
   

               
              

                 
  

             
       

          

                

                       
            

      

              

18.906: Problem Set I 

Homework is an important part of this class. I hope you gain from the struggle. 
Collaboration can be effective, but be sure that you grapple with each problem on 
your own as well. If you do work with others, you must indicate with whom on your 
solution sheet. 

Each problem is designed to illuminate material from a lecture, and the problems are 
numbered to match the lectures. 
Extra credit for finding mistakes and telling me about them early! 

1. (a) Show that any limit can be expressed as an equalizer of two maps between 
products.

(b) Let C and D be two categories and F : C → D and G : D → C two functors. In class 
we said that an adjunction between F and G is an isomorphism

D(F  X, Y ) =∼ C(X, GY ) 

that is natural in both variables. Show that this is equivalent to giving natural 
transformations 

αX : X → GFX , βY : F GY → Y , 

such that 
βFX ◦ FαX = 1FX , GβY ◦ αGY = 1GY . 

(c) Suppose that F and F 0 are both left adjoint to G : D → C. Show that there is a
unique natural isomorphism F → F 0 that is compatible with the adjunction.

2. (a) We have used the notation ZX for a mapping object in a Cartesian closed
category, and CI for the category of functors to C from a small category I. Does this
constitute a conflict of notation? Explain.

(b) Let C be a Cartesian closed category.

(i) Verify the exponential laws: construct natural isomorphisms

ZX×Y =∼ (ZX )Y , (Y × Z)X ∼= Y X × ZX . 

The first of these shows that the adjunction bijection C(X × Y, Z) ∼= C(Y, ZX ) “en-
riches” to an isomorphism in C. The second says that the product in C is actually an 
“enriched” product. 

(ii) Construct a “composition” natural transformation

Y X × ZY → ZX

using the evaluation maps, and show that it is associative and unital. 

(c) Construct left and right adjoints to the forgetful functor

u : Top → Set ,
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and conclude that for any small category I, the limit and the colimit of a functor 
X : I → Top consists of the corresponding limit or colimit of underlying sets endowed 
with a suitable topology. 

(d) Show that the colimit (in Top) of any diagram of k-spaces is again a k-space, 
and serves as the colimit in kTop. (Suggestion: Show that in Top any coproduct of 
k-spaces is a k-space and that any quotient of a k-space is a k-space, and then use 
the dual of 1(a).) 

3. (a) Show that the smash product is associative as a functor kTop∗ × kTop∗ → 
kTop∗. 

(b) Let W be a pointed k-space. Show that the functors 

W ∧ − : kTop∗ → kTop∗ 

and 
(−)W : kTop∗ → kTop∗∗ 

are homotopy functors: they descend to well-defined functors 

W ∧ − : Ho (kTop∗) → Ho (kTop∗) 

and 
(−)W : Ho (kTop∗) → Ho (kTop∗) .∗ 

Hint: Construct a map A ∧ (XW ) → (A ∧ X)W . (Careful about the definition of XW :∗ ∗ ∗ 

if (god forbid) the basepoint of X is not closed, this may not be a closed subspace of 
XW and so may not be a k-space. But we know how to fix that: k-ify it!) 

4. Show that the fiber bundle SO(n) → Sn−1 sending an orthogonal matrix with 
determinant 1 to its first column has a section if and only if Sn−1 is parallelizable. 
What is the situation for n = 3? for n = 4? 

5. Let p : E → B and p0 : E 0 → B be fibrations, and let f : E → E 0 be a homotopy 
equivalence such that p0 ◦ f = p. Show that f is in fact a fiber-homotopy equivalence. 

In particular, suppose that B is contractible. Then the identity map 1B is homotopic 
to a map factoring through ∗. The pullback of E along this trivial map is B × p−1(∗), 
while the pullback along the identity is E. So any fibration over a contractible space 
is fiber homotopical equivalent to a product projection. 

Hint: First show that it suffices to find a map g : E 0 → E such that p ◦ g = p0 and 
f ◦ g is fiber-homotopic to 1E0 . 

Then reduce this to the following (where E will be what used to be E 0 , and f is 
something else again): Suppose that p : E → B is a fibration and that f : E → E is 
such that pf = p and f ∼ 1E . Then there is a map g : E → E such that pg = p and 
fg is fiber homotopic to the identity. 
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