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Michael Andrews 
Department of Mathematics 

MIT 

November 5, 2013 

Abstract 

The goal of this talk is to present the way that I think about spectral sequences and to 
convince the audience that they are a beautiful linear algebra device to be enjoyed rather than 
feared. 

1 Introduction 

Everyone in the audience probably has at least a vague idea of what a spectral sequence is. A few 
characteristics might come to mind and depending on who you are a differing array of emotions 
will be associated with each of these characteristics. 

1. Many, many groups all written out in a plane or worse (better) a group with many gradings. 

2. Pages, i.e. one of these collections for each natural number. 

3. Fear (or excitement) at the prospect of the potentially vast array of differentials appearing 
as a mess (or beautiful display) of lines on each page. 

I would like for everyone to feel the emotions in parentheses by the end of this talk. 
I have spent the summer writing up a computation which makes use of many spectral sequences. 

In this write up I rarely refer to pages other than the E1 or E2-page. It is my feeling that a spectral 
sequences is a beautiful linear algebra device and that in time this device can also begin to feel 
simple. All a SS really consists of is a (multigraded) group or vector space together with a collection 
of correspondences satisfying a few properties. 

2 A perspective on spectral sequences 

2.1 Basic definitions and lemmas 

The reader is probably familiar with the notion of an exact couple which is one of the most common 
ways in which a spectral sequence arises. 
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Definition. An exact couple consists of abelian groups A and E together with homomorphisms 
i, j and k such that the following triangle is exact: 

i //A hh A 

Given an exact couple one can form the associated derived exact couple; iterating this process 
gives rise to a spectral sequence. Experience has led me to conclude that although this inductive 
definition is slick, it disguises some of the important features that SSs have and which are familiar 
to those who work with them on a daily basis. Various properties become buried in the induction 
and I feel that first time users should not have to struggle for long periods of time to discover these 
properties however rewarding that process might be. 

An alternative approach exploits correspondences. We will find that the picture becomes clearer, 
especially once gradings are introduced, when we ‘spread out’ the exact couple: 

i i// // // // //. . . A . . . A hh A . . . 

j 
�� 
E 

Let π : E × A × A × E −→ E × E be the projection map. Then we make the following definition. 

Definition. For each r ≥ 1 let d̃  
r x, ˜ x̃ = ir−1˜ and jỹ = y}= {(x, ˜ y, y) ∈ E × A × A × E : kx = y

˜and dr = π(dr). 
� i � i// //ỹ  . . . x̃ _ 

j 
�� 
y 

˜Since i, j, k and π are homomorphisms of abelian groups dr and dr are subgroups of E×A×A×E 
and E × E, respectively. 

Notation. We write drx = y if (x, y) ∈ dr. 

We see that d1 is the function jk. We also have the following useful observations. 

Lemma (*). 

1. For r > 1, drx is defined if and only if dr−1x = 0, i.e. 

(x, 0) ∈ dr−1 ⇐⇒ ∃y : (x, y) ∈ dr. 

2. For r > 1, dr0 = y if and only if there exists an x with dr−1x = y, i.e. 

(0, y) ∈ dr ⇐⇒ ∃x : (x, y) ∈ dr−1. 

j 
�� 
E 

k 

�� 
E 

k 

x�
k 

hh 
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Proof. 

ir−2 ir−2� i � � � i 
ỹ  // ỹ0 // x̃ ỹ  // x̃ // 0^^ ^^ ]]_ 

k k k 
jj j 
���� | �� | |

y 0 x y x 0 

0 01. If drx is defined then there exists a ỹ  with ir−1ỹ = kx; let ỹ = iỹ, then ir−2ỹ = kx and 
0exactness gives jỹ0 = 0 so dr−1x = 0. If dr−1x = 0 then there exists ỹ0 with ir−2ỹ = kx and 

0jỹ0 = 0; by exactness there exists ỹ with iỹ = ỹ  so ir−1ỹ = kx and drx is defined. 

2. If dr0 = y then there exists a ỹ with jỹ = y and ir−1ỹ = 0; let x̃ = ir−2ỹ, then ix̃ = 0 and so 
by exactness there exists an x with kx = x̃ which gives dr−1x = y. If dr−1x = y then there 
exists a ỹ with ir−2ỹ = kx and jỹ = y; by exactness ir−1ỹ = ikx = 0 and so dr0 = y. 

Corollary ((*) to the second part of the lemma). For r > 1, the following conditions are equivalent: 

1. drx = y and drx = y0; 

02. drx = y and there exists an x0 with dr−1x = y0 − y. 

0Proof. drx = y and drx = y0 implies dr0 = y0 − y; drx = y and dr0 = y0 − y implies drx = y . 

Lemma. Let r ≥ 1. Then drx = y =⇒ dsy = 0 for any s ≥ 1. 

Proof. Suppose drx = y. Then there exists ỹ with jỹ = y. By exactness ky = 0. 

In general, dr is a correspondence. We can define the domain and image of a correspondence. 

Definition. A correspondence f : G1 −→ G2 is a subgroup f ⊂ G1 × G2. If π1 : G1 × G2 −→ G1 

and π2 : G1 × G2 −→ G2 denote the projections then π1(f) and π2(f) are called the domain and 
image of f , respectively. We write dom(f) and im(f), respectively. 

We can also define the kernel of a correspondence, a subgroup of the domain. 

Definition. Give a correspondence f : G1 −→ G2. The kernel of f is the abelian group ker (f) = 
{x ∈ G1 : (x, 0) ∈ f} ⊂ dom(f). 

2.2 The content of these definitions and lemmas 

Part 1 of the starred lemma shows that for r > 1, dom(dr) = ker (dr−1). Although it will mean 
that we have to deal with the cases r = 1 and r > 1 separately we will prefer ker (dr−1) to dom(dr) 
since that way our formulae appear like those appearing in a classical account of spectral sequences. 
In fact, if one takes the conventions that ker (d0) = E and im(d0) = 0 then all of the following 
statements are also valid when r = 1. 

Proposition. The lemmas of the last subsection show that for r > 1, dr defines a homomorphism [ \ 
ker (dr−1)/ im(ds) −→ ker (ds)/ im(dr−1). 

s s 
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Definition. Let E1 = E and for r > 1, Er = ker (dr−1)/ im(dr−1). S 
Corollary. Precomposing the homomomorphism of the proposition by Er → ker (dr−1)/ im(ds)sT 
and postcomposing by ker (ds)/im(dr−1) → Er gives a homomorphism Er → Er . This is usuallys 
how dr is defined. 

We now highlight something that is clear from our definitions and which is somewhat buried in 
the derived exact couple construction. View dr as a homomorphism Er −→ Er and suppose that 
we have drx = y. Suppose that x and y are any representatives of x and y. By the starred corollary 
we have a zig-zag (x, ˜ y, y). In particular, we can hit any resprentative of y on the nose, we don’tx, ˜ 
have to choose a particular respresentative. Contrast this with 

(0,id) (id,0) 

where the last vertical map is surjective but the middle vertical map is not. 
We will use the following terminology. 

Definition. Suppose drx = y; then x is a said to support a dr. If, in addition, y /∈ im(dr−1), x isT 
said to support a nontrivial differential. Elements of ker (ds) will be called permanent cycles. s T S 
Definition. We write E∞ for ker (ds)/ im(ds).s s 

Convergence of SSs 

In this seminar we will be focussing on the EHP SS. We are less concerned about what the EHP 
SS converges to since this can be computed more effectively with other methods but we still need 
convergence of truncated EHP SSs. We go about discussing what the convergence of a SS means 
since it is not all that hard! 

With the set up above it is most often the case that A and E are graded objects. There is often 
more than one grading but one usually stands out and warrants being called the filtration degree. 
So in this section we make some assumptions. 

Assumption. Suppose that A and E have a Z-grading s, that i : As −→ As+1, j : As −→ Es and 
that k : Es+1 −→ As. 

Under this assumption we can redraw the exact couple as 

// // // // //. . . As
i 

. . . i 
As+r−1 As+r . . . 

hh 
j 
�� 

0 // Z // 

0 
�� 

Z ⊕ Z // 

id⊕0 
�� 

Z // 

id 
�� 

0 

0 // Z 
(0,id) // Z ⊕ Z 

(id,0) // Z // 0 

�� 
Es+r 

k 

Es 

We see that dr has degree −r so E∞ becomes Z-graded too. Thus we have a natural homomorphism 
which we define presently. 
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Definition. Let Fs = im(As −→ colimsAs). Then we have a natural homomorphism Fs −→ E∞ 
s 

given by the following procedure: 

1. Suppose given an element z ∈ Fs. 

2. z is the image of some element ỹ ∈ As. T 
3. y = jỹ  ∈ ker (dr) defines an element y in E∞ . r s 

4. The homomorphism should take z to y. 

Lemma. The above homomorphism is well-defined. 
0Proof. Suppose that we choose a different ỹ, call it ỹ . The image of ỹ − ỹ0 in colimsAs is zero and 

0so the image of ỹ − ỹ0 is zero in As+r for large r and we see that y − y = jỹ  − jỹ0 is the image of a 
differential. 

ir−1 ir−1i i 

Lemma. The kernel of the above homomorphism is Fs−1. 

Proof. If z ∈ Fs−1 then we can choose our ỹ to be in the image of i so that by exactness y = jỹ = 0. 
If y is the target of a differential drx = y then there exists ỹ0 ∈ As mapping to y in Es and zero in 
colimsAs. Thus ỹ − ỹ0 maps to zero in Es and z in colimsAs. By exactness ỹ − ỹ0 lifts to As−1 and 
so we conclude that z ∈ Fs−1. 

ir−1 ir−1i � � i
As // As+r−1 // As+r ỹ0 // x̃ //

]] 0 
dd _ 

j j 
kk�� �� |

Es Es+r y x 

Corollary. We have a natural injection Fs/Fs−1 −→ E∞ .s 

There are many conditions which naturally arise and allow one to prove that a SS converges. 
Since we are dealing with the EHP sequence we’ll automatically make the following assumptions. 

Assumption. As = Es = 0 for s < 0. 

Lemma. Fs/Fs−1 −→ E∞ is an isomorphism.s T 
Proof. If y ∈ ker (dr) ⊂ Es then ky = 0 because it must necessarily have 0 as a lift. By exactness r 
y lifts to ỹ ∈ As. Let z be the image of ỹ in Fs/Fs−1. Then z maps to y proving surjectivity. 

As // 

j 
�� 

As+r−1 // As+r ỹ − ỹ0 � // 
_ 

j 
�� 

• � // 0 

Es Es+r 

k 

dd 

y − y0 •{ 
k 

]] 

is is�// //A−1 As−1 As 0 ky ỹ  _ 

~ 

__ _ 

� 

bb 
j jj 

k k�� �� �� �� 
E−1 Es 0 y 

5 



        

                  
  

     

               

     

              
  

  
    

   

 

           
  

  

 

              
  

                           
                

             
                        
     

      

 
  

  

      
 

 
 
 

  

              
              

   

      

  

 

4 Example: The EHP SS and its truncations 

In the last talk, Michael Donovan showed that working in the category of 2-local spaces we have a 
fibration sequence 

e h
Sn // ΩSn+1 // ΩS2n+1 

for each n ≥ 1. We can loop and splice the fibration sequences to obtain 

0 1 s − 1 s 

e∗ // ΩS1 // Ω2S2 // · · · // ΩsSs //
gg Ωs+1Ss+1 // · · · // QS0 

cc dd 

h p 
�� �� �� �� 

ΩsS2s−1 Ωs+1S2s+1ΩS1 Ω2S3 

Define (
πs+t(Ω

s+1Ss+1) when s ≥ 0 and s + t ≥ 0 
As,t(EHP) = 

0 otherwise 

and (
πs+t(Ω

s+1S2s+1) when s ≥ 0 and s + t ≥ 0 
E1 

s,t(EHP) = 
0 otherwise 

[Notice that E1 = 0 when either s < 0 or t < 0. In E1 t is the stem; in As,t (s + t) is the stem.]s,t s,t 
Applying π∗ to a fibration sequence gives a long exact sequence. Thus applying π∗ to the inter-

locking fibration sequences above gives an exact couple. The zig-zag defining the correspondence 
dr takes the form of the first diagram displayed below. We draw the case when s ≥ 0 and s + t ≥ 0 
in the second diagram below. 

// // //As,t As+1,t−1 . . . As+r−1,t−r+1 ii 

�� 
E1 E1 

s,t s+r,t−r+1 

e e
πs+t(Ω

s+1Ss+1) // πs+t(Ω
s+2Ss+2) // . . . // πs+t(Ω

s+rSs+r)
ii 

p 
h 
�� 

πs+t(Ω
s+1S2s+1) πs+t+1(Ω

s+r+1S2(s+r)+1) 

Proposition. We have constructed a spectral sequence converging to π∗(QS0) in which dr has 
degree (−r, r − 1) and the filtration degree is given by s, i.e. 

s
E1 (EHP) =⇒ πs+t(QS0).s,t 

In particular, we have an identification 

E∞(EHP) = Fsπs+t(QS0)/Fs−1πs+t(QS0)s,t 
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where Fsπ∗(QS0) = im(π∗(Ω
s+1Ss+1) −→ π∗(QS0)) for s ≥ 0. 

The identification is given by writing an element of Fsπs+t(QS0) as the image of an element 
in πs+t(Ω

s+1Ss+1) and shooting this this element down by h to πs+t(Ω
s+1S2s+1) = E1 to give as,t 

permanent cycle. 
Finally, we remark that the SS is a first quadrant spectral sequence and so for r > max{s, t} +1 

we have Er (EHP) = E∞(EHP).s,t s,t 

The purpose of the EHP SS is not to compute the stable homotopy groups of spheres. We 
have other more efficient tools for doing this, namely the Adams SS and the Adams-Novikov SS. 
The purpose of the EHP SS is to compute the unstable homotopy groups of spheres. In order to 
do this we use a truncation technique together with an inductive algorithm. We will describe the 
truncation technique now and leave the computations for the next talk. 

Suppose we splice finitely many of the EHP fibrations together to give the diagram below. 

0 1 k − 1 k 

∗ // ΩS1 // 

�� 

Ω2S2 // 

�� 

· · · // ΩkSk // 

�� 

ΩkSk // 

�� 

· · · // ΩkSk 

ΩS1 Ω2S3 

dd 

ΩkS2k−1 

dd 

∗ 

ee 

Define 

As,t(EHP-k) = 

⎧ ⎪⎨ ⎪⎩ 

πs+t(Ω
s+1Ss+1) when 0 ≤ s < k and s + t ≥ 0 

πs+t(Ω
kSk) when s ≥ k and s + t ≥ 0 

0 otherwise 

and 

E1 (EHP-k) = s,t

(
πs+t(Ω

s+1S2s+1) when 0 ≤ s < k and s + t ≥ 0 

0 otherwise 

Proposition. We have constructed a spectral sequence converging to π∗(Sk) in which dr has degree 
(−r, r − 1) and the filtration degree is given by s, i.e. 

s
E1 (EHP-k) =⇒ πs+t(Ω

kSk).s,t 

In particular, we have an identification 

E∞(EHP-k) = Fsπs+t(Ω
kSk)/Fs−1πs+t(Ω

kSk)s,t 

where Fsπ∗(Ω
kSk) = im(π∗(Ω

s+1Ss+1) −→ π∗(ΩkSk)) for 0 ≤ s < k. 
The identification is given by writing an element of Fsπs+t(Ω

kSk) as the image of an element 
in πs+t(Ω

s+1Ss+1) and shooting this this element down by h to πs+t(Ω
s+1S2s+1) = E1 to give as,t 

permanent cycle. 
Finally, we remark that the SS is a first quadrant spectral sequence and so for r > max{s, t} +1 

we have Er (EHP-k) = E∞(EHP-k).s,t s,t 
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Since we have a “map of towers” 

// // // // // // //∗ ΩS1 Ω2S2 · · · ΩkSk ΩkSk · · · ΩkSk 
ee ff hh 

���� �� �� 
ΩS1 Ω2S3 ΩkS2k−1 ∗ 

�� 

e∗ // ΩS1 // Ω2S2 // · · · // ΩsSs // Ωs+1Ss+1 // · · · // QS0 
ee ff hh 

h p�� �� �� �� 
ΩsS2s−1 Ωs+1S2s+1ΩS1 Ω2S3 

∗ ∗ we obtain a map of SSs E∗,∗(EHP-k) −→ E∗,∗(EHP). A map of spectral sequences consists of a map 
at the level of E1-pages commuting with the correspondences dr. In our set up, a zig-zag (x, ˜ y, y)x, ˜ 
in the source SS gives rise to a zig-zag in the target spectral sequence and so the map is apparent. 
Because the E1-page map commutes with the correspondences the corresponding ker dr−1’s and 
im dr−1’s are mapped into one another and so one obtains a map on each page of the SS. Viewing 
dr as a differential on the Er-page we see that each of these maps is a chain map. 

1 1The map E∗,∗(EHP-k) −→ E∗,∗(EHP) is an inclusion but the target SS has more differentials 
to account for the fact that π∗(ΩkSk) −→ π∗(QS0) is not injective. 

4.1 The flavour of this SS 

I hope that the account I have given here should enable anyone to answer questions about what 
differentials really mean for themselves. However, let’s point out a few things for the EHP SS. 

First, consider the following paragraph. 
Suppose we have an element ỹ ∈ πs+t(Ω

s+1Ss+1) with non-zero Hopf invariant, i.e. y = hỹ  
is non-zero in πs+t(Ω

s+1S2s+1); then by exactness ỹ does not desuspend. If ỹ defines a non-zero 
element z ∈ πs+t(QS0) then z is detected by y. 

πs+t(Ω
sSs) e // πs+t(Ω

s+1Ss+1) // 

h 
�� 

πs+t(QS0) 

πs+t(Ω
s+1S2s+1) 

� e �// //@• ỹ  z _ 

h 
�� 

y 6= 0 

This last statement is false. If z was zero then one would not expect y to detect anything. Since 
y is a permanent cycle the only way this can be the case is for it to be be hit by a differential. The 
argument just carried out is just the extreme case when z ∈ F−1. In the above paragraph we have 
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z ∈ Fs by construction but z might lie in lower filtration: we could have z 6= 0 but z ∈ Fs−1. Then 
there exists ỹ0 ∈ πs+t(Ω

sSs) mapping to z. Since ỹ − eỹ0 has image zero in π∗(QS0), 

y = hỹ = h(ỹ − eỹ0) 

is the target of a differential. 
I propose the following way of thinking about a differential in the EHP sequence. 

1. Suppse drx = y. 

2. Then we have an element ỹ (part of the zig-zag (x, ˜ y, y)) lifting y which eventually becomes x, ˜ 
zero. 

0 0 − ˜3. On the other hand, if we have another element ỹ lifting y we know that ỹ y desuspends 
and has the same image as ỹ0 eventually. 

4. At some point ỹ0 becomes homotopic to ỹ0 − ỹ; this is encoded by a nullhomotopy of ỹ which, 
in turn, is encoded by x. 

5. x gives an eventual homotopy of any lift of y to an element which desuspends. 
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