2 Homology

In the last lecture we introduced the standard n-simplex $\Delta^{n} \subseteq \mathbf{R}^{n+1}$. Singular simplices in a space X are maps $\sigma: \Delta^{n} \rightarrow X$ and constitute the set $\operatorname{Sin}_{n}(X)$. For example, $\operatorname{Sin}_{0}(X)$ consists of points of X. We also described the face inclusions $d^{i}: \Delta^{n-1} \rightarrow \Delta^{n}$, and the induced "face maps"

$$
d_{i}: \operatorname{Sin}_{n}(X) \rightarrow \operatorname{Sin}_{n-1}(X), 0 \leq i \leq n,
$$

given by precomposing with face inclusions: $d_{i} \sigma=\sigma \circ d^{i}$. For homework you established some quadratic relations satisfied by these maps. A collection of sets $K_{n}, n \geq 0$, together with maps $d_{i}: K_{n} \rightarrow K_{n-1}$ related to each other in this way, is a semi-simplicial set. So we have assigned to any space X a semi-simplicial set $S_{*}(X)$.

To the semi-simplicial set $\left\{\operatorname{Sin}_{n}(X), d_{i}\right\}$ we then applied the free abelian group functor, obtaining a semi-simplicial abelian group. Using the $d_{i} \mathrm{~S}$, we constructed a boundary map d which makes $S_{*}(X)$ a chain complex - that is, $d^{2}=0$. We capture this process in a diagram:

Example 2.1. Suppose we have $\sigma: \Delta^{1} \rightarrow X$. Define $\phi: \Delta^{1} \rightarrow \Delta^{1}$ by sending $(t, 1-t)$ to ($1-t, t$). Precomposing σ with ϕ gives another singular simplex $\bar{\sigma}$ which reverses the orientation of σ. It is not true that $\bar{\sigma}=-\sigma$ in $S_{1}(X)$.

However, we claim that $\bar{\sigma} \equiv-\sigma \bmod B_{1}(X)$. This means that there is a 2-chain in X whose boundary is $\bar{\sigma}+\sigma$. If $d_{0} \sigma=d_{1} \sigma$, so that $\sigma \in Z_{1}(X)$, then $\bar{\sigma}$ and $-\sigma$ are homologous: $[\bar{\sigma}]=-[\sigma]$ in $H_{1}(X)$.

To construct an appropriate boundary, consider the projection map $\pi: \Delta^{2} \rightarrow \Delta^{1}$ that is the affine extension of the map sending e_{0} and e_{2} to e_{0} and e_{1} to e_{1}.

We'll compute $d(\sigma \circ \pi)$. Some of the terms will be constant singular simplices. Let's write $c_{x}^{n}: \Delta^{n} \rightarrow X$ for the constant map with value $x \in X$. Then

$$
d(\sigma \circ \pi)=\sigma \pi d^{0}-\sigma \pi d^{1}+\sigma \pi d^{2}=\bar{\sigma}-c_{\sigma(0)}^{1}+\sigma
$$

The constant simplex $c_{\sigma(0)}^{1}$ is an "error term," and we wish to eliminate it. To achieve this we can use the constant 2 -simplex $c_{\sigma(0)}^{2}$ at $\sigma(0)$; its boundary is

$$
c_{\sigma(0)}^{1}-c_{\sigma(0)}^{1}+c_{\sigma(0)}^{1}=c_{\sigma(0)}^{1} .
$$

So

$$
\bar{\sigma}+\sigma=d\left(\sigma \circ \pi+c_{\sigma(0)}^{2}\right),
$$

and $\bar{\sigma} \equiv-\sigma \bmod B_{1}(X)$ as claimed.
Some more language: two cycles that differ by a boundary $d c$ are said to be homologous, and the chain c is a homology between them.

Let's compute the homology of the very simplest spaces, \varnothing and $*$. For the first, $\operatorname{Sin}_{n}(\varnothing)=\varnothing$, so $S_{*}(\varnothing)=0$. Hence $\cdots \rightarrow S_{2} \rightarrow S_{1} \rightarrow S_{0}$ is the zero chain complex. This means that $Z_{*}(\varnothing)=$ $B_{*}(\varnothing)=0$. The homology in all dimensions is therefore 0 .

For $*$, we have $\operatorname{Sin}_{n}(*)=\left\{c_{*}^{n}\right\}$ for all $n \geq 0$. Consequently $S_{n}(*)=\mathbf{Z}$ for $n \geq 0$ and 0 for $n<0$. For each $i, d_{i} c_{*}^{n}=c_{*}^{n-1}$, so the boundary maps $d: S_{n}(*) \rightarrow S_{n-1}(*)$ in the chain complex depend on the parity of n as follows:

$$
d\left(c_{*}^{n}\right)=\sum_{i=0}^{n}(-1)^{i} c_{*}^{n-1}= \begin{cases}c_{*}^{n-1} & \text { for } n \text { even, and } \\ 0 & \text { for } n \text { odd }\end{cases}
$$

This means that our chain complex is:

$$
0 \leftarrow \mathbf{Z} \stackrel{0}{\leftarrow} \mathbf{Z} \stackrel{1}{\leftarrow} \mathbf{Z} \stackrel{0}{\leftarrow} \mathbf{Z} \stackrel{1}{\leftarrow} \cdots .
$$

The boundaries coincide with the cycles except in dimension zero, where $B_{0}(*)=0$ while $Z_{0}(*)=\mathbf{Z}$. Therefore $H_{0}(*)=\mathbf{Z}$ and $H_{i}(*)=0$ for $i \neq 0$.

We've defined homology groups for each space, but haven't yet considered what happens to maps between spaces. A continuous map $f: X \rightarrow Y$ induces a map $f_{*}: \operatorname{Sin}_{n}(X) \rightarrow \operatorname{Sin}_{n}(Y)$ by composition:

$$
f_{*}: \sigma \mapsto f \circ \sigma .
$$

For f_{*} to be a map of semi-simplicial sets, it needs to commute with face maps: We need $f_{*} \circ d_{i}=$ $d_{i} \circ f_{*}$. A diagram is said to be commutative if all composites with the same source and target are equal, so this equation is equivalent to commutativity of the diagram

Well, $d_{i} f_{*} \sigma=\left(f_{*} \sigma\right) \circ d^{i}=f \circ \sigma \circ d^{i}$, and $f_{*}\left(d_{i} \sigma\right)=f_{*}\left(\sigma \circ d^{i}\right)=f \circ \sigma \circ d^{i}$ as well. The diagram remains commutative when we pass to the free abelian groups of chains.

If C_{*} and D_{*} are chain complexes, a chain map $f: C_{*} \rightarrow D_{*}$ is a collection of maps $f_{n}: C_{n} \rightarrow D_{n}$ such that the following diagram commutes for every n :

For example, if $f: X \rightarrow Y$ is a continuous map, then $f_{*}: S_{*}(X) \rightarrow S_{*}(Y)$ is a chain map as discussed above.

A chain map induces a map in homology $f_{*}: H_{n}(C) \rightarrow H_{n}(D)$. The method of proof is a socalled "diagram chase" and it will be the first of many. We check that we get a map $Z_{n}(C) \rightarrow Z_{n}(D)$. Let $c \in Z_{n}(C)$, so that $d_{C} c=0$. Then $d_{D} f_{n}(c)=f_{n-1} d_{C} c=f_{n-1}(0)=0$, because f is a chain map. This means that $f_{n}(c)$ is also an n-cycle, i.e., f gives a map $Z_{n}(C) \rightarrow Z_{n}(D)$.

Similarly, we get a map $B_{n}(C) \rightarrow B_{n}(D)$. Let $c \in B_{n}(C)$, so that there exists $c^{\prime} \in C_{n+1}$ such that $d_{C} c^{\prime}=c$. Then $f_{n}(c)=f_{n} d_{C} c^{\prime}=d_{D} f_{n+1}\left(c^{\prime}\right)$. Thus $f_{n}(c)$ is the boundary of $f_{n+1}\left(c^{\prime}\right)$, and f gives a map $B_{n}(C) \rightarrow B_{n}(D)$.

The two maps $Z_{n}(C) \rightarrow Z_{n}(D)$ and $B_{n}(C) \rightarrow B_{n}(D)$ quotient to give a map on homology $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

