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18.906: Problem Set II 

Homework is an important part of this class. I hope you gain from the struggle. 
Collaboration can be effective, but be sure that you grapple with each problem on 
your own as well. If you do work with others, you must indicate with whom on your 
solution sheet. 

Extra credit for finding mistakes and telling me about them early! 

6. (a) Show that weak equivalences satisfy “2 out of 3”: in 

f g 

gf 

if two of f , g, and gf are weak equivalences then so is the third. 

(b) Let f : ΣX → Y be a pointed map, and let f̂ : X → ΩY be its adjoint. Construct 
a map g : CX → PY from the cone to the path space PY = Y I such that the diagram∗ 

/ /X CX ΣX 

g ff̂  
� � � 

X // 33Y // Z 

/ /ΩY PY Y 

commutes. 

7. Let f : X → Y and fix ∗ ∈ Y . Assume that Y is path-connected. We’ve defined 
the homotopy fiber of f over ∗ to be the space 

F (f, ∗) = {(x, ω) ∈ X × Y I : ω(0) = ∗, ω(1) = f(x)} . 

It comes equipped with a fibration p : F (f, ∗) → X sending (x, ω) to x. The loop 
space Ω(Y, ∗) “acts” on the homotopy fiber F (f, ∗) from the right: let ω ∈ Ω(Y, ∗) 
and (x, σ) ∈ F (f, ∗), and define 

(x, σ) · ω = (x, σ · ω) 

where � 
ω(2t) 0 ≤ t ≤ 1/2 

(σ · ω)(t) = 
σ(2t − 1) 1/2 ≤ t ≤ 1 . 

In particular, taking X = ∗, we get the usual “multiplication” ΩY ×ΩY → ΩY , which 
is known to be associative and unital up to homotopy (and to admit a homotopy 
inverse, sending ω to ω : t 7→ ω(1 − t)). The same proof shows that the action of 
Ω(Y, ∗) on F (f, ∗) is associative and unital up to homotopy. 

Suppose a group G acts on a set S (from the right) with orbit space X. The fiber 
product S ×X S consists of pairs of elements in the same orbit. The action is free 
exactly when the map S × G → S ×X S, sending (s, g) to (s, sg), is bijective. 
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Returning to the story of the homotopy fiber, note that p((x, σ) · ω) = x = p(x, σ). 
We get a map 

F (f, ∗) × Ω(Y, ∗) → F (f, ∗) ×X F (f, ∗) 
to the fiber product by sending ((x, σ), ω) to ((x, σ), (x, σ) · ω). 
Finally, the problem: Show that this map is a homotopy equivalence. 

So in a sense there is a “free” (a better word would be “principal”) action of Ω(Y, ∗) 
on F (f, ∗) with orbit space X. In particular, taking f to be the identity map X → X 
F (f, ∗) is the contractible path space PX; so X is the “orbit space” of an action of 
ΩX on a contractible space. This entitles us to regard X as the “classifying space” 
of ΩX. 

8. By passing to π0, the action described in 7. provides a right action of the group 
π1(Y, ∗) on π0(F (f, ∗)). 
(a) Show that two elements in π0(F (f, ∗)) map to the same element of π0(X) if and 
only if they are in the same orbit under this action. 

(b) Suppose ω is a path in Y from ∗ to y. Write ω# : π1(Y, ∗) → π1(Y, y) for the group 
isomorphism sending σ to ωσω−1 . Show that the isotropy group of the component of 
(x, ω) in F (f, ∗) is 

im (π1(X, x) → π1(Y, f(x))) ⊆ π1(Y, ∗) .ω# 
−1 

(c) Suppose that X is path connected, and pick ∗ ∈ X. Conclude from (a) that the 
evident surjection πn(X, ∗) → [Sn, X] can be identified with the orbit projection for 
the action of π1(X, ∗) on πn(X, ∗). 

9. (a) Verify the “Peiffer identity,” describing a relationship between the boundary 
map ∂ : π2(X, A, ∗) → π1(A, ∗) and the action map · : π1(A, ∗) × π2(X, A, ∗) → 
π2(X, A, ∗): For α, β ∈ π2(X, A, ∗), 

αβα−1 = (∂α) · β . 

This (along with the π1(A, ∗)-equivariance of ∂, ∂(ω · α) = ω(∂α)ω−1) establishes this 
pair of groups as a “crossed module” – the first example, historically, due to J.H.C. 
Whitehead. 

(b) Let p : E → B be a fibration, with fiber F over the nondegenerate basepoint ∗. 
Show that for any n ≥ 0 and any basepoint ∗ ∈ F , the projection map induces an 
isomorphism πn(E, F, ∗) → πn(B, ∗). (This is “dual” to the fact that if an inclusion 
i : A → X is a cofibration then Hn(X, A) → Hn(X/A) is an isomorphism.) 

This puts a condition on a map f : F → E that is necessary for it to be homotopic 
to the inclusion of the fiber in a fibration: π2(M(f), F, ∗) has to be abelian for any 
choice of basepoint in ∗. 
(c) Verify the more general statement that if A ⊆ B and EA = p−1A, then π∗(E, EA) → 
π∗(B, A) is an isomorphism. 

˜10. Suppose that the path connected space X has universal cover X. Pick a basepoint 
˜ã in X and write a for its image in X. Show that for all n ≥ 2 the projection map p 

induces an isomorphism πn(X,˜ ã) → πn(X, a). 
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Unique path lifting shows that a loop ω at a in X lifts to a unique path ω̃ with 
ω̃(0) = ã. Write b̃ for ω̃(1); then p(b̃) = a as well. The theory of covering spaces 

˜ ˜gives us a “deck transformation” (i.e. covering the identity map of X) ω∗ : X → X 
˜uniquely specified by requiring that ω∗(ã) = b. 

The path ω induces an automorphism of πn(X, a), written ω#. Use ω̃ and ω∗ to 
provide a map along the top of the commutative diagram 

πn(X,˜ ã) / πn(X,˜ ã) 

p∗ p∗ 

� 
πn(X, a) 

ω# 
� 

/ πn(X, a) 

Visualize this in case X = S1 ∨ S2 (taking α ∈ π2(S
1 ∨ S2) and ω ∈ π1(S

1 ∨ S2) to be 
the inclusions). What is π2(S

1 ∨ S2 , ∗) as a Z[π1(S
1 ∨ S2 , ∗)]-module? (π2(S

2) = Z, 
generated by the identity map.) 
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