
Definition 25.1. Let C∗, D∗ be two chain complexes. Their tensor product is the chain complex
with

(C∗ ⊗D∗)n =
⊕
p+q=n

Cp ⊗Dq .

The differential (C∗⊗D∗)n → (C∗⊗D∗)n−1 sends Cp⊗Dq into the submodule Cp−1⊗Dq
⊕
Cp⊗Dq−1

by
x⊗ y 7→ dx⊗ y + (−1)px⊗ dy .

So the cross product is a map of chain complexes S∗(X)⊗ S∗(Y )→ S∗(X × Y ). There are two
questions:
(1) Is this map an isomorphism in homology?
(2) How is the homology of a tensor product of chain complexes related to the tensor product of
their homologies?

It’s easy to see what happens in dimension zero, because π0(X) × π0(Y ) = π0(X × Y ) implies
that H0(X)⊗H0(Y )

∼=−→ H0(X × Y ).
Let’s dispose of the purely algebraic question (2) first.

Theorem 25.2. Let R be a PID and C∗, D∗ be chain complexes of R-modules. Assume that Cn is
a free R-module for all n. There is a short exact sequence

0→
⊕
p+q=n

Hp(C)⊗Hq(D)→ Hn(C∗ ⊗D∗)→
⊕

p+q=n−1

TorR1 (Hp(C), Hq(D))→ 0

natural in these data, that splits (but not naturally).

Proof. This is exactly the same as the proof for the UCT. It’s a good idea to work through this on
your own.

Corollary 25.3. Let R be a PID and assume C ′n and Cn are R free for all n. If C ′∗ → C∗ and
D′∗ → D∗ are homology isomorphisms then so is C ′∗ ⊗D′∗ → C∗ ⊗D∗.

Our attack on question (1) is via the method of “acyclic models.” This is really a special case of
the Fundamental Theorem of Homological Algebra, Theorem 22.1.

Definition 25.4. Let C be a category, and fix a setM of objects in C, to be called the “models.”
A functor F : C → Ab is M-free if it is the free abelian group generated by a coproduct of
corepresentable functors. That is, F is a direct sum of functors of the form ZC(M,−) where
M ∈M.

Example 25.5. Since we are interested in the singular homology of a product of two spaces, it
may be sensible to take as C the category of ordered pairs of spaces, C = Top2, and forM the set
of pairs of simplicies,M = {(∆p,∆q) : p, q ≥ 0}. Then

Sn(X × Y ) = Z[Top(∆n ×X)×Top(∆n, Y )] = ZTop2((∆n,∆n), (X,Y )) .

isM-free.

Example 25.6. With the same category and models,

(S∗(X)⊗ S∗(Y ))n =
⊕
p+q=n

Sp(X)⊗ Sq(Y ) ,

25 Künneth and Eilenberg-Zilber

We want to compute the homology of a product. Long ago, in Lecture 7, we constructed a bilinear 
map Sp(X) × Sq(Y ) → Sp+q(X × Y ), called the cross product. So we get a linear map Sp(X) ⊗ 
Sq(Y ) → Sp+q(X × Y ), and it satisfies the Leibniz formula, i.e., d(x × y) = dx × y + (−1)px × dy. 
The method we used works with any coefficient ring, not just the integers.
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isM-free, since the tensor product has as free basis the set∐
p+q=n

Sinp(X)× Sinq(Y ) =
∐

p+q=n

Top2((∆p,∆q), (X,Y )) .

Definition 25.7. A natural transformation of functors θ : F → G is an M-epimorphism if
θM : F (M) → G(M) is a surjection of abelian groups for every M ∈ M. A sequence of natu-
ral transformations is a composable pair G′ → G → G′′ with trivial composition. Let K be the
objectwise kernel of G→ G′′. There is a factorization G′ → K. The sequence isM-exact if G′ → K
is aM-epimorphism. Equivalently, G′(M)→ G(M)→ G′′(M) is exact for all M ∈M.

Example 25.8. We claim that

· · · → Sn(X × Y )→ Sn−1(X × Y )→ · · · → S0(X × Y )→ H0(X × Y )→ 0

isM-exact. Just plug in (∆p,∆q): you get an exact sequence, since ∆p ×∆q is contractible.

Example 25.9. The sequence

· · · → (S∗(X)⊗ S∗(Y ))n → (S∗(X)⊗ S∗(Y ))n−1 → · · · → S0(X)⊗ S0(Y )→ H0(X)⊗H0(Y )→ 0 .

is alsoM-exact, by Corollary 25.3.

The terms “M-free” and “M-exact” relate to each other in the expected way:

Lemma 25.10. Let C be a category with a set of modelsM and let F,G,G′ : C → Ab be functors.
Suppose that F is M-free, let G′ → G be a M-epimorphism, and let f : F → G be any natural
transformation. Then there is a lifting:

G′

��
F

f
>>

f // G

Proof. Clearly we may assume that F (X) = ZC(M,X). Suppose that X = M ∈M. We get:

G′(M)

����
ZC(M,M)

fM
88

fM // G(M)

Consider 1M ∈ ZC(M,M). Its image fM (1M ) ∈ G(M) is hit by some element in cM ∈ G′(M),
since G′ → G is anM-epimorphism. Define fM (1M ) = cM .

Now we exploit naturality! Any ϕ : M → X produces a commutative diagram

C(M,M)
fM //

ϕ∗
��

G′(M)

ϕ∗
��

C(M,X)
fX // G′(X)

Chase 1M around the diagram, to see what the value of fX(ϕ) must be:

fX(ϕ) = fX(ϕ∗(1M )) = ϕ∗(fM (1M )) = ϕ∗(cM ) .

Now extend linearly. You should check that this does define a natural transformation.
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This is precisely the condition required to prove the Fundamental Theorem of Homological
Algebra. So we have the

Theorem 25.11 (Acyclic Models). Let M be a set of models in a category C. Let θ : F → G be
a natural transformation of functors from C to Ab. Let F∗ and G∗ be functors from C to chain
complexes, with augmentations F0 → F and G0 → G. Assume that Fn isM-free for all n, and that
G∗ → G→ 0 is anM-exact sequence. Then there is a unique chain homotopy class of chain maps
F∗ → G∗ covering θ.

Corollary 25.12. Suppose furthermore that θ is a natural isomorphism. If each Gn isM-free and
F∗ → F → 0 is anM-exact sequence, then any natural chain map F∗ → G∗ covering θ is a natural
chain homotopy equivalence.

Applying this to our category Top2 with models as before, we get the following theorem that
completes work we did in Lecture 7.

Theorem 25.13 (Eilenberg-Zilber theorem). There are unique chain homotopy classes of natural
chain maps:

S∗(X)⊗ S∗(Y )� S∗(X × Y )

covering the usual isomorphism

H0(X)⊗H0(Y ) ∼= H0(X × Y ) ,

and they are natural chain homotopy inverses.

Corollary 25.14. There is a canonical natural isomorphism H(S∗(X)⊗ S∗(Y )) ∼= H∗(X × Y ).

Combining this theorem with the algebraic Künneth theorem, we get:

Theorem 25.15 (Künneth theorem). Take coefficients in a PID R. There is a short exact sequence

0→
⊕
p+q=n

Hp(X)⊗R Hq(Y )→ Hn(X × Y )→
⊕

p+q=n−1

TorR1 (Hp(X), Hq(Y ))→ 0

natural in X, Y . It splits as R-modules, but not naturally.

Example 25.16. If R = k is a field, every module is free, so the Tor term vanishes, and you get a
Künneth isomorphism:

× : H∗(X; k)⊗k H∗(Y ; k)
∼=−→ H∗(X × Y ; k)

This is rather spectacular. For example, what is H∗(RP3 ×RP3; k), where k is a field? Well,
if k has characteristic different from 2, RP3 has the same homology as S3, so the product has the
same homology as S3 × S3: the dimensions are 1, 0, 0, 2, 0, 0, 1. If char k = 2, on the other hand,
the cohomology modules are either 0 or k, and we need to form the graded tensor product:

k k k k
k k k k
k k k k
k k k k

so the dimensions of the homology of the product are 1, 2, 3, 4, 3, 2, 1.
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The palindromic character of this sequence will be explained by Poincaré duality. Let’s look
also at what happens over the integers. Then we have the table of tensor products

Z Z/2Z 0 Z

Z Z Z/2Z 0 Z
Z/2Z Z/2Z Z/2Z 0 Z/2Z

0 0 0 0 0
Z Z Z/2Z 0 Z

There is only one nonzero Tor group, namely

TorZ1 (H1(RP3), H1(RP3)) = Z/2Z.

Putting this together, we get the groups

H0 Z
H1 Z/2Z⊕ Z/2Z
H2 Z/2Z
H3 Z⊕ Z⊕ Z/2Z
H4 Z/2Z⊕ Z/2Z
H5 0
H6 Z

The failure of perfect symmetry here is interesting, and will also be explained by Poincaré duality.
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