

This is precisely the condition required to prove the Fundamental Theorem of Homological Algebra. So we have the

Theorem 25.11 (Acyclic Models). Let \mathcal{M} be a set of models in a category \mathcal{C}. Let $\theta: F \rightarrow G$ be a natural transformation of functors from \mathcal{C} to $\mathbf{A b}$. Let F_{*} and G_{*} be functors from \mathcal{C} to chain complexes, with augmentations $F_{0} \rightarrow F$ and $G_{0} \rightarrow G$. Assume that F_{n} is \mathcal{M}-free for all n, and that $G_{*} \rightarrow G \rightarrow 0$ is an \mathcal{M}-exact sequence. Then there is a unique chain homotopy class of chain maps $F_{*} \rightarrow G_{*}$ covering θ.

Corollary 25.12. Suppose furthermore that θ is a natural isomorphism. If each G_{n} is \mathcal{M}-free and $F_{*} \rightarrow F \rightarrow 0$ is an \mathcal{M}-exact sequence, then any natural chain map $F_{*} \rightarrow G_{*}$ covering θ is a natural chain homotopy equivalence.

Applying this to our category $\mathbf{T o p}^{2}$ with models as before, we get the following theorem that completes work we did in Lecture 7 .

Theorem 25.13 (Eilenberg-Zilber theorem). There are unique chain homotopy classes of natural chain maps:

$$
S_{*}(X) \otimes S_{*}(Y) \leftrightarrows S_{*}(X \times Y)
$$

covering the usual isomorphism

$$
H_{0}(X) \otimes H_{0}(Y) \cong H_{0}(X \times Y)
$$

and they are natural chain homotopy inverses.
Corollary 25.14. There is a canonical natural isomorphism $H\left(S_{*}(X) \otimes S_{*}(Y)\right) \cong H_{*}(X \times Y)$.
Combining this theorem with the algebraic Künneth theorem, we get:
Theorem 25.15 (Künneth theorem). Take coefficients in a PID R. There is a short exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(X) \otimes_{R} H_{q}(Y) \rightarrow H_{n}(X \times Y) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}_{1}^{R}\left(H_{p}(X), H_{q}(Y)\right) \rightarrow 0
$$

natural in X, Y. It splits as R-modules, but not naturally.
Example 25.16. If $R=k$ is a field, every module is free, so the Tor term vanishes, and you get a Künneth isomorphism:

$$
\times: H_{*}(X ; k) \otimes_{k} H_{*}(Y ; k) \xrightarrow{\cong} H_{*}(X \times Y ; k)
$$

This is rather spectacular. For example, what is $H_{*}\left(\mathbf{R P}^{3} \times \mathbf{R} \mathbf{P}^{3} ; k\right)$, where k is a field? Well, if k has characteristic different from $2, \mathbf{R P}^{3}$ has the same homology as S^{3}, so the product has the same homology as $S^{3} \times S^{3}$: the dimensions are $1,0,0,2,0,0,1$. If char $k=2$, on the other hand, the cohomology modules are either 0 or k, and we need to form the graded tensor product:

so the dimensions of the homology of the product are $1,2,3,4,3,2,1$.

The palindromic character of this sequence will be explained by Poincaré duality. Let's look also at what happens over the integers. Then we have the table of tensor products

	\mathbf{Z}	$\mathbf{Z} / 2 \mathbf{Z}$	0	\mathbf{Z}
\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} / 2 \mathbf{Z}$	0	\mathbf{Z}
$\mathbf{Z} / 2 \mathbf{Z}$	$\mathbf{Z} / 2 \mathbf{Z}$	$\mathbf{Z} / 2 \mathbf{Z}$	0	$\mathbf{Z} / 2 \mathbf{Z}$
0	0	0	0	0
\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} / 2 \mathbf{Z}$	0	\mathbf{Z}

There is only one nonzero Tor group, namely

$$
\operatorname{Tor}_{1}^{\mathbf{Z}}\left(H_{1}\left(\mathbf{R P}^{3}\right), H_{1}\left(\mathbf{R P}^{3}\right)\right)=\mathbf{Z} / 2 \mathbf{Z}
$$

Putting this together, we get the groups

H_{0}	\mathbf{Z}
H_{1}	$\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$
H_{2}	$\mathbf{Z} / 2 \mathbf{Z}$
H_{3}	$\mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$
H_{4}	$\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$
H_{5}	0
H_{6}	\mathbf{Z}

The failure of perfect symmetry here is interesting, and will also be explained by Poincaré duality.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

