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These are notes from a course taught by Haynes Miller at MIT in the fall of 1989 in honor of Frank
Adams, after his passing. They were originally taken by Matthew Ando, and were later transcribed into
ETEX by Eric Peterson, with figures provided by Yi-Wei Chan, Meng Guo, and Matt Mahowald. Finally,
the notes were edited for correctness and clarity and otherwise substantially improved by Michael Donovan
and Aaron Mazel-Gee.

Due to the large number of different contributors, this document lacks the uniformity of style that the
reader would normally expect. This may be corrected, some time in the near future.

If anything in this document confuses you, the original notes are available for comparison at the following
links: http://www-math.mit.edu/ hrm/papers/vfl.pdf, http://www-math.mit.edu/ hrm/papers/v{2.pdf.
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Lecture 1. Introduction to vector fields on spheres

We shall discuss some classical topics in homotopy theory. A great deal of what we will cover owes much to
the work of Frank Adams. Today we look at a few of the problems (which turn out to have deep general
significance), and begin with vector fields on spheres. We define S~ ! = {z € R™ | ||z|| = 1}. The idea is to
assign to each point x € S"~! a vector v(z) tangent to x in a smooth way, i.e., to find a map v : S*~! — R
such that v(z) L z for all z € S"~ 1.

Now of course there’s always the zero vector, which isn’t very inter-
esting, so in particular we’ll look for nowhere-zero vector fields, which
means we can normalize ||v(z)|| to be 1 for all z, thereby giving a map
v: 8"t — §771 quch that v(z) L x for all z € S"~ 1.

Suppose that n is even, so n = 2k for some k. Then S"~! can be
thought of as {x € C¥ | ||z|| = 1}, and v(z) = iz works, so we have a
nonvanishing vector field on all odd spheres. However, when n is odd,
then there are none. Such a v(x) would give a homotopy between the
identity and the antipodal map a(z) = —a:

hi(z) = z coswt + v(x) sin t. Figure 1: Single point of a vector

field. = — 0 is dashed, v(z) is solid.
So dega = 1. But « is a composite of n reflections in R", so dega =

(=1)™ = —1, thus giving a contradiction.

Now the next question is how many linearly independent vector fields
there are on S"~!. Using Gram-Schmidt we can reduce to the case that
any set of linearly independent vector fields on the sphere form an or-
thonormal set at each point. This is interesting in its own right; we shall
see in the long run that this question is equivalent to some important
problems in homotopy theory. For the time being, the way we will think
of this is in terms of

Vi.x = {orthonormal k-frames in R} c (S"~1)*,

T Vo — S”fl,the first projection,
Figure 2: An orthonormal 2-frame

v: STl Vi1 a section of 7, i.e. a vector field. ot

You can check that 7 locally trivial and thus gives a fiber bundle, and v is
in these terms a section of this bundle. So now the question has become:
what is the largest k for which this bundle has a section?

Theorem 1.1 (Hurwitz, Radon, Eckmann; Adams). Write n as n =k -2¥ for k odd, and v as v = 4b+ c,
0 < c <3, and set p(n) = 8b + 2¢. Then there exist p(n) — 1 independent vector fields on S™~! (Hurwitz-
Radon-Eckmann) and no more (Adams).

The first curious fact here is that p depends only on the even part of n.

v |01 23 4 5 6 7
2 |1 2 4 8 16 32 64 128
pn) |1 2 4 8 9 10 12 16

There are two steps to proving this:
1. Construct them, which is fairly straightforward; we’ll see that next session using Clifford algebras.
2. Show there are no more, which is much harder, and was the first major victory for K-theory.

Before going on, now a corollary which in fact was known before this theorem was proved:



Corollary 1.2 (Kervaire, ¢.1956). A sphere is said to be parallelizable when there is a basis for the tangent
space, i.e., p(n) = n. This occurs exactly when n = 1, 2, 4, or 8, so the only spheres which have trivial
tangent bundles are SO, S, S3, and S”.

A closely related problem is the so-called “Hopf invariant 1 problem.” Suppose S™~! is parallelizable, or
equivalently that there is a section of O(n) = V,,, — S™71, called v. Now a point in any “Stiefel manifold”
Vik can be written as a (n x k)-matrix whose columns are orthogonal and have norm 1. The group O(n)
acts on R™ and this action induces an action on S"~!. Combining this with the section v gives

O(n) x §"~ ! —— gn-t
Sn—l % Sn—l
and e; is a right-unit of this multiplication on S™~!, as v is a section:

(v(z),e1) — x

T

(x,e1).

Now e isn’t necessarily a left unit, but v(e;) is a matrix such that v(eq); ; is 1 for ¢ = j = 0 and 0 whenever
i =0 or j = 0 but not both. We can therefore correct the situation by replacing v with v(e;) v, which will
still be a section. Now v(e1) = I, so we find that a parallelizable (n — 1)-sphere has a multiplication with a
2-sided unit. Such a space is called an H-space; to be precise, an H-space is a pointed space (X, zp) with a
product p: X x X — X such that u(xo,z) = p(z,z9) = x. In our cases, we have the correspondence

S0 st S3 S7
R C quaternions “Cayley numbers”.

In view of the results above, a natural question is: When can S”~! be given the structure of an H-space?

The Hopf construction is treated so much better in lecture 15. I should really rewrite all this
to reference that lecture.

To attack this problem, it is helpful first to think about the map p in ridiculous generality, sort of like
thinking about a bilinear form in terms of a tensor product. Namely, consider a map p: X xY — Z,
and consider the cone over X which is defined to be the quotient X x I/{(x,0) ~ («’,0)}. The map p then
induces a map CX x Y — CZ by ((,1),y) — (u(z,y),t), and similarly a map X x CY — CZ. X xY
includes into both CX x Y and X x CY as ((x,1),y) and (z, (y, 1)) respectively, and Z includes into CZ as
2,1). Putting these together, we get a diagram

The commutativity means that we can take the disjoint union of CX x ¥ and X x C'Y" and identify along
the copy of X x Y in each, then take two copies of C'Z and identify along their bases, and get a conglomerate
map H(p) : X #Y —» %Z, where % denotes join and 3 denotes suspension. That is, the diagram above
constitutes a map between two rams of shape e < o — e, which induces a map H () between their
colimits (pushouts). This process is called the “Hopf construction” for y, hence the name H(y).

‘We note two facts about the join: first, S?~14S9~1 = §P+4~1 which follows from the more general statement
that X *Y = S(X AY) for reasonable X and Y, e.g., CW-complexes. In the case of an H-space, H (1) can
be written as a map X * X — %X, and if X = S"~1, this is a map S?"~! — S", i.e., a homotopy class
of a the n-sphere, something to be prized and studied.

There is a duality in homotopy between maps and objects; namely, to
every map there is an associated space which contains all the information f

about the map, called the mapping cone. Associated to a map f: X — X =Y
Y, we build Cy = YIICX/(z,1) ~ f(x). Y includes into C/ as its base, so 0
one has a “cofiber sequence” X — Y — (. Applying this to the map X I
H(p): S?"~1 — S™ the mapping cone really means just attaching a 2n- cXxX 1
cell to S™ via the map H(u), so we get S?n~1 M 8" — S Ug () e,
Now, (assuming n > 1) the cohomology is given by f
Y
Z generated by y in degree 2n,
H*(S" Up(u) €¥") = { Z generated by z in degree n, Figure 3: Diagram of the mapping
cone on f.

7Z generated by 1 in degree 0.



Using the cup product, 2 = oy for some a € Z, where for now o is well-
defined only up to sign. This coefficient « is called the Hopf invariant of

u. We make the unsubstantiatediclaim that o = 4-1 for H(u1) whenver y is an H-space multiplication on
the (n — 1)-sphere. As examples, we have

S8 - 52 » S2Uet =CP?,
ST - St » STUed = HP?,
515 . SS . S8 U 616 — @PQ,

where the last is called the “Cayley projective plane.” (Note that nonassociativity of Cayley multiplication
implies that there are no other Cayley projective spaces.)
So now the question is: for what spheres is there an element of 7y, _1S™ of Hopf invariant 17

Theorem 1.3 (Adams). If mo,—1(S™) contains an element of Hopf invariant 1, then n =1, 2, 4, or 8.

For the time being, take a step back and recall the action O(n) x S"~! — S"~1. Any a € m4(O(n))
(not necessarily from a section) induces a map S* x §"7! — O(n) x S»~1 — S§"~1. Doing the Hopf
construction here induces a map S*t" — 8", ie., we get what turns out to be a homomorphism J :
mk(0(n)) — Tp4k(S™) called the “J-homomorphism.” For k < n, m(O(n)) are known by Bott periodicity,
hence there is much interest in the image of J. Note that for k < n, n + k > 2k, and this is the so-called
“stable range” where things often seem to work better; one then thinks of J as a map m,(O) — II,. The
Adams conjectures are concerned with the image of this J.

e S"~1 has k — 1 linearly independent vector fields iff V;, , | S™~! has a section.
e The largest k such that there is such a section is p(n), where we write n = odd-2,
v=4b+cfor 0 <c<3, and p = 8b+ 2°.

e The Hopf construction takes a map p: X XY — Z toamap H(u) : X*Y —
¥Z.

o If S"~! is parallelizable, it can be made into an H-space (essentially, apply the
Hopf construction to a section V,, ,, | S"~'). This happens when n = 1,2,4,8 by
the previous point.

o (It is claimed that) if 4 is an H-space multiplication on S"~1, H(u) has Hopf
invariant one. We’ll see later that this can only happen when n =1,2,4,8.

e The J-homomorphism J : 7, (O(n)) — 71%(S™) sends a : S¥ — O(n) to

the Hopf construction applied to S* x §»—1 oxl, O(n) x §"+1 — gn-1,

Lecture 2. Clifford algebras

In this lecture we will see how many vector fields on spheres we can construct using linear algebra; we will
use Clifford algebras. For more information, see for example the book by Strang.
For k > 0, the Clifford algebra C}, is the associative R-algebra generated by eq, ..., ek, subject to relations

eiej +eje; = 0 for i # j,

2 _
e; = —1.

For example,
C'O = R7
C1 = C, note: you can identify e; with ¢ or —i, so the iso. is not canonical

Cy 2 H, with, say, e; —> 1, ea —> j, e1e0 —> k

1Unsubstantiated for now — see lecture 15.



Note that the relations specify that we can give a basis for Cj, as the set of words {e;, ---e;,, | m > 0,41 <
-++ < im} made up of ordered nonrepeating sequences of the generators. So dim Cj, = 2*. Note also that
the collection Gy, = {%e;, ---e;,, | m >0,i; <--- < iy} is a multiplicative subgroup of Cy. Also, Cj comes
equipped with an antiautomorphism Cj — C}, defined on generators by €; = —e;, and extended to C} as
an antiautomorphism. It is an anti-involution in the sense that Ty = yz.

Before describing the C}, further, let’s look at how they can be used to construct vector fields on spheres.
One gets there by finding representations of Cj. Suppose V is an n-dimensional vector space with a Cy-
module structure Cx ®g V. — V. V is then a representation of Cj. Next choose any inner product on V.
By averaging over the action of Gy we can construct a Gy-invariant inner product (—, —). Let S(V') denote
the unit sphere of V', and note that points of S(V') are invariant under action by the e;. We claim

Theorem 2.1. For x € S(V), {e1z,...,exx} defines an orthonormal k-frame on S(V) = S"~1,

Proof. First, (z,e;x) = (e;x, e;e;2) = —(e;x,x) = —(x, e;x), so (z,e;2) = 0 and e;x is tangent to S(V) at «.
Second, if i # j, we have (e;x,e;x) = (eieje;r, eieje;x) = (—efejw, e;eix) = (e;x, (—eix)) = — (e, e5x). So
(e;z,ejz) =0, and e;x and e;x are orthogonal. O

In particular, one way to find an orthonormal k-frame on S™~! is to find an n-dimensional Cj-module.
To find as may orthonormal vector fields as possible of S"~! we should find the largest k such that C), admits
an n-dimensional module. Thus we will search for low-dimensional representations of Cl.

From now on, write C’,j for Cy. As we identify more of the algebras C’,j , we build up the following table.
The column C’;’ identifies the isomorphism type of C,j' in terms of better known R-algebras. Here, if A is
an R-algebra, A(r) is used as a shorthand for the algebra of r x r matrices with entries in A. For each k, we
write aj, for the minimal dimension of a nonzero C; -module (see lemma 2.3). Note that H acts on H ~= R4
via (a,b)c = acb, and similarly, R(8)? acts on R® via (M, N)v = MvN*. The last column will be identified
later.

k C;_ ar @i =log, ay Ok_
0 R 1 0 R

1] C 2 1 R?

2 H 4 2 R(2)
3| H? 4 2 C(2)
4 | H(2) 8 3 H(2)
5| C4) 8 3 H(2)?
6| R 8 3 H(4)
7| R(8)? 8 3 C(8)
8 | R(16) 16 4 R(16).

To identify the algebras C,;" it is useful to introduce a Clifford algebra associated to a different bilinear form.
Let C, be the associative R-algebra generated by ey,...,ex, subject to relations e;e; + e;e; = 0 (for ¢ # j)
and e? = 1. For the same reasons as Cj (which from now on we call C}"), C, is 2*-dimensional.

So what are the C;;? C7 has 1 generator, whose square is 1. So C] = R?, with ¢; — (1,—-1) (or
(—=1,1)). Cy = R(2) is the algebra of (2 x 2)-matrices over R. The isomorphism is very noncanonical;
try sending e; to reflection through L; and e to reflection through Ly, where L; and L, are any lines
separated by 45 degrees. Thus, ejes and ese; correspond to rotation by 90 degrees, one clockwise and the
other counterclockwise, depending upon the relative orientation of the lines. This could get very tiring very
quickly; fortunately that’s as far as we need to go. From now on, we use

Lemma 2.2. For k > 2, C’,f ~CE® Ci,.
Proof. Again, this is highly noncanonical. For example,
e1® 1 1= ].7

e < ea®1 11 =2,
e1ea®e_g 11 >2



works. (As an exercise, complete this proof.) O

The remaining C’,;t in the table can be computed in succession using this lemma, sort of like “tying up
the laces on a skate”; to do this one uses the following isomorphisms:

RxR@AXAxA

R(n) ® A= A(n)
He& C=C(2)

R(m) ® R(n) = R(mn)
H® H = R(4).

From the table we can also quickly compute C}, for k > 8 if we note the isomorphisms obtained by repeatedly
applying the lemma:
Cr=cyoC,,

~CfeCy @C,

~CfeCl,

=0 ®(Cf ®Cg) 2Cy @G

~ O 4(16).
(Similarly, C,, = C,_4(16).)

The third column, ay, corresponds to the minimal representation of the Clifford algebra C’,j' . We can
quickly determine this column using the following lemma:

Lemma 2.3. We compute the following dimensions of minimal representations of algebras:

1. When A is a skew field, A acting on itself is a minimal representation, so the minimal dimension is 1.

2. When A is a skew field and A(n) is the space of n X n-matrices over A, then A(n) acting on A™ is a
minimal representation, so the minimal dimension is n.

3. When A and B are two algebras, then the dimension of a minimal representation for A ® B is the
minimum of the dimensions for minimal representations of A and B individually.

Proof. These are easy exercises in commutative algebra. O

The fourth column is ¢, = log, ar, where a is the dimension of the minimal representation. From
C,j = 0;78(16) we get that agis = 16ag, or Yrirs = pp + 4.

Finally, we can apply this to vector fields on spheres. There are k linearly independent vector fields on
Se=—1: by taking ¢ copies of the vector space and using the diagonal action, there are k linearly independent
vector fields on S¢*~1. Now fix the dimension n — 1 of the sphere and maximize k; i.e., for S*~!, maximize
{k : ag|n} ={k : pr <v(n)} (where v(n) is the function from before). The first few cases are:

vin) |01 2 3 45 6
kmaz |0 1 3 7 8 9 11

and this is exactly p(n) — 1 from before. So we have succeeded in constructing p(n) — 1 linearly independent
vector fields on the (n — 1)-sphere. It turns out that this is the best we can do using linear algebra — in
fact this really is the best we can do with any tools.

e We have constructed k vector fields on S~ ! whenever ag|n, where aj = 29+ is
the minimal dimension of a representation of Cf.

e We also noted that ai|n <= k < p(n)—1, and thus have constructed as many
vector fields as possible.




Lecture 3. Building Thom spaces

We'll now start attacking the second part of the vector field problem. Recall that the Stiefel manifold V;, j of
k-frames on R™ is given by (n X k)-matrices with orthonormal columns, and projection onto the first column
gives a fiber bundle V,, x_1 < V,, x = S"~ . The existence of a section s of this bundle is equivalent to the
existence of (k — 1) orthonormal vector fields on S™~1.

Now we will find a consequence for the existence of such a section in the homotopy theory of RP*~1.
To start with, there are two important facts about RP¥~1. The first is the existence of a fiber bundle
Zo — SF~1 o RPF=1 obtained by identifying antipodal points on S*~!. The second is the existence of the
“tautological line bundle” L = {(I,x) € RP*~! x R* | z € I} — RP*~1, where one thinks of RP*~! as the
space of lines through the origin on R*. These two constructions are, of course, related: there is a metric
on L induced by the metric in R¥; taking the vectors of length 1 in each fiber gives S(L), the unit sphere
bundle of L, and S(L) = S*~1.

On the other hand, we can recover L as S¥~1 Xz, R; this is an example of the “Borel construction.” More
generally, if F' is any space with a Z, action, we get a bundle with fiber F by taking F «— S*~! x; F —
RP*=1. What follows from a section s of V,,  — S"71 is:

Lemma 3.1. If there is a section s, then there is a bundle map § over RP*~1 of the form

RPF=1 x §n=1 = §(ne) —°— S(nL) = SF~1 xz, 571

l l

RPF-1 ——RP*!

which acts as the identity on the fiber over the point +ey, which we take as the basepoint in RP*~1. (Here
€ is the trivial bundle of dimension 1 and Z acts on bundles by direct sum.)

Proof. Define § : RF x §"~1 — RF x §"~1 by §(z,v) = (z,s(v)z). It is straightforward to see |s(v)x| = 1
if 2| = 1, so § maps S¥71 x §"~1 — §F—1 x "=l Quotienting the target by Zo, we have

§(—x,v) = (—z,—s(v)x) = (z, s(v)x) = §(z,v),

so it descends to a quotient on the source: § : RP*¥~1 x §7~1 = §(ne) — SF~1 xz, "1 = S(nL). Finally,
s(v)er = v (as s is a section), so §(e1,v) = (e1,v). O

One point worth mentioning here is that § could have been defined as a map ne — nL, but it would not
necessarily have been linear on each fiber (as s(v) is not necessarily linear), so the map would not have been
in a strict sense a map of vector bundles. Previously, we constructed such sections s using Clifford algebras,
and in that case s was in fact linear. In some sense, then, the problem is to find out whether you can get
more vector fields by modifying them in some clever way.

The fact that § induces the identity over £e; means that § induces a homotopy equivalence on each fiber.
Explicitly, for any open and connected U € RP*~! such that nL|y is trivial and such that §, is a homotopy
equivalence for some b € U, it follows that § induces a map U — Hom(S™~1,8"1). As U is connected,
it lands entirely in one path-connected component of Hom(S™~!, S™~ 1), and hence the map on fibers is a
homotopy equivalence.

We have two bundles F and E’ over a base B and a bundle map f : E — E’ which induces a homotopy
equivalence on each fiber. What we really want is a map g going back so that fg and gf are homotopic
through bundle maps to the respective identity maps; f is then called a “fiber homotopy equivalence.”
Fortunately there is a very nice theorem due to Dold:

Theorem 3.2 (Dold). Suppose E and E' are fibrations over B with a bundle map f inducing a homotopy
equivalence on each fiber. If E and E’ have the homotopy type of CW complexes and B is connected, then
f has a fiber homotopy inverse.

Proof. See [5]. O



In this context, the lemma gives
Corollary 3.3. If V,,;, — S"1 sections, then S(nL) — RP*~1 is fiber homotopy trivial.

Ultimately we will show the result of Adams that this implies that k& < p(n) — 1, i.e., that aj divides n.
Next we look at the consequences of the discussion so far in terms
of Thom spaces. Suppose £ — B is a vector bundle with a metric, so
there’s a nice sphere bundle p defined as the composite S(E) — E — B. X
In order to understand the map p, we could look again at the mapping

cone Cp = BU,, Cg(g) of p. I
Given amap f: X — Y, we can construct the cone C'f in two stages,

leaving pinching the cone for the “second stage”. The intermediate space \ [ /

Mf =X x1U;Y is called the “mapping cylinder,” and it is homotopy Y

equivalent to Y. Moreover there is a nice inclusion X < M f which is a
cofibration. Then C'f is obtained by collapsing the image of X in M f. Figure 4: Diagram of the mapping

In fact, it doesn’t matter how you replace the space Y with a homo- cylinder of f.
topy equivalent space: as long as the map f is replaced by a cofibration,
collapsing out its image we obtain a space homotopic to the mapping cone.

Now in the case of p : S(F) — B, the mapping cone is called the Thom space, T'(E). One can think of
the mapping cylinder p : S(E) — B as being the disk bundle D(E) of vectors of length less than or equal
to 1; the Thom space is then the quotient space D(E)/S(E).

As a passing (but important) remark, the fibers of these two bundles over a basepoint b € B are S"~1 C
S(FE) and D™ C D(E), and pinching the former out of the latter gives an S™ in T'(E). So if B is connected
and F is oriented, the Thom space comes with a unique, distinguished class in 7, T(FE).

Next, we return to nL, the bundle over RP*~1,
where L is the tautological line bundle. We claim
that this bundle is the normal bundle v of the inclu- l
sion RP*¥~1 < RP"**~1 induced by the inclusion A %\'ﬁl “e3
RE < R™. To wit, pick a point | € RPHk-1 o
parametrized as [(t), a line in R"**. Let 7l € RP*~1 €3
be the projection of this line to a line in R¥. We can
recover the line [ in R*¥*" =2 RF x R x --- x R by
1(t) = (wl(t), \(7l(t)), ..., \n(wl(2))) for some func-
tions A; dependent upon [I. Clearly A;(rv) = r\;(v), /
so \; € L*. Hence the normal bundle can be identi-
fied with nL*. Since nL comes equipped with a met-
ric, this gives an isomorphism of the normal bundle Figure 5: Recovering L.
v with nL.

But there’s even more structure around.

Remarking that RP"*~1 forms a vector bundle of rank n over RP¥~! and using the inclusion of the open
unit ball in R™ to R", (WHAT DOES THIS MEAN?)

one can construct a map from D(v) to RP"*¥~1such that S(v) maps to RP" ! and which is a rela-
tive homeomorphism (D(v), S(v)) —— (RP"k=1 RP"~1) LIt follows that the Thom space of nL is
T (nL) ~RP"+=1/RP"~! In particular, if nL is being fiber homotopy trivial, then 7" (ne) ~ T (nL)
~_ RPn%»kfl/RPnfl'
20ne candidate for the map D(v) — RP™1t*~1 can be specified as follows. View D(v) as D(nL), where nL. C RP*~1x (RF)™

inherits its metric from the standard Euclidean metric on (R¥)™. Then a point of D(v) is an n+1-tuple (R{z}, 712,722, ..., rn2),
where z € RF has length one, ||7||2 = Zr? < 1. The map sends this point to (z,71,72,...,7n).




e Dold: suppose f : 4 — FEs is a map of fibrations F; | B, the E; have the
homotopy type of a CW-complex, and B is connected. Then if f restricts to a
homotopy equivalence on each fiber, it has a fiber homotopy inverse.

e nL - RP*~1 is the normal bundle of the inclusion into RP™**+k~1,

o If V,, ;. — S" 1 sections, then S(nL) — RP*~1 is fiber homotopy trivial.

o T(nL) ~ RPM -1 .= Rp+tk—1/RP"~1 “stunted projective space” (any n, k).
e In particular, if S"~1 admits k — 1 vector fields, T'(ne) ~ T(nL) ~ RPHE=1,

Lecture 4. Facts about Thom spaces

We’ll now look at Thom spaces in more detail, and in particular in relation to some other standard con-
structions on fiber bundles. First of all, we have a product: given two bundles F — E — B and
F' — E' — B’, we can build a bundle F x F/ — E x £/ — B x B’. Now if B = B’, you can pull this
bundle back along the diagonal map to a bundle F' x F/ — E xg E' — B, called the “fiberwise product.”
If E and E’ are vector bundles, then F x g E’ is called the “Whitney sum,” denoted E & E’.

If £ and E’ are sphere bundles, this construction isn’t very satisfy-
ing, because a sphere cross a sphere isn’t another sphere. However, the
join of two spheres is another sphere. Here’s another way of looking at
the joinZ(we will return to the join often, and try as often as possible to
give different definitions of it!):

X xIxY
XxY = akia .
(z,Ly) ~ (z,1,9), (2,0,y) ~ (2/,0,y) t=0
Now we define a fiberwise join by doing this on each fiber to get a
bundle F' x I — E¥E' — B x B’, where
ExIxE
EXE =
' (z,1,y) ~ (z, 1,9) if p'y = p'y/,
(2,0,y) ~ (2',0,y) if px = pa’.
One can check that this construction yields something locally trivial. Figure 6: A diagram of 5° * .

The fiberwise join for sphere bundles is related to the fiberwise product
of vector bundles: if V and W are vector bundles, then S(V x W) =
SV %SW. Moreover, if B = B’ we can once again pull back by the
diagonal map on B, and we get SV xg SW = S(V @& W).

In the case that Y = pt, X *Y = CX is the cone over X. Applying this in the fiberwise join, we transport
a bundle F — E — B to a bundle CF — CgE — B, where CgE := E% B. Applying this to a sphere
bundle ¥ — B gives a disk bundle Cg E — B, and it’s easy to check that if V' is a vector bundle, then
D(V) =CgpS(V), so we have a way of recovering the disk bundle from the sphere bundle.

Now back to Thom spaces. Recall that if E — B is a sphere bundle, its Thom space is T(E) = CgE/E,
and if the fiber over the basepoint of B in F is S®~!, then CS"~ ! = D" C CgEFE, which becomes an
S™ C T(FE). The Thom space comes equipped with a canonical basepoint which is the image of E, which
has been crushed to a point. If V' — B is a vector bundle, then T(V') is defined to be T'(S(V)), and also
T(0) = By := Bllpt4

To understand this better, let’s look at the trivial sphere bundle B x S"~! — B. Here, we have
T(B xS"1)=BxD"/Bx S" ! Now as S" = D"/S"~1 it follows that:

BxD" _ BxS"

T(BxS" 1) = Bx 5T = Bxpt ~ By AS" =X"(By),

3As an aside, we define X x) = 0+ X = X.
4By convention, 0 denotes the rank zero vector bundle. In this case S(0) = E = 0, and we write T(0) = B/0 = B II pt also
by convention. This is done so that the smash product identity below works.
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and so the Thom space of a bundle can be thought of as a twisted sort of suspension.
Here’s an important fact: T(E% E') = T(E) AT(E’), where A is the smash product of pointed spaces.
A rough proof in the special case that E = SV and E’ = SW for vector bundles V' | B and V' | B’ is:

DV x DW _ D(V x W)

TV ATW = ~
VATW = (o Dwy U (DV x W) S(V x W)

= T(S(V x W)) = T(EZ E').

In the special case that B/ — B’ is R" — pt, we get that T'(V @ ne) = T(V) A S™ = Z"T(V).

Note that if V', W are vector bundles over B, it is not the case that T(V @ W) = T(V) AT(W). However,
we have a pullback diagram (drawn on the left) which induces a map of Thom spaces (drawn on the right).
This map commutes with the inclusion of the copies of S"*" (where dim, V = n and dim, W = m):

VW —VxW T(VeW | B)——=T(V xW | BxB)==T(V | B)AT(W | B)
34A>BXB \Sner gu r g

The Thom space is useful for deciding whether a fiber bundle is trivial. To this end, we observe that if
E and E' are fiber homotopy equivalent S™~!-bundles, then T'(E) ~ T(E’) relative to the copies of S™ over
the basepoint in B.

Lemma 4.1. Suppose that E — B is an S™ !-bundle. Then fiber homotopy equivalences h : E —
BxS™ 1 are in bijection with maps f : E — S™~! whose restriction to each fiber is a homotopy equivalence.
Moreover, if any such maps exist (i.e. if E — B is fiber homotopy trivial), then each map f induces a

“coreduction”:
T(E) —— S™

1<

S7l

Proof. Write 7y : B x S"~! — S"~1 for the second projection. Then (by the universal property of the
product), fiber maps h : E — B x S"~! are in bijective correspondence with maps f : E — S"~ ! via
h —— moh. Now we note that fiber homotopy equivalences h correspond exactly to maps f inducing a
homotopy equivalence on each fiber. If such a map f exists, it can be thought of as a bundle map

E—1, gn1 T(E) — 8" = T(S"1 | %)
l l which induces a map on Thom spaces: T /
B—x

and the homotopy equivalence of f restricted to each fiber implies that the map S™ — S™ is a homotopy
equivalence. |

Now the game is to find obstructions to the splitting off of this n-sphere, which is in fact the bottom-
dimensional cell in T'(E).

Of course, what we really want is an obstruction to a fiber homotopy equivalence between nL and ne,
and a coreduction of T'(E) need not imply that E itself is fiber homotopy trivial. To find out what we do
get from a coreduction of T'(F), we look at another construction of the Thom space (and think of the name
Bott when thinking about T'(E) in this way). We build T'(E) in two steps:

1. Collapse to a sphere in each fiber F, i.e., take D(F)/S(F) in each fiber of E — B. This gives a
sphere bundle, along with a “section at co” given by the image of S(F') in each fiber.

2. Collapse the section at oo to a point.

11



This exhibits T(F) as the sphere bundle S(F ¢ €) with the 1-section of e, which is homeomorphic to B,
smashed to a point, so T(F) = S(E & €)/B, after identifying B with that section.

Now the fiber in S(F @ ¢€) is the same as the S™ sitting in T'(E), so with this construction a coreduction
for T(FE) gives

Sn

S(E®e) — T(E)

AT

S™.
If the base B is connected, then from Dold’s theorem (3.2) it follows that E & e is fiber homotopy trivial. So a
coreduction of T'(E) implies that S(E @ ¢) is fiber homotopy trivial.
This is a process of stabilization: the lesson of this discussion is that we have to play back and forth

with various processes of this kind: suspend the Thom space, sum in a trivial bundle, and so on. These
connections yield the natural role of K-theory.

e The fiberwise join of fiber bundles was constructed. Given E | B, performing
the join with B | B yields a bundle CpFE, the fiberwise cone. This recoves the
disk bundle from a sphere bundle, and gives another definition of the Thom space
of a sphere bundle E: CpE/E.

e T(EXE')=T(E)ANT(E') for bundles E | B and E' | B'.

e T(VXxW[|BxB)=TV)ANT(W), where V x W is the exterior direct sum
of vector bundles V' | B and W | B'.

o If VW are vector bundles over B, then T(VeW | B) — T(V x W | B x B)
is not a homotopy equivalence, but is compatible with the various inclusions of
spheres over basepoints.

o If £, E" are f.h.eq. S"~!-bundles then T(E) ~ T(E’) relative to the copies of
S™ over the basepoint.

e A fiber homotopy trivialisation of an S"~!-bundle E | B induces a coreduction:
maps S” — T(E) — S™ with composite ~ id, splitting off the bottom cell.

o If a coreduction of T'(E) exists then S(E @ €) is fiber homotopy trivial.

Lecture 5. Building K-theory and J-theory

Now a few introductory words on K-theory: let X be a pointed compact Hausdorff space. Let Vect(X) be the
set of isomorphism classes of vector bundles over X.2The Whitney sum gives a monoid structure to Vect(X),
with zero given by the 0-dimensional vector bundle. Now one applies the “Grothendieck construction,” which

simply means to add formal inverses, making a group; explicitly, we form equivalence classes of pairs (V, W)

under the equivalence relation in which (VW) ~ (V/,\W')iff E4+V + W/ 2 V' + W + E for some vector

bundle E. Here, (V, W) is supposed to represent the formal difference “V — W”. This is an abelian group,

called KO(X).

Now it may not seem that KO(X) has topological significance, but in view of the last lecture, it quickly
becomes apparent that it does. For if V @ ne = W @ ne for some n (V and W are said to be “stably
isomorphic”), then the classes [V] and [W] are equal in KO(X). Moreover, as X is a compact Hausdorff
space, it goes both ways. Suppose [V] = [W],so V + E =2 W + E for some E. Over a compact Hausdorff
space, any vector bundle F is a subbundle of a sufficiently big trivial bundle

Ec—+ X xRN

e

X

)

5Why is Vect(X) a set?
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as we shall soon see. By choosing a metric on RY, we get an orthogonal complement F — X such that
E®F is trivial. Then VA E®SFEW ®FE® F,soV and W are stably isomorphic!

If f: X — Y is a map and E — Y is a vector bundle, then F pulls back by f to a vector bundle
f*E — X, so we have a map f*: KO(Y) — KO(X). Pullbacks by homotopic maps induce isomorphic
bundles, so f ~ g implies f* = ¢g*. Hence KO is a contravariant functor hoTop —> AbGrp.

Now the canonical maps pt — X — pt induce maps KO(pt) —+ KO(X) — KO(pt). It is clear
that KO(pt) = Z, that imn consists of trivial bundles, and that ¢(V, W) = dim, (V) — dim.. (W) takes the
difference of the dimensions of the fibers over the basepoint. Reduced K O-theory is defined in terms of these
maps. There are two equivalent definitions:

ker e : virtual vector bundles, i.e., formal differences V' — W with the same rank, or

KO(X) =
0 {cokern : ie., Vect(X)/ ~, where V= W iff V @ me = W @ ne for some m,n > 0.

The description here of cokery is correct as any equivalence class in KO(X) contains a pair of the form
(V,ne). To obtain such a pair in the class of (V', W), find W such that W/ + W" is trivial, as above, and
then (V/,W') ~ (V' +W" W’ +W"). Notice that coker 7 is the just the monoid Vect(X) taken modulo the
equivalence relation generated by V ~ V @ ¢, which turns out to be a group, by the above argument.

Similarly, any equivalence class in ker ¢ contains a pair of the form (V) ne) where n = dim, (V). We often
denote this equivalence class [V] — n.

Next we’ll see, as advertised, how to embed a vector bundle into a high-dimensional trivial bundle.
Suppose p : E — X is a rank n vector bundle. Because X is compact Hausdorff, it has a finite open cover
Ui, ...,Ug that trivializes E. That is, there are homeomorphisms f; with

U; 4>fb Uz x R"™

such that the triangle commutes and f; is linear on each fiber. Let ¢1,...,¢x be a partition of unity
subordinate to the cover {U;}, and define maps g1,...,g9x : E — R"™ by

b L5 U x R g

E
gi =
{O on E away from Uj;.

The g; give a linear embedding f : E — X x (R™)* defined by f(e) = (p(e), g1(e), ..., gr(e)).

This map in fact gives more: to each x € X we associate the n-dimensional subspace f(E,) of RY with
N = nk. This induces a classifying map h from X to the Grassmannian of n-planes in RY. Over Gy, is
the tautological n-plane bundle Ey ,

R™,

Enn ={(v,p) | p € Gnn,v amember of the subspace associated to p}

and we have in fact expressed E — X as the pullback of the tautological bundle along h. From this point
of view it is clear that the choice of N is somewhat arbitrary; there are obvious inclusions Gy, € Gnyi1n C
Gnt2n € -+, and E can be induced from the tautological bundle over Gy, for any sufficiently large N.
Thus we have a classifying space BO(n) = |Jy Gn.n, and it represents rank n vector bundles over X via
Vect, (X) — [X, BO(n)).

What happens when we descend to KO(X)? First, the equivalence V' ~ V @e gives us ffé, so we get KO
by identifying an element of [X, BO(n)] with an element of [X, BO(n + 1)] when all it does is add a trivial
bundle. Now if EO(n) is the tautological n-plane bundle over BO(n), then EO(n) @ € is an (n + 1)-plane
bundle, and there is a classifying map BO(n) — BO(n + 1) for this bundle. We obtain a sequence:

BO(n) —» BO(n+1) — ---

of classifying maps whose colimit (J,, BO(n) is called BO, and /K\é(X ) = [X, BO].£ Finally, KO remembers

6This argument can be summarised as follows: 1?5()() = colim[X, BO(n)], which equals [X, colimBO(n)] as X is compact.
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dimension, so KO(X) = [X,Z x BO].

Now let’s talk about J-theory. If V and W are vector bundles over X, then we write V ~; W if S(V @ ne)
and S(W @ ne) are fiber homotopy equivalent for some n > 0. This idea is analogous to K on the level of
sphere bundles, and defines an additive equivalence relation on KO(X). J(X) is defined to be the quotient
of KO(X) given by this relation, and J(X) the image of KO(X). Now from the Clifford algebra story we
know that over RP¥ the tautological line bundle L has ayL = agze. Considering the class [L]—1 € KO(RP*),
this means ax([L] — 1) = 0. In fact:

Theorem 5.1 (Adams). KO(RP*) = Z/a,Z generated by [L]—1. KO(RPF) 5 J(RP¥) is an isomorphism.
In other words, there are no other trivializations, and so

Corollary 5.2. If S(nL) — RP¥ is fiber homotopy trivial, then ay divides n. In particular, there are at
most p(n) — 1 vector fields on S™~1.

Proof. Suppose that S(nL) is fiber homotopy trivial. Then n[L] equals n[e] in J(RP*), and so n([L]—1) = 0

in /@(RPk), implying that ag|n. This demonstrates the first claim.
Now we saw in lecture 2 that ax|n iff k < p(n)—1. We saw in lecture 3 that if V, 1 — S™~! sections, then
S(nL) - RP* is fiber homotopy trivial. Thus, if V,, 11 — S™~! sections, we must have k < p(n) — 1. O

One of the things we get out of this theorem is that f(\(j(RPk) is finite. In general:

Theorem 5.3 (Atiyah). If X is a finite connected complex, then J(X) is finite.

Proof. (Sketch, anyway.) A vector bundle over X is classified by a map X — BO(n). Similarly a sphere
bundle should have a similar classifying procedure. In general, the structure group would have to be taken
to be Homeo(S™~1), but since we are only concerned with fiber homotopy equivalences we should be able
to use the monoid G,, of homotopy self-equivalences of S~ !. Such a classifying procedure exists; call the
corresponding space BG,,. Now there is a natural inclusion O,, < G,,, and hence maps

BO(n) — BG,

|

BO — BG.

We then make two claims: J(X) is the image of [X, BO] — [X, BG], and [ X, BG] is finite. We prove this last
part cell-by-cell, so what we really need to show is that m;(BG,,) is finite for ¢ much smaller than n. Since X is
finite, [X, BG] ~ [X, BG,,] for some n sufficiently larger than the top-dimensional cell of X, so this is enough.
There is a fibration G,, — EG,, — BG,, and hence m;BG,, = m;_1G,. We are then left with showing
that 7;G,, is finite (again, for i must smaller than n). Now an element of G, is a map S"~! — S"~L; by
evaluating at the basepoint in S"~! we get a map G,, — S™~'. This is a fibration whose fiber is homotopy
equivalent to Q718" = {f : (8", 50) — (8", s0) : deg f = £1} C Maps(S™~*, S~ !). For i much
smaller than n, m;G, = 71'1»((21715"_1) and ﬂi(QiAS”_l) C m(Q" 18" Y = 14,1 S" = II;, which is
known to be finite by a theorem of Serre. O

e For any bundle E on a compact Hausdorff space there is a bundle E’ such that
E @ E' is trivial.

e KO(X) can be viewed as (i) Vect(X)/ =, where = is generated by V =~ X Pe, or
(ii) as equivalence classes of virtual vector bundles V —W, where dim V = dim W.
e Adams: KO(RP*) = Z/a,Z generated by [L] — 1, and the canonical epimor-
phism KNO(]RP’“ ) — J(RP¥) is an isomorphism, solving the vector field problem.

e Atiyah: J(X) is finite for X a finite connected complex.
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Lecture 6. Geometry and the Steenrod squares

Today begins a several days blitz on Steenrod operations, from a somewhat geometric point of view.

Fix from the beginning a subgroup 7 of the symmetric group ¥,, (we will mostly be concerned with the
case ™ = Zo = Y3). Consider the space Em, a contractible CW-complex with a free m-action, and the orbit
space B = Ex /7. Fix a choice of E7 and a point e € Em, and let b € B be its image.

For example, if 1 = Zj, then 7 acts antipodally on S"~1. S"~! is not contractible, but its image is
contractible in S™; that is, the inclusion S”~! < S™ is null-homotopic. So the direct limit of the inclusions
St c 8 c oo =J,S" = 5% is contractible and has a free m-action. The orbit space Ex/m = B is
clearly seen to be RP>.

A basepoint * in a space X gives a lot more than you might think at first. It induces, for example, a
filtration of the n-fold product X", by defining:

F . X" ={(z1,...,2;) € X" | at most k of the z; differ from x}, so that:
FoX" < RBX" C C I X" C© FX"

I | | I

pt Vi, X “Fat wedge” xn
m acts on X™ by permuting the factors, and this action preserves the filtration.

Okay, so here’s the key construction: on the universal w-bundle Em — B, use the Borel construction
to mix in X™; we thus obtain a locally trivial bundle over Bx with fiber X™:

X" —— Er x, X"
Br

(Recall that 7 acts diagonally on Em x X", and Em x, X™ is obtained as the quotient space of this action.)
This construction is called the “m-extended power of X.”
Now the fact that the m-action on X™ respects the filtration means that we have a sub-bundle

Erx, F, 1 X" C Exx,X"
We want to pinch this subbundle to a point. First, as X" /F,_1 X™ X™M) .= X A---A X, the n-fold smash
product of X with itself, we have:
Erx. X"  Emx,X®™
Enx, F, 1 X*  EmxX, pt

This is almost the smash product, but E7 doesn’t have a basepoint. Instead:

Er x, X"

- = F XM
Frx. F,_xn T :

where the symbol A, means to take the orbit space of the diagonal action on Ery A X, and En refers
to Em with a disjoint basepoint added. This is called the “m-adic construction” on X (for lack, really, of a
better name), and will be written D, (X).

Now a map f: X — Y induces a map D,(X) — D, (Y), making D, into a functor. Moreover, there
is a map ix : X" — D.(X) defined simply by z — (e, z). Note that we can also describe ix in terms
of the map ix : X™ — Em X, X" defined by x — (e, x). As F,,_; X" is mapped into E7 x, F,,_1 X", the
map ix descends to the quotient, and gives ix:

xn . Er x, X"
F,_ X" Ern Xz Fp_1 X"

ix: XM = = Emy Ay XM,
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The maps iy constitute a natural transformation of functors (—)(™ — D, in the sense that for every
f: X — Y, there is a commuting diagram:

f/\n
ixl liy

D
D.x 2Ly
For clarity, we list a number of functors and natural transformations that will soon be in use:
e D.(—): Top, — Top, as described above.

° (—)(”) : Top, — Top,, the n-fold smash product.

o H* (—) = a* (—;Fp) : Top, — ComGrAIgFP, ordinary reduced cohomology with coefficients in the
field of p elements, for some chosen prime p. This takes values in the category of (graded)-commutative
graded [F),-algebras.

e i :(—)"™ — D,(—), the natural transformation described above.
o ()N ﬁ’"(—; F,) — ﬁ"”((—)(”);Fp), the n-fold smash power of a cohomology class.
The space D, Z is of some concern; first we want to know its cohomology.

Lemma 6.1. Suppose that ﬁi(Z) =0 for i < q, where coefficients are taken in a field F, and that ﬁq(Z) is
a finite dimensional F-vector space. Then,
0; if i < ng;

H'(D:Z) = {(ﬁq(z)m)w; i = ng.

Moreover, i3, : H™(D,Z) —s H"(Z™) is the inclusion of the m-invariants (HY(Z)®™)™ c H9(Z)®".
Here, the tensor power is taken over F, and 7 acts thereupon by permuting factors.

Proof. We have a map (drawn with dotted arrows) of bundle-subbundle pairs:

F, 1Z" B 12"
TS | T
F, 1Z" yET Xp Fry 1 2™
Al I P O AL
{b} \ > Bt \
N {v} \> Brr
Now the map Z(™ = FHZLZ% — E:;’S;;ffzn = D, Z induced by this diagram is exactly iz, so we can

study ¢7, using the associated morphism of relative Serre spectral sequences.
The relative Serre spectral sequence for the pair on the left has untwisted coefficients:

LBy = H (v H(Z", F, 1 Z7)) = HSPH(Z™).

Now Br is not simply connected (it is in fact a K(m, 1)), so the second relative Serre spectral sequence will
require twisted coefficients:

rES' = H*(Br; {H'(Z", F,_1Z™)}) = H*"' (D, Z).
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Now H*(Z", F,,_12™) = H*(Z(”)) = ﬁ*(Z)‘X’", and this last isomorphism is equivariant with respect to
permutations, a fact that is not trivial (and likely to be false with other cohomology theories). It follows
that in both spectral sequences, everything is zero below the horizontal line at height ng in the Es term.
That is E3"* = 0 for t < ng. So,

H"(D,Z) = pEy"™ = H'(Bm; {H(2)®"}) = (H'(Z)*")".
Moreover, the map i}, : H"(DyZ) — H"(Z(™) coincides with the induced map pES"? —s [ EI™, ie.:
H(Br; {HU(2)®"}) — H'(x; HY(2)®"),
which is simply the inclusion of the w-invariants, as desired. O

This is the key fact that gives the Steenrod operations; all else follows more or less from it.
From here on, for all r, let K, denote K(Z,,r) and H"(—) denote H"(—;Z,), for some chosen prime p.
By the Hurewicz theorem and universal coefficients theorem:

ﬁi(Kq) =0 for ¢ < g, and ﬁq(Kq) =Zp.

So ﬁ”q(DﬂKq) is the m-invariants in H”q(K(gn)) = (Z,)®™ under the action of 7 given by interchanging
terms in the tensor product. However, this action is trivialZ Thus, the map

H"(D,K,) == H'(K™)

is an isomorphism. Now H ”q(Ké")) contains an element (", the n-fold smash power of the fundamental

class ¢4 € ﬁq(Kq), and we have shown:

Corollary 6.2. There is a unique class Priy € ﬁ”q(Dqu) such that i*Priq = LQ”, That is, there is a
unique pointed map Priq up to homotopy making the following diagram commaute up to homotopy:

An

K K

B
7
l " Prag

Here, we have abused notationally the natural correspondence H 9(X)+ — (X, K )« given by f*ig— —[f]
which holds for pointed spaces X.£We will continue to freely confuse these sets. .
Now suppose that X is any space (with no assumptions on its cohomology), and u € H%(X). Representing

u € EQ(X) as a (homotopy class of) map(s) u: X — K, we have a diagram:

wm n Q" -5 uh")* ~ n (13" ~
X KM Kng Fraxm &0 HMK ¢ H™K,05 1
~ Lo
li lz which induces: Tl %Ti* e
Do 7 Prag _ Dou)t ~ &7 (Prig)”
D.X —/— D, K, H™D. X P’ H™D,K,

So we have a natural transformation u — (Dru)*(Prt,) of functors HI(—; F,) — H"(D,(—);F,). As
any cohomology class u € H7(X) can be written as u*(z4), this discussion proves:

"In fact, the standard isomorphism (Zp)®" — Zyp is Yn-equivariant, where we give the target the trivial action.
T qg=n,

8For example: ﬁq(S";ﬂ) =mn(K(m, q)) = 0 4
q #n.
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Lemma 6.3. There is a unique natural transformation Pr : H1(—F,) — H"Y(D,(—);F,) such that
i Pru = u"" for allu € H1(X). Pru is called the “Steenrod power” of u.

Finally, the diagonal map A : X — X is equivariant, where we let 7 act trivially on the single factor
X, and this induces
E7T+ /\ﬂ- X 4A> E’/T+ A X(n)

Bry AX D, X.

So, any u € ﬁq(X) gives us a class j*Pru € ﬁ"q(Bﬂur A X).
The case we will develop in full is 7 = Zy, n = 2, and p = 2, so we specialise to_this case now, writing
P for P, (and H*( ) for H*( ;F2)). In this case, Bmr = RP*, and H*(Bn) = H*(Bm_) = Zs[x] with

|z| = 1. By the Kiinneth theorem, H*(Bry A X) = H*(Br) ® H*(X), so given u € H1(X), we can write

q
§*Pu = Z 277" @ Sq' u, where Sq'u € HIT(X).
i=—q

We take this to be the definition of Sq'u. We can note immediately that Sq’ is a natural transformation
H? — HT+, Moreover, Sq° u is zero when —q <4 < 0, since this holds in the universal case K(Zz,q). (We
will still allow ourselves to write Sq’ u for i > ¢, and define it to be z€ero).

Note that the above can be to a large extent carried out in other cohomology theories, giving similar
operations. Mostly one needs to have computed H*(B7w A X).

Now let’s start finding properties of the squares. First of all, we don’t even know that they’re not all
zero yet. Choose u € H(X). There is a map k : S — Bm,, where if SO = {£1}, we set k(1) = * and
k(—1) = b. We have the following diagram

Bry ANX ]—> D, X S 2 ® Sq u Pu
k/\lT ZT which induces: I I on H2(—).
SOAX 2 4 x® UL U P2

Now (k A1)* : Zy[z] @ H*(X) — H*(X) is the projection onto Zs ® H*(X). Thus Sq? u = u2.
Next, we derive the Cartan formula, using the following map ¢ : D (X AY) — D (X) A D(Y):
Di(XAY)=Er; A (XAY)D 5 By Ar XD ANEry A, Y® = DX AD,Y,
(Z7 (x17 yl), (372, y2)) — (27 (xlu :UQ)a Z, (917 y2))

Note that the following diagram commutes:

(X AY)® % D (X AY) Bri A(XAY)

.| |s |,

XOAY®D N D XADY Y Bry AXABr AY

Lemma 6.4. 0*(Pu A Pv) = P(uAv).

Proof. We can assume X = K(m,p), Y = K(rw,q), v = tp, and v = ¢,. Then the lowest dimensional

cohomology of X AYis Zy in dimension (p+q). Thusi : (X AY)? —— D, (X AY) induces a monomorphism on
H?(P+9) by lemma 6.1. Now in the diagram:

H20+0) (X AY)@) " DF20+0) (D (X AY)) (tp A 1g) @ ——— P2 A1g)

T*T (VT we know: I

12040 (X Ay @) L 20 (DX A DY) i AP 1 P(,) A P(2g)
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In particular, as i* is a monomorphism, §*(P(z,) A P(14)) must equal P(2, A t4). O
Corollary 6.5 (Cartan formula). Sq*(uAv) = itk Sq’u A Sq v.

Proof. Almost immediate from the construction:

Zx’”q*k ®Sq*(uAv) = 5"P(uAv)
k
= j*6"(Pu A Pv)
= Ay, (1 AJ) (Pu A Pu)

(pr ' ®8q’ u) A <Zj:m” ®quv>]

= Zx’”‘q_l_] ®Sq u A Sq’ v. O

2]

B7I‘+

Taking X =Y and using A : X — X A X, we obtain:
Corollary 6.6 (Internal version). Sq*(uv) = Yitik Sq’ u Sq .

In particular, it will be convenient to define the total squaring operation Sq : H* (X)) — H* (X), defined by
u+— >_;8q" u. The Cartan formula states precisely that Sq is a ring homomorphism.

Exercise 1. Show that Sq° e = e, where e is the generator of H! (SY) = Zs.

e Fix u € HQ(X). We summarise the construction of Sq*u € ﬁq“(X) thus:

Bty ANX —— D (X) +——— X2 ~ Y2 @Sq u+— Pur—uAu
+ 9 - :
H J H v on H<4: J H

E7T+/\ XAETF_F/\ X() U’EHQ(X)
e Sq'u=0fori<0andi>gq. Sqlu=u2 ‘ _
e Internal Cartan formula: Sq*(uv) = Yitik Sq’ uSq’ v. In particular, the total

squaring operation Sq defined by Uy, Sq’ w is a ring homomorphism.
e External Cartan formula: Sq"(u A v) = itk Sq* u A S’ v.

Lecture 7. Properties of the squares
It was an exercise to show that Sq’e = e, where e is the generator of H! (S'). This important fact has
several consequences.

Corollary 7.1. Sq" commutes with the suspension homomorphism o : ﬁq(X) — ﬁq"‘l(EX). We say that
Sq* is a “stable operation.”

Proof. The suspension homomorphism o is the composite H4(X) = H1(X) @ H'(S') L% HI+1(£X), and
we calculate: Sq"(ou) = Sq"(uAe) = Sq" u A Sq’e = o Sq* u. O

Corollary 7.2. Sq° : Hq(X) — Hq(X) is the identity.

Proof. It suffices to check this on the class ¢4 € ﬁq(Kq), writing K, = K(Z2, q). Now Sq leaves the unique
generator ¢’ € HY(S9) fixed, by the Cartan formula. As the map S?7 — K, classifying ¢"? induces an
isomorphism H?(K,) — H?(S9), Sq° fixes 1,. O
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Fact 7.3. The map f3: H1(X;Fy) — H(X;Fy) given by

H9(X:Fy) — Hot (X Fy)

k) l "\00
O
ied\)

H(X;2),

where § is the zigzag map of the coefficient sequence 0 — Z 27— Zo — 0 1is called the Bockstein
homomorphism. It is Sq.

Lemma 7.4. qu is a group homomorphism.

Proof. This holds for any stable cohomology operation. Representing cohomology classes by maps into
Eilenberg-MacLane spaces, and using the naturality of qu , for any v € HY9(X), we have a homotopy
commuting diagram:

Sq¥ 14
Ky —— 5 Ky

X

That qu commutes with suspension in this context means that the left hand diagram commutes. Taking
adjoints, the right hand diagram commutes:

> SqF Sq” Lq

L
YK, ———— 3 YKk Ky ———————— Kgyk
o o ~ ~
l Sq” 141 l l 28q" 1g11 l
Kq+1 —q> Kq+k+1 QKqul 4q) QKq+k+1

SO qu 1q is an H-space map (or an H-map). The H-space structure on K, represents the addition on H 9
so it follows that Sq” is a homomorphism. O

° qu is stable — it commutes with suspension; it is thus a homomorphism.
e Sq” is the identity, Sq' is the Bockstein.

Lecture 8. The Adem relations

The last basic fact about the squares is the Adem relations, for which we will take an approach using

generating functions in the indeterminate x, following Bullett-MacDonald [3]. First, for v € H?X define
Squu =S z7* Sq" u, where |z| = 1 so that Sq, is homogenous of degree 0. For example, if u € ﬁl(X),
Sq, u =u+ 2 'u? =u?(u~! +271). This Sq, occurs naturally in the above as j* Pu = 19 Sq,, u. Also, Sq,
has the nice property that it is a ring homomorphism, as shown by the Cartan formula.

Second, take ¥4 to be the symmetric group acting on four letters, arrange the letters into a square, and
let w be the subgroup of permutations which preserves the rows or transposes them, along with permutations

within each row.2 That is, the subgroup generated by the three permutations, a, 3,:

<abi>ba> <abi>ab) (abL)cd)
c d c d )’ c d d c)’ c d a b/’

Now let N = {(a, §) be the subgroup of permutations preserving the rows, and let H = () be the subgroup
whose only nontrivial element swaps the two rows. Then w is the semidirect product N x H. Note that H

9The group w is sometimes called the “wreath product” 71 7; it is in fact Dg, the 2-Sylow subgroup of ¥4.
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acts from the left on N via h-n = hnh~!. Let 7 be the group {41} under multiplication. Then N = 72
and H = 7, and the action of m on 72 is by interchanging factors.
As w = N x H, an w-space is just an H-space with an H-equivariant N-action:

NxX ——»X m2xX — X
O O i.e. O O
H H T T

where the action of 7 on 72 x X (i.e. H on N) is the diagonal action. An example of an w-space is Em x (E)?.
We view E7 as S°° equipped with the antipodal map a — —a, so that the action of 7 on F can be written
simply as (£1,a) — 4a. The 72 action is on the right-hand factor, with

((£1,£'1),(a,b,c)) —> (a, £b,+c),
and the 7 action is diagonal, acting as usual on the first factor, and by interchanging factors in the second:

(—1,(a,b,¢)) = (—a,c,b).
The total space is contractible and its w-action is free; hence it is an Fw, and we compute
Bw = (E7 x (Em)*)Jw
= (Em x (Bm)?)/m
= Er x, (Bn)%
On one hand, giving a space X a basepoint, we can do the w-adic construction

EBw x, X*

D,X = Buwy Ay XW = — 29—
w+ Fow x,, F5X2

However, we calculate:
Bwx, X*=Er x (Em)? x X*/w
=Er x (Br xx X*)?/x
= Enm %, (BEm xx X%)?
Thus, the w-reduced power operation on X is the iteration of the m-reduced power operation on X. All this
goes to show that D, X = Fw, A, X® = D (D;X), so we have iterated the m-adic construction! That
ought to be a good thing, because the Adem relations concern iterated Steenrod operations.

Now we have a diagram commuting up to homotopy, where the map £ is induced by the inclusion
2
™ — w:

(X))@ X (@)
DA (D, X) = DX
Drj
D.(Bry AN X) Bry ABry AN X J
J / \
Bry ANBry AN X Bwy AN X

The bottom triangle commutes up to homotopy because the flip map 7T in

T X T

lT >w—>7r9t

™ X T
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is induced by conjugation by the image of the nontrivial element ¢ of the right-hand 7, and it is a basic fact
about classifying spaces that a conjugation map ¢; : w — w induces a map Bc¢; : Bw — Bw which is
homotopic to the identity (essentially, ¢; moves the basepoint). So in some sense the whole point of w was
to convert the outer automorphism 7' : 7 X 1 — 7 X 7 to an inner automorphism. It follows that the map
Dyjoj:Bny ANBrny ANX — D (D,X) is m-equivariant up to homotopy.

Now if u € ﬁq(X), we have

Pou € H%(D,X)
| |

P(Pu) € H*(D, D, X).

Now (Dyjoj)*P(Pu) € H*(Bry A Bry A X) 2 Zo[z,y] ® H*(X), and the 7-equivariance up to homotopy
above means that this class is symmetric in « and y. So,

(Drjoj)*P(Pu) =j"P(j*Pu) (naturality of P)
= j"P(y?Sq, u)
= 2*7Sq,(y? Sq, u)
= 2278q, (y?) Sq, Sq,, u (Sq, is a ring hom)

= 2*1y*(a~! +y~1)?8q, Sq, u
is symmetric in x and y. This is the shortest statement of the Adem relations.
We have shown that Sq, Sq, u = Sq, Sq, u, where Sq, = >, x7'Sq", and |z| = |y| = 1, and z and y

represent 1-dimensional classes in H *(RP°), and now should derive from this the more standard form of
the Adem relations. To begin, as Sq, is a ring homomorphism,

Sq, Sq, =S, [ >y S’
j=0
= (Sa, )~ Sq, S’
j>0
=> y @ +y )7 Sq, S
j=0
Now these coefficients are a mess, so, taking a lesson from calculus, we make a variable substitution, defining
t=y 2y ' +27 )7L So [t| = —1, and now

Sq, Sa, = » ' Sq, S¢’

j=0
Y Y sy
j>0 >0
= Z 27" Sq" Sq’ .
1,520
Letting s = 27!, so |s| = —1, we have Sq, Sa, =3 i>0 s't7 Sq' Sq’, a generating function for products of

squares. On the other hand,
Sa, Sa, = »_(Sa, )~ Sq, S¢’
Jj=0
Z a7 29y241 7 Sq" Sq?
4,520
= Z sP Iy =18q" Sq .
4,j>0

22



We thus need to know how to express y in terms of ¢ and s.

Now, t=t = y?(z7 +y~ 1) = y+ 2 ty? = y + sy?. At this point we could pull out the quadratic formula,
but that seems ill-advised over Zs. Instead, we use the theory of residues: if f(z) is a power series, then the
coefficient of z™ in f(z) is the residue of Z]:Y(Li)l dz. (Normally there’s a factor of 27i or something floating
around, but once again this seems ill-advised in Zs.) Now we are going to take advantage of the dz to
change variables and the claim is that this works for power series over any ring2¢ So in our case, we take
the coefficient of (+71)* in y™:

m

Y

Wd(t_l)

res
We calculate that d(t™1) = dy + sdy? = dy + 2sydy = dy (as we’re working in Z,). We then have

res ymdy = res (1 + Sy>_k_1dy
yk+1(1 + Sy)k+1 yk7m+1 ’

which is equal to the coefficient of y*~™ in (1 + sy)~*~!. That is (?i;nl)sk_m, where we simply agree that
(L4+2)m =3 (7)z" for m € Z, and for k < 0, ('}) = 0.
We now know what y is in terms of s and ¢, provided we know what the binomial coefficients are:

k-1
Y™ = Z <k_m>sk_mt_k, so that

k>m

o k-1 o o
Sq, Sa, = YyP S Sq” = MR Sq g
a, 80, = > sy ISq Sdd = (k_2j+l.>s q' Sq
4,j>0 i,5>0
E>2j—1
Note that we could have specified that is the most recent sum, but if k¥ < 25 — 1 then the binomial coefficient
is zero anyway. Now, in Sq, Sq,;, the coefficient of 5%t% is Sq® Sq®. In the most recent expression for Sa,, Sq,,
this term occurs when k + ¢ = a and j — k = b — viewing j as the independent variable, we have k = j — b
and i =a—k =a— j+b. We finally obtain:

aab & b—j—1 a+b—j o j
Sq*Sq” = Z a—2j Sq Sqa’,

Jj=0

and this last formula is called the “Adem relation.” One thing to notice is that if @ < 2b, then since a > 2j
we have b > j, so a +b— j > 2j. So these relations let you express Sq“ Sq® for a < 2b as a sum of Sq° Sq’,
where i > 2j. Such Sq’ S’ are called admissable.

So the tensor algebra on the squares T'(Sq', Sq?, . ..) modulo the Adem relations acts on H*(X;Zy). This
algebra T'(Sq',...)/{Adem relations} is called the “Steenrod algebra.” It is denoted A.

Lemma 8.1. A is generated by Squ, and these are exactly the indecomposables amoungst the generators

{Sq',8q¢%, Sq?, .. .}.

Proof. We first show that the SqT are indecomposable and then show that all others are decomposable.

After we took all the trouble to maintain homogeneity, we chop it: define Sq = Sq” +Sq* +---. By the
Cartan formula, Sq is a ring homomorphism. In particular, it acts on H*(RP>) = Zs[z], |z| = 1. Now,
Sqx =z + 22, so

i 2i+1

Smei = (qu)Qi = (x+ x2)2i =22 42
=3q° 22 + Squ 22

10This is nearly true, nearly false. It does work in this case. See note at the end of this lecture (what note?).
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All lower dimensional squares kill z2°, so Squ is indecomposable.

We prove the rest by induction. For any ¢ which is not a power of two, let k € Z be so that 2% < ¢ < 2F+1,
and suppose by induction that whenever j < c, Sq’ is decomposable as a sum of products of the generators
{Sq* | i < k}. Then:

2k —j—1 L
Sc—z’“s 2k _ Sq¢7 Sof
q q 2; ok _g;)Sd78a
2F 1\ . .
= Sq° 4+ decomposables.
c— 2k

But,
2k —1
<c B 2k> = coefficient of z°~2" in 1+ z)zk_l

1+ 2)%
— coefficient of 2¢~2" in (A+2)7
142

1 z2k
— coefficient of 2¢=2" in +
1+2

= coefficient of zc_zk ml4+---+z2
=1.

2k_1

c—2F

So, Sq° = ch_Qk Sq2k + decomposables, and Sq is decomposable. O

H *(X) is an A-module, and Sq'z = 0 if i > |z|; such things are called “unstable .A-modules,” even
though this is bad terminology. Moreover, 22 = Sq!*! z, and Sq(zy) = Sq(z) Sq(y); such a thing is called
an “unstable A-algebra.” We have seen that the functor H* from the category of topological spaces to the
category of graded vector spaces factors through the category of unstable A-algebras, which is in fact the
maximal algebraic category through which H* factors.

Let’s take another look at the formula y™ =3%"; -, (;Ij:nl) st=mt=k. Setting m = 1 gives

—k =1\ k1,
Y= Z < b1 )s [
k>1
On the other hand, we know y = t~! + sy?. Since squaring is a homomorphism in Z,, we get
y=t"+sy°
=t +s(t72 + 5%yt
= t718t72 + 53(t74 —+ 54y8) — ...

:E:t 221
i

—k—1) (1 ifk=2
kE—1 ) |0 otherwise!

which tells you that
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e For a < 2b, Sq*Sq® = > (ba__j;jl) Sqt?7Sq’. Note that in this sum only
involves 0 < j < a/2. In particular, the terms on the right have a + b — j > 2j.
e Say that a sequence Sq' - - - Sq*" is admissible if ij > 2ij41. The Adem relations
allow one to express inadmissible sequences in terms of admissible ones.

e The Steenrod algebra A is the tensor algebra on symbols Sq*, modulo the Adem
relations. H*X is an “unstable A-algebra”.

e The only indecomposable Sq’ are those for which i is a power of two.

Lecture 9. Using the squares and Thom spaces

Now that we’ve learned some facts about the squares, we're in a position
to apply them to some of the problems that came up earlier. First, recall
that the Hopf invariant H : mg,_15™ — Z is defined as follows. H(f) -
is to be the unique integer (up to sign) for which 22 = H(f)y, where x
and y are the generators of H"(C(f)) and H*"(C(f)) repectivelyll In
particular, 22 = H(f) -y = Sq"x (mod two), so that H(f) is odd iff
Sq"x # 0. However, if n # 2¢, then Sq” is decomposable in terms of
lower squares, and Sq" x = 0 since there’s no cohomology between x and

y. Therefore, we get Figure 7: Cell diagram of C(f).
Theorem 9.1 (Ademi2). If there is an element of odd Hopf invariant on
S™, then n is a power of two.

Now if ¢ is any map S2n+F-1 2y gntk C(g), then we no longer have a nontrivial cup-product,

but we still have Sq™, so we can define a generalized Hopf invariant H (9) by Sq"« = H (9)y, giving H :
Tonik—19"TF — Zy. The fact that Sq” commutes with suspensions means

H

f Ton—19" Z
skf Tontk—15"TF 2, Ly

commutes. 7o, k15" 1" is independent of k for k > 1; in other words we have turned the unstable question
into a related stable one.

Recall next another fact we had, more directly related to the vector field problem: if S*~! has (k — 1)
everywhere linearly independent vector fields, then nL — RP*~! is fiber homotopy trivial, and this in turn
implies the existence of a “coreduction”

T(nL | RP*-1)= $rRPF! — & g7
S’n

Now we're in a position to study, using the squares, the question of when we can split off the S™ from T'(nL).
Remember that we found

T(’I’LL \L RPk_l) — an+k_1/RPn_l —. RPS*”“*,

called “stunted projective space”. Its mod 2 cohomology is H* (RPHR=1) = (gn gntl g tR=1) where
|z?| = i, and it comes in an obvious way from the cohomology of RP"**~1 Now the coreduction above

HNote that C(f), the cofiber of $27~1 i> S™ has three cells, one in dimension 0, n and 2n.
12He realized as soon as he got the relations that this was a consequence.
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implies that the class ™ in ﬁ”RP[frk*1 pulls back from the generator of H"S". Thus Sq* for i > 0 is
trivial on 2™ since it is on S™. That is, Sqa™ = 2". Now x € H'RP™*~1 is a 1-dimensional class, so

n

Sqz =z + 2% = 2(1 + z), and as Sq is a homomorphism, Sqz" = z"(1 + z)".
Sqz" =2"(1+2)" =",

which implies that (1 + z)" = 1 (mod x*). Write n = 3,c; 2%, a sum of distinct powers i € I of 2. Then
v(n) is the smallest i occuring in I (where n = odd - 2¥("") as above), and

(I+2)" = H(l + x)Qi = H(l + in) =1+ 2% + higher powers.
icl iel

That (1 + )" =1 (mod x*) implies that 2” > k. Recall that our goal is to show that p(n) — 1, the number
of linearly independent vector fields on S™~! which we constructed using Clifford algebras, is equal to the
actual number of linearly independent vector fields on S"~! by bounding it above. Here’s a table of v(n),
2¥(") "and p(n) for some small v(n):

vin) |0 1 2 3 4 5
M 11 2 4 8 16 32
pn) |1 2 4 8 9 10.

For v(n) < 3, then, we have obtained an exact answer, but asymptotically, we’re doing pretty badly.

There’s another approach to this sort of calculation with Thom spaces and squares. Suppose that F is
an S"~1-bundle over a base B, which we will always assume to be connected. There is an inclusion into the
fiberwise mapping cone CgFE, a disk bundle:

gt EC CpE Dm
||
B=——=2B

and T(E)=CgE/E. So H* (T'(E)) = H*(CgE, E). Now we can use the relative Serre spectral sequence to
get a spectral sequence -
Eyt = H*(B,{H'(D"™, 8" ")}) = H*"Y(T(E)).

But this spectral sequence has Eg’t # 0 only when t = n, so that that everything collapses by the Es page,
and we obtain isomorphisms H*(B, { H"(D",S"1)}) = ﬁ**”(T(E)) In general B is not simply connected,
so we need twisted coefficients. If the system of local coefficients is trivial, then this isomorphism is the
Thom isomorphism. An orientation of E is then just that: a choice of trivialization of this local coefficient
system.

Working over Zs coefficients, this coefficient system is already canonically trivial, so the concern about
orientation doesn’t mean anything, and we get H*(B;Zs) = H**"(T(F)) anyway. For example, in the case
of nL - RP*~1 we see trivially that the isomorphism comes from multiplication by z. This comes out in
general from the multiplicative structure of the spectral sequence, as follows.

First, 1 € H°(B) corresponds under the Thom isomorphism to some u € H"(T(FE)), called the “Thom
class”. Now H*(T(E)) = H*(CgE, E) is a module over H*(B) via the “cup product” pairing, the composite:

H*(B) @ H*(CpE, E) “2% H*(CpE) ® H*(CyE, E) ——— H*(CyE, E)

We justify calling this a cup product as p* is an isomorphism, as CgE is a disk bundle, so we can almost
ignore the “pulling back” part of the operation. The Thom isomorphism says that cup-product by the Thom
class u is an isomorphism — u : H*(B) & H*(T(E)).

This enables us to talk about H *(T'(E)) without much reference to T'(F) beyond the Thom class. For
example, suppose we wished to calculate Sqy for some y € ﬁ*(T(E)) Now y = zu = = — wu, for some
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unique z € H*B, and Sqy = (Sqz)(Squ) by the Cartan formula, so all we need to know is Squ. Again
using the Thom isomorphism, we write Sq" u = wyu, where wy € H*¥B. We call wy = wy(F) the “kth
Stiefel-Whitney class of £”, and we write w = >~ ws, the “total Stiefel-Whitney class of £”.

Of course, if V' is a vector bundle, we write w(V') for w(S(V')). The following facts follow immediately:
e w; depends only on the fiber homotopy type of the sphere bundle.

e Sq°u = u, so wy = 1.

o wi =0 for k > n.

e External Whitney sum formula:22 w(E'* E" | B'x B") = w(E' | B')xw(E" | B") for sphere bundles
E'| B and E" | B.

e Internal Whitney sum formula: w(E’'*xp E"” | B)

= w((E' | B) — w(E"” | B)) for sphere bundles
E’' | B and E” | B. In particular, w(V' & V") = w(V')

/
1
— w(V") for vector bundles V', V" over B.
e Stability: One calculates w(ne) = 1, so that w(V @ ne) = w(V) (using the Whitney sum formula).

Lemma 9.2. Suppose that E | B is an S"~1-bundle over a connected base, and that s : S* — T(E) is the
inclusion of copy of S™ over the basepoint, and that uw € H"(T(E)) is the Thom class. Then s*(u) is the
generator o € H™(S™) that corresponds to the standard orientationtt of S™.

Proof. This follows by naturality of the Thom isomorphism for oriented maps of oriented S™~!-bundles, once
it has been checked for the trivial S?~!-bundle £ = S"~! | x (a simple task). Consider the map of oriented

S™~Lbundles (shown at left):
— F S =T()——T(E) Ug ——ug

] % /

gn o
This map induces the commuting diagram in the middle: a map of Thom spaces relative to S™. Using this
commuting diagram, we can calculate s*(ug) in two different ways (at right) to obtain the result. O

—

Proof of Whitney sum formula. Let E' | B’ be an S™ !-bundle and E” | B” be a S™ !-bundle; let £ | B
be the fiberwise join, an S™*"~Lbundle. Now, T(E) = T(E') AT(E"), and moreover, u = u’ A u”. To see
this, recall that the inclusion S"*™ < T'(E) is the wedge of the inclusions S™ < T(E’) and S™ < T(E").
Now by the characterisation of v in lemma 9.2, we see that u pulls back to the orientation generator in
H™Hm (8™ A 8™), which is the wedge of the orientation generators in H™(S™) and H™(S™).

Thus, Squ = Sq(u’ Au”) = Squ’ A Squ”. Note that the first expression models w(FE) — u, while the
third expression models w(E’) A w(E") — u' Av”. Therefore, w(E) = w(E") ANw(E"). O

Now the Thom class of nL — RP*~1 as we saw, is ™. So w(L) = 1+ x, and w(nL) = (1 + z)". So
nL — RP*1 is fiber homotopy trivial only if (1 + )" = 1 (mod z*), which is the same result we obtained
before. Now the program is to improve the results by pursuing a similar set of results in K O-theory.

13Whitney says this is the hardest theorem he ever proved, but he had the wrong definition of Stiefel-Whitney classes.
4 That is, the orientation on S™ = (D™, S"~1) which was used to trivialise the coefficient system used in the Serre spectral
sequence which provided the Thom isomorphism.
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e Using the decomposability of Sq’ for ¢ % 27, there can only be an element of
Hopf invariant one in 7, _1(S™) if n = 27.

e Sqz™ = a"(1 4 x)", where 2" € ﬁ”(RP]j"’k_l). If there is a coreduction, then
Sqz™ must equal . Thus, a necessary condition for k — 1 fields on S™~! is that
(1+ )" =1 in Zy[z]/(x*), which implies 2*() > k.

e For an oriented S"~!-bundle E, H* (T(F)) is an H*(B)-module under “—7:

H*(B) ® H*(CpE, E) “ 2% H*(CpE) ® H*(CpE, E) —— H*(CE, E)

Defined the Thom class uw € H"(T(E)) such that — u is the Thom isomorphism
H*(B) — H**"(T(E)).

e The Stiefel-Whitney classes w;(E) € H'(B) are defined by w(E) — u = Squ.
They vanish for ¢ > n, and wy = 1. They satisfy the Whitney sum formula
w(VaeW)=wlV)—w), and are stable: w(V @¢€) = w(V).
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Lecture 10. Structure on K-theory

This isn’t a course about K-theory, it’s a course that uses K-theory. So we’re not going to see proofs of lots
of basic theorems of K-theory; in particular I'm not going to prove the periodicity theorem. However, we
will need some facts which we’ll review now.

Recall that we previously defined the group KO(X), and by doing the same constructions using complex
vector bundles we get K (X). Let’s see what K S? is. S2 splits into contractible hemispheres D4 over which
any vector bundle is trivial, Dy x C". The construction of a vector bundle on S? therefore amounts to
choosing over each point on the equator S* a linear isomorphism C" — C" in a continuous manner, i.e., a
map S — GL,(C). So, Vect, c(S?) =2 mGL,(C). This way of constructing vector bundles is called the
“clutching construction.” There are compatible deformation retractions

it > GLy(C) = GLyp1(C) — ---

ol
A U(n) - > U(n—|—1) .
and hence we may assume all our maps are into U(n) instead 22 Each inclusion on the bottom row occurs as
the fiber of a bundlelS U(n+1) — S?"*+1 and hence we calculate using the long exact sequence of homotopy
groups that 71U (n) = mU(n + 1) induced by these inclusions for n > 1. In particular, mU(1) & 75! = Z,
so that 7,U(n) ~ Z, where homotopy class corresponding to k € Z is that of the map z — diag(z*,1,1,...)
for 2 € ST =U(1).

Now if V, ; is the n-dimensional complex bundle obtained by clutching along the element of mU(n)
corresponding to k € Z, it is not hard to see that V;, j @ V;, 5 is isomorphic to Vj, 4y k4r/. From this we see
that K (S2) = Z, generated by Vii] - 1.

Now we have represented the generator of w1 U(1) as the identity, which as a clutching function represents
L - CP' ~ S2, the tautological (complex) line bundle. Hence, a generator of KS? is [L] — 1. Similarly,

since all the unitary groups are connected, K (S*!) = 0.

Fact 10.1. In the real case, we have ?6(58) = Z, generated by the tautological Cayley H-line bundle,
considered as a 4-dimensional real bundle over HP? ~ S®. (What happens if we use octonions?)

Theorem 10.2 (Bott periodicity).
K(X)® K(5%) = K(X A S?)
KO(X)® KO(S®) =5 KO(X A S®).

A word on this tensor product: an element of K (X) is a “virtual vector bundle” V' — m, where m is the
trivial bundle of dimension m =dimV. If V —m € K(X) and W —n € %(52), then we define earlier their
exterior tensor product over X x S? in the obvious way: (V —m)@(W —n) = VAW —m&W — V&n +m&n.
Consider now what this bundle looks like over X V $?2 C X x S§2: on X x pt, W is trivial, so we get
Ven—m&n—V&n+men = 0; on pt x 5% we see that V is trivial, so we get m@W —m&@W —me@n-+m&n = 0.
Hence, the bundle (V — m)®(W — n) is trivial over X V S, and so pulls back from a vector bundle over
X A S?%. This at least exhibits the map above.

Next let’s see how the periodicity theorem can be used to make KO and K the 0" groups of periodic
generalized cohomology theories with periods 8 and 2 respectively. The first thing we observe is that
KO is representable; recall that f(\(j(X ) is given by pointed homotopy classes of maps X — BO X Z,

15This amounts to saying that every complex vector bundle admits a Hermitian inner product.
16Note that U(n + 1) acts on S27*1. Choosing a basepoint b € $?"t1, the map U(n + 1) — S27*! given by = — zb is a
fibration with fiber the stabiliser of b. Of course, the stabiliser is U(n).
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denoted [X, BO x Z] (we’ll start writing B for BO x Z). Cued by the suspension isomorphism from singular
cohomology, for n > 0 we define:

KO '(X)=KO(2"X) for n >0,
KO (X) = KO(ESk "X) for any k with 8k > n,
KO*(X) KO X.,
O*(X,A) = (X UCA) when A — X is a cofibration.

For this to be considered a cohomology theory we need some long exact sequences. Now its a general fact

that for a map of pointed spaces f : A — X if we take the mapping cone A Jox o x Uy CA=C(f),
then the sequence
[A,B] + [X,B] + [X UCA, B]

is exact. Moreover, when B is an H-space then the induced homomorphisms of groups are exact. Now we
can continue; that is, take the mapping cone of X — X Uy C'A:

AL X L XU CA— (XU CA)U; OX — -

Now, if f is nice enough, X U C A will be homotopic to X/A. Certainly (X UCA)UCX ~ XUTCA, so the
sequence becomes
A— X —XUCA—3YA—3X — -+

and moreover the map A — XX can in fact by given by ¥ f up to homotopy. This sequence is called the
“Barratt-Puppe” sequence. We can then apply the Hom-functor [—, B] to get a long exact sequencell

[A,B] + [X,B] + [X UCA,B] & [£A, B] + [£X, B]

Identifying groups as above, we produce a long exact sequence

KO (A) « KO (X) « KO(X, A) « KO (4) « KO (X) -,

and via periodicity we have the full long exact sequence

¢ KO'(X, A) « KO (4) « KO (X) « KO°(X, A) « KO (A) « KO (X) ¢ ---.

This justifies our choice of definition of K O above. This whole setup works similarly for complex K-theory.

Now it’s an important fact about K* (X) that it’s a commutative ring: we calculated K°(S1) = 0 and
K9(S?) = Z with generator (L — 1), which gives a generator p € K ~2(5°) = K~2(pt), called the “periodicity
element.” So K* := K*(pt) = Z[p™'], the Laurent series ring, where |p| = —2. Similarly, there is a ring
structure for KO*:

n [0 1 2 3 456 7 8
KO™pt)|Z Zs Zy 0 Z 0 0 0 Z
generator | 1 7 n? q P,

with relations 2 = 0, 7% = 0, ng = 0, ¢> = 4p, where p is the periodicity element. For example, KO~ (pt) =
(pn?) =2 Zy and KO®(pt) = (p_1n2> & 7, so that KO* is the ring with generators 7, ¢, p™' and the given
relations.

Unfortunately, we shall need more than just the ring structure; we’ll need operations. One way to get
operations in K-theory is to look for operations on vector spaces, apply these fiber-wise to get operations on

17 Applying [—, Z] will give a long exact sequence of pointed sets for any X. Since our Z = B is an H-group, this gives a long
exact sequence of groups.
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vector bundles, and then squeeze out operations on K-theory. The most useful of these is V —— A¥(V), the
kth exterior power. By means of this method we get a k" exterior power bundle A¥E | B from a bundle
E | B. Unfortunately extending to K-theory is hard because A¥ is not additive.

There is, however, a natural isomorphism AF(V & W) = @, -, A’V ® AJW. This (which looks like a
Cartan formula) inspires the definition A¢(V) = 3,50 t'AY (V). Now A(V & W) = A¢(V) - Ay(W), so the
operation still isn’t additive, but it’s exponential — it takes sums to products. That’s good enough, as it
turns out. So A; induces a homomorphism of commutative monoids A; : Vect(X) — 14+t KO(X)[t], where
the target is the group (under multiplication) of formal power series in ¢ with coefficients in KO(X) and
constant term one.

By definition of KO(X), there is a group homomorphism A; : KO(X) — 1+t KO(X)[¢] such that the
map A; factors as

Vect(X) -+ 1+t KO(X)[¢]

s

KO(X),

That A; is a group homomorphism is to say that , \(A+ B) = A\(A4) - M(B), for A,B € KO(X). This
behaviour is like that of total Steenrod operations. Of course if E is a vector bundle, then M (E) = AJ(E) = 0
for j > dim E (where A is defined, of course, by A(E) =1+ 3,5, tPAF(E).)

The X\ operations are all very well, but they are hard to work with because they depend on the ring
structure of KO(X). We really want an additive “power operation,” so one thing to try is to take a
logarithm, in search of a family of operations ¥* such that on line bundles we get 1/*(L) = L®*. Once again,
we start with a generating function 1 (z) = 3,1 ¥*(2)t*, then our conditions on ¥* become:

Vi(x +y) = i) + Ui (y),

_ ke Lt
zpt(L)_];L =7
The first obvious candidate is
= (i) — 1) M(@) =12 (\(z) —1)3
tog () = 3 (-1 QD=L gy yy - ) Z D8 @) Z D7

=0

but unfortunately this has denominators,22 and we don’t know what 1/n means in KO(X). Our next guess
dee(2)
dt "\t

is 4 log \¢(z) = W) (and \¢(z)~! exists), and so we have additivity, the first property. Now for L a line
bundle,

4 log(1+tL) =

dt 14+tL°
Replace ¢ with —t to get < log(1—tL) = =%-. And, to normalize, multiply by —t to get {t£+ = SRS tRLE
We define the k** “Adams operation” applied to E, ¥*(E), to be the coefficient of t* in
—td)\_,(E)
Ai(E)

Of course, this construction could be carried out on K(X) as opposed to KO(X).
We seek to prove the following properties of the Adams operations, and will do so by constructing them
from another perspective in lecture 11:

e 9% is a ring homomorphism for each k,

18Check the t2 coefficient!
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o YFY! = M, and
e (L) = L®* for line bundles L (which we already know).

Do the properties above characterise the Adams operations on K(X)?

. %(52) = Z(|L] — 1) where L | CP! is the tautologous C-line bundle.
o KO(S®) = Z([L] — 4), with L | HP? the tautologous H-line bundle.
. %(X) is extended to a cohomology theory via K~"X := K(X"X) (n > 0)
and via periodicity for n < 0. g*(pt) =Zpt)forp=L—-1¢ %’Q(pt) the

periodicity element. The same story holds for KO, but it’s more complicated.
e As AY(V a W) = aAl (V) @ A2(W), defining A¢(V) = S t'AY(V) we get
At KO(X) — 14+t KO(X)[t] taking sum to product.
e Using the generating function —t% log A_+(E) = S t*y*(E), we obtain additive
operations on KO(X) such that ¢*(L) = L®* the “Adams operations”.
e False claim: The Adams operations are characterised by three properties:

(i) they are ring homomorphisms; (ii) ¥*! = ¥*; and (iii) ¥*(L) = L®*.

Lecture 11. K-theory operations via representation theory
Previously, we discussed the ring KO* = KO*pt and said it was
KO* = Z[W»%Pﬂ}, ‘77| = _1, ‘q| = _47 |p| = _83

along with the relations 27 = 0, ng = 0, n° = 0, and ¢ = 4p. Furthermore we defined operations ¥ on
KO(X) which (will be shown to have the following properties) are ring homomorphisms and satisfy
Fapt = 9kl and, for line bundles L, ¥*L = L®*. In order to get a better handle on these, we need some
character theory, which belongs to the broader field of representation theory.

Let G be a compact Lie group (e.g., G = U(n), the group of n x n unitary matrices). A representation
of G is a finite-dimensional complex vector space V' together with a linear action of G. Two representations
V and V' are isomorphic if and only if there is a G-equivariant linear isomorphism « : V =y

Choose any Hermitian inner product on V. By averaging over the group2 we can form a G-invariant
inner product (—, —). Then G acts by unitary transformations on V', that is (gz, gy) = (x,y), for all g € G.
Picking an orthonormal basis gives each g € G as a unitary matrix, and the representation becomes a map
p: G — U(n), where p is a continuous homomorphism. With these data, an isomorphism of representations
looks like a matrix M in terms of these bases such that p'(g) = Mp(g)M~! for all g € G.

Once we have matrices it makes sense to talk about the trace; define xv(g) = tr(p(g)). This gives a
function yy : G — C, called the “character of V.” We call xy a “class function” because it is constant
on conjugacy classes2? in G. In particular if two representations V' and V' are isomorphic, then xy = xy.
Using characters is by far the easiest way to understand representations, and in fact they tell us everything,
as we will see in fact 11.2.

Define Rep,,(G) := Hom(G,U(n))/conjugacy. Then Rep(G) := [], Rep,G is a semiring with addi-
tion given by @ and multiplication by ®.2L Applying the Grothendieck construction to Rep(G) we ob-
tain the “representation ring” of G, denoted R(G). The map V' — xy induces a map x : R(G) —
{class functions G — C}.

Fact 11.1. xvew = Xv + Xw, and Xvew = XvXW-

19As G is a compact Lie group it admits a Haar measure, so we can ‘average’.
20The trace is invariant under cyclic permutations.
21@G acts diagonally on the tensor produuct of G-modules.
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The second fact is true because tr(A @ B) = tr Atr B for matrices A and B.22 Indeed, any unitary
matrix has a diagonalization? and if {z1,...,7,,} and {y1,...,yn} are bases of eigenvectors for A and B,
then {x; ® y;} is a basis of eigenvectors for A ® B, and the eigenvalue for z; ® y; is the product of the
eigenvalues for z; in A and y; in B.

Fact 11.2. x is injective, and in fact R(G) @z C = {class functions}.

Recall that the first construction of the Adams operations used an operation on vector spaces to yield
an operation on bundles, and then finally an operation on K-theory. Now we shall use representations to
construct new vector bundles out of old ones. First we will need the notion of the principal bundle associated
to a vector bundle: if E | X is an n-dimensional complex vector bundle and X is paracompact, you can pick
a Hermitian metric on E and get an orthonormal basis on each fiber (meaning, a continuously varying choice
of orthonormal basis). Let P(E) be the set of all ordered orthonormal bases on fibers. Another way to think
about it is that each point in P(E) is a linear isometry C" = E,. Now there is a projection P(E) — X;

there is a fiberwise action of U(n) on P(E) given by composition: if a € P(E) determines o : C" —» E,,
then we get, for g € U(n),

[e3%

cr —

Q Z
© s
c.

Moreover, it is clear that this action gives P(E) | X the structure of a principal U(n)-bundle, the “associated
principal bundle to E.”

Now the construction of P(FE) involved the choice of a Hermitian metric (—, —) for £ | X. But if (—, =)’
is another Hermitian metric for E | X, then so2 is t(—, =) + (1 — t)(—, =) = (=, —); for 0 < ¢ < 1. Thus
we obtain a metric for the bundle E x I | X x I. Now the restriction of P(E x I) | X x I to X x {0} is
P _y(E), while the restriction to X x {1} is P_ _y/(E), so that P._ _y(E) = P._ _y/(E) as U(n)-bundles.

Now let V' be a representation of U(n). Then from a complex vector bundle E | X, we can form the
bundle ay (E) = (P(E) xym) V) | X, yielding a new vector bundle with fiber V.

Now fix an n-dimensional vector bundle E. Clearly aygw (F) = ay (F) ® aw (E), so that V +— ay (E)
defines an additive homomorphism Rep(U(n)) — Vect(X) — K(X). By the universality property of the
Grothendieck construction this extends to R(U(n)):

E,

Rep(U(n)) <

)
l%

R(U(n)).

Turning this around, a fixed 8 € R(U(n)) assigns to an n-dimensional vector bundle E | X a well-defined
element O(E) of K(X); what we really want is to assign to an element E of K(X) another element of
K(X). In particular, we have to worry about different values of n; moreover, we want to get an additive
homomorphism.

It will suffice to choose 6,, € R(U(n)) for n > 0 in such a way that 6,,(E™) @ 0,(F") = 0pin(E S F) in
K(X). This data can then be used to define an additive homomorphism 6 : ][, Vect, (X) — K(X), which
(by universality) extends to an operation 6 : K(X) — K(X).

K(X)

Taking the direct sum of representations gives a homomorphism R(U(m))x R(U (n)) -2 R(U (m)xU(n)).
One way to view this is that the projections U(m) & U(m) x U(n) =2 U(n) induce pullbacks

R(U(m)) T, R(U(m) x U(n)) pi R(U(n)) which induces R(U(m)) @ R(U(n)) -2 R(U(m) x U(n)).

221f A € U(m) = Tsom C™ and B € U(n) = Isom C™, then A ® B € U(mn) = Isom(C™ ®¢c C™). Note that here we implicity
choose an identification of C™ ®@c C™ with C™" — there is a “standard” way to do so in which A ® B is represented by the
Kronecker product of matrices A and B.

23 «This is the deepest fact of the lecture.”

24 A Hermitian inner product is required to satisfy (z,x) > 0 for & # 0; this provides the non-degeneracy of (—, —);.

33



On characters, the map @ is defined by xg. @0, (M, N) = xp,, (M)+ X0, (N). On the other hand, the inclusion

U (m) xU(n) 2 U(m-+n) given by (M, N) —s {%} induces o* : R(U(m+n)) —s R(U(m)xU(n)).

On characters, o* is defined by xs+9,,,,(M,N) = x,.., (0(M,N)).
We define 8 = {6,, € R(U(n)),n > 0} to be an “additive sequence” when 0, @ 6,, = 0*0,4,, for all
m,n > 0. That is, when for all m,n > 0, we have an equality:

Omgn ————> 0 0 = O, & 0y ¢——— (011, 0,), under the maps:
R(U(m +n)) —Z= R(U(m) x U(n)) «—— R(U(m)) & R(U(n)).
For clarity, we give some alternative ways to phrase the meaning of “additive”:

e View each 6; as a virtual representation of U(j). 0 is additive if: “when 6,, &0, is viewed as a (virtual)
representation of U(n) x U(m), it is isomorphic to the restriction (i.e. 0*0,,4r) Of Oty to the subgroup

U(n) x U(m)”.

e View each 6; as a class function on U(j). 6 is additive if: “whenever M € U(n) and N € U(n))
the sum 6,,(U(M)) + 0, (U(N)) equals 0,4 (c(M,N)), where (M, N) is the block diagonal matrix
containing M and N”.

Claim 11.3. If 0 is additive then 0,,(E™) @ 0,(F™) = Opin(E™ ® F™).

Sketch of proof. We'll pretend that 6, corresponds to a genuine representation V;,, in which case we have
Omin(E D F) = P(E® F) Xt (m4n) Vimtn- Now it takes some thought, but it is in fact true that

F)) Xt(@m)xv(n) U(m +n). Thus, we calculate:

P(E®F) = (P(E) xx P
( F) ><U(m)XU(n) U(m + n)) XU(7n+n) Vm+n

(
Oin(E @ F) = (P(E) xx P(

= P(E) xx P(F) XU(m)xUm) O Vimtn
:P(E) (F) Xu m)><U n) (Vm@Vn)

So an additive sequence 6 defines an additive homomorphism [, Vect,(X) — K(X), and so extends to
give an operation # : K(X) — K(X). This is how we shall present the Adams operations ¥*; next time,
we shall prove

Theorem 11.4. Fork > 1, there is a unique2> additive sequence Y* = {yF € R(U(n))} such that ¥ is the
k™™ power map, i.e., Xk (2 ) = 2%, where z € U(1).

Remark 11.5. Note that the additive condition requires 6y = 0.

e Given a d-dimensional representation V' of U(m), we obtain an additive opera-
tion on Vect,, (X) — Vectq(X) via X —— P(X) Xy(m) V.

e Given a sequence 6,, € R(U(n)) of virtual representations of unitary groups, we
can define a function 6 : [ [, Vect,,(X) — K(X) by the above construction.

e The function # is an additive homomorphism (and so gives an operation on
K (X)) when the sequence 6 is “additive”: when viewing 6,, ® 6, as a (virtual)
representation of U(n) x U(m), it coincides with the restriction 0 yn|v(n)x v (m)-

25The uniqueness assertion is false for real K O-theory. See the note at the end of last lecture.
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Lecture 12. Building the Adams power operations

Recall that for a compact Lie group G we identified a representation of G with a continuous homomorphism
p : G — U(n) which allowed us to speak of the class function x,, the “character” of the representation. The
induced map R(G) < {class functions G — C} is injective, so we identify p with its image under x. Recall
also that a sequence of virtual representations 6, = {6, € R(U(n))} is “additive” if 0,, ® 0,, = 6*0ppn.

The additional fact to bring to bear now is that any M € U(m + n) is conjugate to a diagonal matrix,
and this diagonal matrix is in the image of U(m) x U(n) < U(m + n). It follows that 6,,, (thought of as
a class function) is determined by 61, when 6 is additive!

Now 6; € R(U(1)) and R(U(1)) = Z[z*'] is a Laurent series ring on the tautological representation of
U(1). So we start by defining 1% (as a class function on U(1)) by (z) — 2z¥, for each k > 0. It is now fairly
clear how to go about proving:

Theorem 12.1. There is a unique additive sequence Y* with ¥ (2) = 2. Moreover, if M € U(n) has
eigenvalues z1, . .., zn, then E(M) = S zf = tr(MF).

Proof. Uniqueness is assured by the above comments, so we only need to describe ¢¥(M). Now M € U(n)
is conjugate to a diagonal matrix with diagonal entries 21, ..., 2,, so by additivity:

n

UH(M) = 0 (ding(an, . ) = D2 kL) = 30 2F = (b,

j=1

Now it is clear that the definition ¥ (M) := tr(MF*) is additive: to check this is to check that the class
functions (M, N) — tr(M*) + tr(N*) and (M, N) — tr(o(M, N)) are the same on U(m) x U(n), which
is obvious. O

The first thing to notice is that ¥ (M) is symmetric in the eigenvalues zj of M, so we should think about

symmetric polynomials. The n*® symmetric group ¥,, has a canonical action on Z[zy, . . ., z,], and it’s a fact
that the invariants have the famous form Z[zy, ..., z,]*» = Z[oy, ..., 0,], where the o; are determined by:
n n
H(l +zx) = Z ojx’, so that o; = Z 2i, ++ - %i; is homogeneous of degree j.
j=1 j=0 1<i1 < <ij<n

Now we want to show that these o; are real characters, i.e., that they come from genuine representations.
In fact, o0 = xas, where A7 is the j** exterior power of the canonical representation. For if a matrix M
has eigenvalues Aq,..., A, then the above expression gives o;(M) = S i<iy<ociy<h Ay - Aiy. On a basis
of corresponding eigenvectors, we then have that {v;, A---Aw;; | 1 <4y < --- < i; < n} are a basis of
eigenvectors for the induced action of M on the j*" exterior power of the representation, and these have
eigenvalues A;, -+ A, ;.

As ¢F(M) is a symmetric polynomial, there is a polynomial sz in n variables2® such that:

n

UE(M) =28 = si(o, ..., 0n).
j=1

Note that sj, will in general involve subtractions, so it is not true that 1/* comes from a genuine representation,
but it does come from sj, (A, ..., A¥). This is comforting, since the definition of the Adams operations from
before used the exterior product and its properties in an essential way.

So now we're where we were with the last definition of 1*, but we know v* well enough to attack the

product structure of K(X). R(U(m)) ® R(U(n)) -2 R(U(n) x U(m)) is defined by 6,, @ 0,(M,N) =
0, (M)0,(N). Moreover, there is a map R(U(mn)) - R(U(m) x U(n)) induced by a map 7 : U(m) X

26The s;, are the so called “Newton polynomials”. It’s good entertainment to work out a few.

35



U(n) — U(mn) by identifying C™" with C™ ®¢ C™ and hence Aut C™" with Aut(C™ ®¢ C™). Note that
7 is only well-defined up to conjugacy, since these identifications depend on a choice of ordering of the basis
e; ® f; corresponding to bases e; for C" and f; for C". But 7* is well-defined on class functions. Note that
if M and N have eigenvalues s1, ..., sy, and t1,...,t,, then 7(M, N) has eigenvalues s;t;.

A sequence 0, € R(U(m)) is called multiplicative if ,,, ® 6,, = 70,5, In other words, we are following
a line of argument analogous to that we just did for additive structure, and an analogous result holds:

Theorem 12.2. If 0 is additive and multiplicative, then it defines an operation K(X) — K(X) which is
a ring homomorphism.

Proof. The proof is exactly analogous, depending this time on the identification P(E ® F) = (P(F) xx
P(F)) XU(m)XU(n) U(mn) O

And, luckily,
Lemma 12.3. ¢* is multiplicative.

Proof. Suppose M and N have eigenvalues s1, ..., Sy, and t1,...,t, as above. Then:
T*@[ann(M, N) = SznT(Mv N)

= Z(Sitj)k

() (50)
= Yk (M), 0

Summarizing, given an additive and multiplicative sequence 8,, € R(U(n)), n > 0, we get a ring homomor-
phism 6 : K(X) — K(X), defined, when E € K (X) is in fact an n-dimensional bundle and 6,, corresponds
to a genuine representation V,,, by é(E) = P(E) Xy(n) Va. Moreover, we have ¥ additive and multiplicative
sequences, defined in terms of their images under x : R(U(n)) — {class functions on U(n) — C}, satisfy-
ing ¥ (z) = z*. Note that for a line bundle L, it follows that ¢*(L) = L®* since ¢ corresponds to the k"
power of the canonical representation of U(1). So we have nearly all the properties of the Adams operations
listed two lectures back; we still need to show the compositional property ¥yl = !,

Now if ¢ and 6 are additive sequences they define operations ¢ and 6 on K (X); certainly ¢ o0 is another
one. But in order to pursue the program here, we must realize ¢ 00 as é , i.e., induced by some additive
sequence £. In other words, how can we compose ¥(6) to give another additive sequence £?

Suppose that ¢ is an additive sequence, and that § € Rep(G) (and so corresponds to a genuine represen-
tation © : G — U(n)). Then there is an induced map:

p*: R(U(n)) — R(G), and we define ¢(0) := 0% (p,).

Claim 12.4. This proposal (0 — ¢(0)) defines an additive map ¢ : Rep(G) — R(G). By universality,
this extends to an additive map ¢ : R(G) — R(G).

Proof. It’s a matter of working through the definitions. If ©,, : G — U(m) and ©,, : G — U(n) represent
members of Rep(G), then the action on C™ @ C" = C™*" defines ©,, + ©,, € Rep,,,,,(G). Then for g € G:

05,9m(9) + 0,0n(9) = ©m(Om(9)) + ¥n(On(g))

B Om(g) | 0
= Pmtn 0 ‘ ®n(g) }
= (O +01) Prmgn(g)- -
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In particular, if ¢ = {p,} is an additive sequence and 6 = {6,,} is another additive sequence, then we can
form the sequence p(0) := {¢(0,) € R(U(n))}. Fortunately:

Lemma 12.5.

1. ¢(0) is an additive sequence.

—

2. As operators on K -theory, o(6) = ¢ o 0.
3. () = i, so Rl = gt
Sketch of proof. 1. It is easiest to think of 6 as a sequence of group representations, and ¢ as a sequence
of class functions. Pretend that 6,, and 6,, come from real representations, thought of as Lie group
maps 0, : U(n) — U(n') and ©,, : U(m) — U(m'). Pretend also that 0,4, comes from a real
representation, which then must be of the form ©,,1, : U(m 4+ n) — u(m’ + n’), by additivity of 6.
For M € U(m) and N € U(n), it follows from the additivity of # that there is some P € U(m' 4+ n’)

such that:
Omin(c(M,N)) = Po(0,,M,0,N) P~

Thus:

0" P(Omsn) (M, N) = @y (Omin(0(M, N)))
= Pmiin (Po(0,M,0,N)P1)
= Om/tn (0(Om M, 0,N))
= O (0 M) + 0, (0, N) (by additivity of ¢)
= (p(0m) © p(0,))(M, N).

2. Pretend that 6,, comes from a genuine representation ©,, : U(n) — U(n1) of U(n) on C™ | and that
©n, comes from a genuine representation ®,,, : U(ny) — U(ng) of U(ny) on C™2. Then by definition,
for an n-dimensional vector bundle F, én(E) = P(E) Xy(n) C™, and for an n;-dimensional vector
bundle F, ¢,, (F) = P(F) XU(ny) cn2,

Now a bundle is determined by its transition functions with respect to some open cover; the point
of this construction is that the bundle E having transition functions gag : Vo NV — U(n) w.r.t.

Vataer is replaced by the bundle with transition functions V, NV, 98 U(n ®—> U(ny) w.r.t. the
B

same cover. From this point of view it is clear that ¢(0(E)) = P(P(E) Xy ) C") Xy (m,) C™ is the
bundle with transition functions
o on
Va Vs 25 U(n) 25 U(ny) =3 U(ny),

which is the same as P(E) Xy (,,) C"2, where U, acts on C"? via the composite ®,,, 0©,,. This coincides

with ¢(0)(E), as ¢(0,) := O% ¢y, , which is the same representation of U(n) on C" as @, 0 ©,,.

3. Yk (xh) is hard to compute directly because, for arbitrary n, 1! does not come from a real representa-
tion. However, 1} is a representation, and

WP (1) (2) = Yluf(z) = 2 = il (2).

Since an additive sequence is determined by its first element, and since ¥* (') are 1)** are both additive

it follows that ¥kt = k. O
Claim 12.6. The Adams operations on K-theory defined as coefficients of the generating function
d >
ft% log A_¢(E), where \((E) = Zt’Al(E) for E € Vect(X)
i=0

coincide with those defined using the additive sequences k.
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Proof. For this discussion, fix k. Let ¥* be the Adams operation as defined using additive sequences, and
let ¢* be that defined using the generating function. Now & takes any E € Vect, (X) to a certain linear
combination of bundles formed by taking tensor products and direct sums of various of the exterior powers
of . We can take exactly the same combination of tensor products and direct sums of the exterior powers of
the canonical representation of U(n), to obtain an element ¢& € R(U(n)). Of course, £F defines an operation
E — v, (E) := P(E) ®un) & from Vect,, (X) — K(X). It is not hard to see that {¥(E) = ¢F(E). Thus
¢F actually comes from a sequence ¥ € R(U(n)), which we do not know to be additive or multiplicative.

We can show directly though that ¥ = ¥ viewing each as a class function on U(n). Supposing that
M € U(n) has eigenvalues z1,...,z,, we saw that the character of M on the 4t exterior power of the
canonical representation is o, the j'' elementary symmetric polynomial in n variables 21, ..., z,. So, to
calculate the character £, we should substitute o; for A7(E) in the generating function, and take the t*
coefficient. Now by definition of the elementary symmetric polynomials, we obtain:

4. & d. LI " ke
e i i_ ;@ ) — e A ) 24 42,3 ) = k k
tdt log;ta tdt logjl;[l(l tz;) t; =t tZ(z]thz] +t°25 + ) Zf ;Zl-

j= k=1 =

—

As the t* coefficient is exactly 1¥, this completes the proof. O

So now we have all the facts about operations in complex K-theory; however, we don’t know about the
situation for KO yet. In fact, we note that the real Adams operations are not uniquely characterized by
YF(L) = L®* for line bundles L, additivity, and %! = *!. In KO-theory, one can define:

FE k is odd,

vHE) = {wo(E) k is even,

where 1Y(E) is the trivial bundle of dimension equal to the dimension of E over the basepoint of X. This
works, since for a real line bundle we have L* = L, and we get L®? =~ [ ® L* = Hom(L, L) > 1, which is a
section of the bundle and so L®? is trivial.

Adams operations in KO can be obtained from the complex case: use O(n), and for a compact Lie group
G use RO(G) the ring of virtual real representations. Complexification of real representations gives a map
¢: RO(G) — R(G) which is monic, and the diagram

ROG) ——% — + R(G)

{R-class functions} < {C-class functions}

commutes. Moreover, there is the inclusion ¢ : O(n) < U(n) which induces i* : R(U(n)) — R(O(n)). The
real Adams operations come from the following additive RO-sequences {¢f , € RO(O(n)),n > 0}:

RO(O(n))> wﬁn = sp(AL, ... A")

]

R(U(n)) = R(O(n))

k ek
VY = "y,
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e There is a unique additive sequence 1* with ¥ (2) = z*. Moreover, if M € U(n)
has eigenvalues 21, ..., z,, then ¥ (M) = it zf = tr(MF).

LIy zf = si(01,...,0n), and the elementary symmetric polynomial o; repre-
sents the j*I exterior power of the canonical rep of U(n).

e Using this fact we can see that the operations defined by this sequence on
K-theory coincide with those defined previously using a generating function.

e The sequences ¥ are additive and multiplicative, so define ring endomorphisms
of K-theory. Of course, ¥*(L) = L®*, since 9% (z) = 2*.

e By observing that we can compose additive sequences, we prove y*iy! = i+t

e We produce operations on KO by mimicking the complex case.

Lecture 13. Proof of the Hopf invariant 1 theorem

Okay, today we prove Hopf invariant 1. First, note this fact about the Adams operations:

Lemma 13.1. For p prime, ¢¥P(x) = zP (mod p) in K(X) (so think of ¥P as an improvement of the
Frobenius endomorphism of a characteristic p commutative ring).

Proof. Suppose z is a vector bundle E. We saw last time ¢ (E) = s,(A*(E),...,AP(E)). We can write
SP(Jla"'aan) = sz :Uf—i_p'r(ala"'vo—n)?
i=1

for some polynomial r, as Y7, 2 — o} is symmetric and divisible by p. Thus:
UP(E) = sp(AN(E),..., A" (E))
= (AY(E))P +p-r(AY(E), ..., A(E))
= FE? (mod p).
To extend this to formal differences E — F' € K(X) is easy, by the standard Frobenius argument:
YP(E — F)=yP(E) —y?(F)=E? - FP = (E - F)” (mod p). O

Now we have to talk about products for a while. Spaces will have basepoints, and ¢ : ¥+ — X will stand
for the inclusion. We’ll identify K (pt) with Z by taking dimensions, so that for z € K(X), i,z will stand for

the (possibly negative) integer which takes the dimension of = at the basepoint. We’ll also think of K (X)
as ker K(X) - K(pt), giving a short exact sequence:

0—— K(X) K(X)——17 0
This is split canonically, as the map K (pt) — K(X) induced by X — pt gives a section of i*. So we can
think of this as a sequence (where we will abuse notation writing n for ne for n € Z):
0— s K(X)——KX)8Z-“sZ——0
x——— (2,0)
(z',n) ——— n.

Tensoring the first two terms of this sequence with the same terms for another space Y, one can check that
the following sequence is short exact:

00— K(X)®K(Y)— (K(X)8Z) @ (KY)®Z) —>5 K(X)® K(Y)®Z—0

(z,y) ¢ (z,0) ® (y,0)
(@',n) ® (y',m) ———  (ma’, ny’, nm).
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The map « takes the dimension components in K (X) and K(Y) to their product, which is the dimension
of the tensor product of the elements sitting over the wedge in K (X x Y). In fact, « is the map that makes

this square commute (to check this, we write T and y for elements in K(X) and %(Y) and choose n,m € Z):

KX)o K(Y)—5KX)aK(Y)aZ (F 4 1) ® (J +m) ——s (mi, nj, nm)
| l
x ff(X VY)®Z on elements: X (mZ Vv fﬂ, nm)
H
KXxY)——— 5 K(XVY) (T +n) X (J+m)——mTVny+nm

As « is surjctive, the map on the bottom row of this square is surjective. We would like to determine its
kernel. Now we claim that the map X VY — X x Y splits after one suspension. That is, there is a
commuting diagram

Ys1VEsa

DX XY) ——S(X xY)VE(X xY)

T

S(XVY)

S(XVY)

Here s : X XY — X VY and s2: X xY — X VY are defined by s1(z,y) = « and sa(z,y) =y, and p is

. The diagonal composite is given by:
2(1—-1),(z,y)2 t=1/2

the pinch map given by [t, (x,y)] — {
(t,z) = [t, (z,%)] = {

[2t, (z, %)] t<1/2 {[Qt,x] t<1/2

* t<1/2
201 =1),(z, )] t=1/2 | t>1/2 “’y)H{

2(1—1),y] t=1/2
We can define a homotopy [0,1/2] x 2(X VY) — E(X VYY) from this composite to the identity:

[t/(1/2+7r),z] t<1/247r

7t7 —
(r.t,) {* t>1/2+r

% t<1/2—r
and (r,t,y) — {[(1 —1)/(1/2+7),y] t>1/2—7

All this goes to show that %(X xY)— %(X V'Y splits, giving a split short exact sequence:
0— > K(XAY) > K(XxY)—> KXVY)——0.

We have all the maps required now to form the following commuting diagram, drawn with solid lines, in
which the rows are exact. From diagram we construct the dotted map:

0— K(X)0K(Y) — K(X)9K(Y) 25 K(X)®& K(Y)®Z—0

U

0— 3 K(XAY)—" S K(XxY)—— s K(XVY) ——0

The dotted map which A : %(X) ® K(Y) — %(X AY) is the smash product map which appeared in the
statement of Bott periodicity, and which we (sort of) defined.

Lemma 13.2. The smash product map A : %(X) ® %(Y) — %(X ANY') commutes with Adams operations,
in that F(x) AP (y) = YF(x Ay) for v € K(X) and y € K(Y).
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Proof. Suppose = € %(X) and y € %(Y) and write 1 : X XY — X and m : X x Y — Y for the
projections:

P (x x y) = VR (at - why) (by definition of x)
= ¢k (ntz) - PR (73y) (¢* is a ring morphism)
— mih(a) - m3h(y)  (by naturality of ¥¥)
= 9" () x $*(y)
In particular, c*(¢*(x) A YF(y)) = ¥ (x x y) = Y*(c*(x Ay)) = c*(WF(x Ay)), yet ¢* is injective. O

A few words on relative K-theory. Suppose z € A C X and the inclusion is nice, viz., a cofibration.
Then K(X,A) = K K(X/A). There is a product

K(X,A)® K(Y,B) = K(X/A) @ K(Y/B) 2> K(X/AANY/B) = K(X xY,X x BUAxY).

A
X

Figure 8: Diagram of a relative product, for that last equality.

Now suppose X =Y; then we have a diagonal map A : (X,AUB) — (X x X, X x BU A x X) which
induces a cup product

K(X,A)® K(X, B) K(X,AUB)

H |«

(X/A ®K(X/B) K(XxX,XxBUAxX).
Note that when A ~ pt ~ B we obtain

K(X,A)® K(X,B) — K(X,AUDB)

K(X)® K(X) —2—+ K(X).
If in addition AU B = X, we get K(X, AU B) =0, so the smash product map is trivial. We have shown

Lemma 13.3. If X = AUB and A ~ pt ~ B, then IA{J(X)2 = 0; e.g., any suspension has this property.
Lemma 13.4. For all n, K(S*") = Z[z,] /22, and ¥*(z,) = k"x,,.

Proof. By the previous lemma, K S% = Z({IL—1) is subject to the relation (L—1)? = 0. So K(S?) = Z[x1]/23.
Now L is a line bundle, so ¥*(LL) = L*. Thus

YPa) =P (L—1)=LF —1=(1421)" — 1 = kay.

By Bott, again, we have K(52") & K(52)®", sending 2®" to x, = 2", so K(5?") = Zlz,] /2.
By lemma 13.2, ¥ (z,,) = ¥ (21") = ¥ (21)"" = (kz1)"" = k"x,,. O
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In particular, the Adams operations detect the dimension of an even-dimensional sphere!
OK, so now we can use all this equipment to prove that Hopf-invariant

1 problem. That is, we want to show that there is no element of Hopf

invariant one in 7y, _1(S%") for n # 1,2,4. Remember the set up: @

k

S4n7 1 f N SQn i X S4n

Here, k is obtained by collapsing X = C(f) onto its 4n-cell, i.e. by con-
tinuing the cofiber sequence. As f is 0 in K-theory, the long exact se- @
quence obtained from the cofiber sequence $?" — X —3 §4n degener-
ates into a short exact sequence of reduced K-groups, which splits K (X)

into Z(z) & Z{y) (as K(S*") is free): Figure 9: Set-up for the Hopf in-

~ e~ o~ variant 1 problem.
0¢— K(S?") +—— K(X)+— K(S*)+—0
Tp <X
Y& Tap
Now 52 = j*(z2,)? = 0, i*(2?) = 22 = 0 and i*(2y) = 2,, - 0 = 0. Thus, for some a,b € Z, we have
K(X) =Z(1,z,y) with multiplication y*> = 0, 2% = ay, xy = by.
Claim 13.5. a is the Hopf invariant.

Proof. There are a variety of ways to justify this claim; for example, you could use the Chern character,
which provides a ring homomorphism K(X) — H*(X;Q). Also the Atiyah-Hirzebruch spectral sequence
works nicely: By = H*(X; K'(pt)) = K*(X). X is very simple, so we can write this down easily:

ES' =0 unless t is even and s = 0,2n, 4n, otherwise F3' = Z.

In particular, as every nonzero entry has even total dimension, there can be no differentials, and the spectral
sequence collapses by E5 page. In particular, we can identify the F5 and F., pages.

Let 1 € HO(X;K%pt)), u € H™(X; K°(pt)) and v € H*(X;K°(pt)) be generators. Then, if p €
K~2(pt) is the periodicity element, E3™ %" = Z(p"u) and E;™*" = Z(p*"v). Now the total degree zero
line computes K(X), so that

K(X) = Z(1) ® Z{p"u) © Z{p*"v)
Now because the product on the E. page is induced by that on K*(X), we must have (p"u) - (p"u) =

+a(p*™v), and thus v - u = +av. Finally, the product structure on E;’O is just the normal cup product
structure of H*(X), showing that a is the Hopf invariant. O

Theorem 13.6. The Hopf invariant a cannot be odd unless n = 1,2, 4.

Proof. We'll start by assuming that a is odd. Firstly, for each k, i*(1)*(z)) = ¢*(z,) = k™x,. Moreover,
P (y) = PF (5" (w2n)) = 5" (PFxn) = j* (K*"2,) = k*"y. Thus, for some by, € Z:

M) = K"z + by and ¢F(y) = K2y,
Now using lemma 13.1, and writing = for congruence mod 2:
0# ay = 2 = *(x) = 2"2 + boy.
Examining y coefficients, we see that bs must be odd. Now we calculate:
(@) = * (2" + boy) = 2"(3"x + bay) + b23"y,
% (x) = *(3"x + bay) = 3" (2" + bay) + 032"y

Again examining y coefficients gives an equation b3(22" — 27) = by(32" — 3"). 2" divides the left hand
expression, and by is odd, so 2" must divide 3" — 1. The result follows from the next claim. O]
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Claim 13.7. 2" can only divide 3" — 1 whenn =1,2,4.
Proof. Writing v(m) for the largest number r such that 2" divides m, so that 2"|3" — 1 iff (3" — 1) > n. If

one can prove the following formula, the result is immediate:

v(3"—-1) =
( ) v(n)+2 neven.

{1 n odd,
To make this calculation, we have the following argument, due to David Anick. For any e > 0:

32¢f1 _1=9°.3-1=2 (mod8), sothat »(3°4—-1)=1;
321 1 1=9°.34+1=4 (mod8), sothat v(3°441)=2;
3 4+1= 9°+1 =2 (mod8), sothat (3" 1) =1.

If n is odd, we are done. Else, write n = 2¥(™d for d odd, and factorise:
3n—1=32"4 1 =3 )BT - 1)EX 1) (32T 4.

We count exactly 24+ 141+ ---4+ 1 =v(n) + 2 factors of two in this expression, as advertised. O

e In K(X), ¥P(x) = xP (mod p) for p prime.

e The smash product map (drawn dotted) is induced by the solid vertical mor-
phisms below. It commutes with Adams operations. Here, the lower short exact
sequence arises as X VY — X x Y splits after one suspension.

00— KX)@K(Y)—— KX)@K(Y) 5 KX)oK(Y)®Z—>0

-

0— S K(XAY)— S K(XxY)—— S K(XVY) ———0

e Products on K (X)) vanish if X is the union of contractible subsets (e.g. X = S™).
o K(S?) = Z[x1]/22. Since z1 + 1 is a line bundle, ¥*(z1) = (1 + 1)* — 1 = k.
e For all n, K(S*) = Z[z,] /22, and ¢*(z,) = k", as the smash product map
commutes with *. Thus the Adams operations detect the n in S2"!

e This all comes together to prove Hopf invariant one.
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Lecture 14. The James construction

First, remember the group J(X). This was the quotient of KO(X) by the equivalence generated on the level
of bundles by V ~; W if and only if S(V @ ne) ~¢p.e. S(W @ ne). An immediate consequence of the vector
field problem is:2Z

Is this the point? Suppose that it is known that KO(RP™) ~ Z/a,,Z, and that it is generated by [L] — 1
(this is the first part of theorem 5,1). Then we can prove the rest of theorem 5.1 (i.e. theorem 14,1) using
the discussion in lecture 9, Recall that theorem 2.1 implies the solution of the vector fields problem.

Theorem 14.1. The surjection KO(RP™) — J(RP™) is an isomorphism.
Proof. n(L — 1) — 0 means nlL is stably fiber homotopy trivial; this implies a (stable) splitting:

RP gn

1

Sn

But we know from lecture 9 that this implies that »(n) > m + 1, and since m > @, a, = 2¢» divides n, so
n(lL — 1) was already zero in KO(RP™).% O
“Homework: compute J(S™)

Relations to problems in unstable homotopy are often mediated by the EHP sequence, so the next topic will
be to construct it. Our starting point will be a theorem of Bott and Samelson about H,(Q2XX); for a proof
see Whitehead [9]. There is a map « : X — QXX which embeds X as the “straight loops”: « is adjoint
to Idsx, and sends € X to the loop t — [t,z]. Choose a coefficient ring R. The loop structure makes

H,(Q¥X) into an algebra, so a, : Ho(X) — H,(QXX) yields a unique extension to the tensor algebra
T(H.(X; R)) on the R-module H, (X; R) (here, tensor products are over R):

) —*— H,(QLX; R)

|-

@Be>0 H.(X; R)®F «—H.(X; R)

Theorem 14.2. If X is connected, R is a principal ideal domain, and H.(X;R) is torsion-free, then
T(ﬁ*(X; R)) =, H,.(QEX; R) is an isomorphism.
Now since H,(X; R) is torsion-free:
P H.(X; R = P H(XW; R) = H, (V450 X5 R),
E>0 j>0
so you might hope idealistically that QX splits as a wedge of smash powers of X. Of course that’s not

true, but amazingly enough, it does split after one suspension:

Theorem 14.3 (James, probably). When X is a connected CW-complez, there is a homotopy equivalence

YOYX ~ \/ »nx®),
k>1

Moreover, this equivalence realises the isomorphism @ above.

Proof sketch. Come back to this! First, as X is connected, XX *) and ¥OQXX are simply connected. If
we produce a map giving an isomorphism in homology, then by the Hurewicz theorem we have a weak
equivalence. Then if you believe that both spaces are CW-complexes and some version of the Whitehead
theorem, then we’re done.

Now, [\>1 ZX® ZOSX], = [[4>1 X *), B2 X].,, which is to say that the wedge is the coproduct
in the category of pointed spaces and homotopy classes of maps. So we construct a map on XX *) for k > 1:

*) ., yxk S K Sm
BX(0 —— X% S5 n(OEX)F A Son.

2"Note that theorem 14.1 is part of theorem 5.1 (Adams), and theorem 5.1 solves the vector field problem.
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1. We’ve seen this before in the case k = 2: we produced a map

S(X x V) 25X x Y)VE(X x V) 2PV vy sy

| =

S(XVY).

On the other hand the sequence Z(X VY) — X(X xY) — X(X AY) combines to provide

S(XVY) S(X xY) DX AY)

|

SXVEY — S(XAY)VEX VY — S(X AY).

The two horizontal lines give exact sequences in homotopy, so by the five lemma and assuming X
and Y are CW-complexes, we get a map going back, (X AY)VIEX VY — 3(X xY). Now the
composite Z(X AY) — L(X AY)VEX VIY — %(X x Y) gives the first map X X*) — nXxF
in the overall diagram; from its construction we see that it splits the homology of ¥X* as a sum
H.XX® ¢ H,((£X)V*) incorrect expression.

2. The second map in the overall diagram is the suspension of the “straight loops” embedding that
spawned this whole discussion, repeated k times.

3. The third map in the overall diagram is the suspension of the loop multiplication map. Note that loop
multiplication is not strictly associative due to parameterization problems, but it is associative up to
homotopy.

Now the Bott-Samelson theorem says that the product of these composities as k& ranges over the positive
integers is an isomorphism in homology. O

Now note that the Bott-Samelson theorem required that H*(X; R) be torsion-free and R a principal ideal
domain. However, the claim is that this theorem of James holds for arbitrary coefficients, in particular with
Z-coeflicients; in fact, we have a general proposition:

Lemma 14.4. If X — Y induces an isomorphism on homology H.(X; F) = H.(Y;F) for F either Z,
or Q, then H.(X;7) — H,(Y;7Z).

Proof. Use the universal coefficient theorem cleverly many times. First, for any p, f induces a map of long
exact sequences induced by the short exact sequence

0 -7, - Ty -7, - 0

of coefficients. By the five lemma, H,(f;Z,2) is an isomorphism. Similarly, using induction on n,

0 > an > an+1 > Zp > 0
shows that H,(f;Zy») is an isomorphism for all n.
Now the limit Zpoo = -+ < Zpn < Zpntr =+ -+ = | JZpn is called the “Priifer group”. As homology
commutes with direct limits, H.,(f;Zp) is an isomorphism. Finally, as Q/Z = P Z,~, the sum being taken
over all primes p,2& we are done. O

28View the Priifer group Z, as the quotient in the short exact sequence 0 — Z — Z[1/p] — Z[1/p]/Z — 0. Define a
D
map Q — Zp~ by a/b+ c/pd — c/pd whenever b is coprime to p. Now note that the induced map Q — HZpoo factors
through the inclusion of @ Zpoo, that this factorisation is surjective, and that it has kernel Z.
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Now the proof of the James’ Theorem relied on some heavy stuff: Bott-Samelson, the Hurewicz theorem,
and the JHC Whitehead theorem. You may think that’s too slick, and you would be right, because we
skipped over the “James construction.” The biggest difficulties above were caused by the failure of loop
composition to associate. The idea is to replace QX with a homotopy equivalent space, the “Moore loops,”
where composition does associate.

The space of “Moore loops” on X is incredibly simple: since scaling caused trouble, don’t scale! A
Moore loop is a map w : [0,T] — X, T > 0, with w(0) = w(T) = *. Loop multiplication of a Moore loop
w : [0,T] — X and another Moore loop 7 : [0, 5] — X gives a loop 7-w : [0,T + S] — X. We'll call this
space 22X too, for extra confusion. QX comes with a basepoint *, the path of length 0, and then 2X has
a strictly associative product with a strict unit *. We get a map o : X — QXX in the same way (notice
that the old QX embeds in the Moore loops QX).

Now this « factors

X RGN 0) )¢
N

J(X)

through the spaceZ2 J(X), the “free monoid” on X:
J(X) =[x/~
k>0
where ~ is generated by = - * = z. And the “real” theorem is:
Theorem 14.5. & is a homotopy equivalence when X is a connected CW complez.

Notice that this gives a map back, and so a way of constructing maps out of a loop space. In general,
this is hard to do; adjointness is no help for maps out of a loop space. For example, J(X) is filtered by
I =T1j<n X k/ ~, and we fill out the following commutative diagram with the obvious maps:

X" (X)) —> Jn(X) )/ Jp1(X) = X"/F,_ X"

X,

On the other hand, suspending once we get

XM+ YONX
split map YJ(X)

!

X" —— BT, (X) — XM,

so after one suspension J,,(X) splits as 3./, (X) ~ \/; <, nXx®),
Everything above here would like to be rewritten, and re-understood by me.
Finally, notice that we have a map h,,:

Viso 2X ) — 2OvX
- 3

w(collapsing) i e

nXm),

29 “J” for “James”.
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Its adjoint h,, : QXX — QXX ™ is called the “m'" (James-)Hopf invariant.” If X = S™ and m = 2:
hy : Q8" — Qn (S = Q8L

This is a piece of the EHP sequence; the rest comes from taking the homotopy fiber and looking at the
homotopy long exact sequence. Now to compute H,(Q25""1!), we use Bott-Samelson:

H.(QS" ) = T(ﬁ*(S")) = Tlu,] where |u,| =n.

So hs induces a map T[u,] — T[uz,] which preserves degrees, so it couldn’t be an algebra map. So we’d
better try cohomology.

The following has become some kind of aside:

Alternatively, to compute H,(Q2S"*1), you could use the path fibration QS"*! — PS™H1 — gntl
(n > 0), and the Serre spectral sequence gives... (draw it).

Note that if you try to remember grading then u?> = (—1)uu for u odd, so you lose commutativity by trying
to remember grading, which is the reverse somechow of the usual situation. I don’t really get this.

Theorem 14.6. With coefficients in a principal ideal domain (should this say ‘field’?), there are iso-
morphisms:

H*(Q8*" 1) = Txy,] as Hopf algebras, (1)
H*(Q8*") = Alzan—1] @ T[zgn—2] as algebras, (2)
H,(QS5%%) = H,(5% Y @ H,(Q5** 1) as coalgebras, not as algebras. (3)

Here, T' stands for the divided polynomial algebra.

We digress a bit to explain this theorem’s statement. First, we always have a diagonal map A : X — X x X.
Assuming that X is nice enough (or that the coefficients are nice enough), H,(X)® H,(X) == H.(X x X)
is an isomorphism, so there’s a map going backwards as well. We call the composite of A, with this inverse
map a “coproduct”, denoted A:

H.(X) H.(X) © H(X)

1R

H,(X x X)

The coproduct map A, along with the obvious map H.(X) — R = H.(pt) gives H,(X) the structure of a
coalgebra.

What is a coalgebra? Well, you reverse the diagrams for an algebra; i.e., you have maps A : C — C®grC
and € : C — R satisfying coassociativity, counitality, and cocommutativity, corresponding to the following
three diagrams:

C

C®rC
A lm
CorC 22 CerC®RC,

C
2

»

A

RopC EL CorC 2% CopR,

C— 2 CorC

Sk

C®grC.
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(T involves a sign change for a graded cocommutative coalgebra.)

Suppose X is connected, so Hy(X) = R, and there’s a well-defined class 1 in Hy(X). Then if © € H,(X)
where n > 0, Az = 1®a+ ---+ b® 1, where any omitted terms have positive degree both in the left-
and right-hand factor. It is clear that a = b = z (by counitality). If H,(X) vanishes for p < n, then
Azrx =1®x+x®1, and x is called “primitive.” Note that in dimension zero, well, A1 = 1®1. This property
is called “group-like;” it should be called “set-like,” but nobody does that.22

If moreover we are looking at Y = QX well, QX is an H-space: the map u: QX x QX — QX satisfies
the requirement that the forllowing two diagrams homotopy commute:3-

pt X QX — QX x QX «— QX x pt
\ l'u/
95,4

IXp

QX x QX x QX — QX x QX

#Xll ul
0X x QX H 95.¢

Over field coefficients, this induces the diagram

H.(Y xY),

where the isomorphism is of coalgebras. (We omit the proof; you have to think about what the tensor
product of coalgebras ought to be.) The map ¢ is called the “Pontrjagin product”.

What does this mean, though? It means that H,(Y) is a Hopf algebra. So what’s a Hopf algebra? Well,
it’s a bunch of structure. We have maps n: R — H and u: H ® H — H that give H an algebra structure
and maps € : H — R and A : H — H ® H that give H a coalgebra structure. In addition, n and p are
coalgebra maps, so they give commutative diagrams of the form:

HoH—"— 1 HoH- s H R
o =N
HeH®H®H A R®R /. R—" S H
AbngH ll@T@l CH®H J{ Al lA
HeoHoHoH " HeH R RoR—"" HoH

Now you can check that these diagrams commuting implies that A and e are algebra maps, so the symmetric
conditions are equivalent.

Before going on, another important example of a hopf algebra is, for G a group, the group algebra R[G].
The elements are the free R-module on G, and the product is generated by [g][h] = [gh]. The coalgebra
structure comes from Afg] = [¢ ® g] and €[g] = 1 for ¢ € G. Notice that this explains the terminology
“group-like.” 1In fact, the set of group-like elements is exactly the generators. So the coalgebra structure
enables us to recover the generators!

Turning to the Bott-Samelson theorem: if X is connected, R is a principal ideal domain, and H,(X) is

torsion-free, then the theorem gave us an algebra isomorphism T(H, (X)) & H,(2XX). Now that we have

30The reason for this terminology comes from the example R[G]; see below.
31Some people call this an associative H-space.
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establed that H,(QXX) is in fact a Hopf algebra, the natural question is what the Hopf algebra structure
on T(fj: (X)) ought to be in order that the isomorphism is one of Hopf algebras. In particular, what we
need is a coproduct map A : T — T ® T. It has to be an algebra map, so by the universality property of
T all we need is a suitable map A : H (X) — T ® T, whose unique extension A is a coproduct map:

T(H.(X)) 5> T(H.(X)) ® T(H.(X))

! |

H(X) —2— H,(X) @ Ha(X),

It works out that Az is the obvious thing. For z € Iﬂ{/n(X)7 with n > 0, A is defined by:
Ar=z®1+Az+1®x
Returning at last to theorem 14.6, let’s compute the coalgebra structure of H,(Q2S"1) = T[u,]:

Aup =u, @1+ 1Q® uy,, (as there is no room for middle terms)

Auf = (up ® 14+ 1® uy,)", (as A is an algebra map)

In particular, as the product in T[u,] ® T[u,] is (p @ ) o (1 @ T ® 1), where T(a ® b) = (—1)!1*/1°l(b ® a):

AuZ = (=12 @14 (1), @ up + (1) "u, @ up + (—1)"° @ 12
=ui®1+(1+<—1) )(tn ® un) + 1@ u,
e When n is even, we could go on to prove that Auf = Z (H;]) ul, @ ud.
i+j=k
e When n is odd, we get that u2 is primitive. As u? has even degree:
Au?k = Z (Hl']) u? @ u, and
i+j=k
= (") (Auy)
Z (ifj) (2 @ w2 4 2 @ 2t
itj=k

2k+1
Aus

So H,(QS%) =~ H,(S%*71) ® H,(Q25* 1) as coalgebras, though certainly not as algebras giving (3).
Now consider H*(Q2S5"*1). With any coefficients, the group structure is

R(z) q=ni (for each i > 0),
0 otherwise.

HI(QS™ ! R) = {

Now with field coefficients, let’s compute the ring structure. We can use in this case the pairing of cohomology
and homology, so picking n to be even to start, we get

(2 ® 2),u, )

<Z74ZJ’ U, > <
= (2 ® zj, Aul7)

=(z®z, », (Yl @ ul) (as n is even)
i+ j =it ]

= () = ((P)zis ),
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In particular, z;z; = (itj)ziﬂ'. This algebra is called the divided polynomial algebra on z;, denoted I'[z],
and we get H*(Q5?*+1) = T'[xy;,] as Hopf algebras, which is (1).
Similarly, the pairing for the odd case gives (2):
H*(QSQk) ~ H*(SZk—l) ® H*(QS4I¢—1)
= Alzog—1] ® T'[rap—2),

but now since the homology isomorphism was only one of coalgebras, this is only an isomorphism of algebras.

Let X be a connected CW-complex, and X — QXX be the inclusion of X as
the straight loops of length one in the space of Moore loops on X.

o If R is a PID, and H.(X;R) is torsion-free, then a induces an isomorphism
T(H.(X;R)) - H,(QXX; R).

e There is an equivalence Q3 X ~ /5, ¥X (k) which realises @.

e The extension of & to J(X) —%, Q%X is a homotopy equivalence. Y J(X) splits
as \/g>1 »X*), We define the m*™ James-Hopf invariant h,, via:

Bom - {EQEX — VizoZX® — zx(m)} with adjoint Ay, : QXX — QEX ™)

e When n is even, the Hopf algebra H,(2S™*1) is the tensor algebra T[u,], with
comultiplication given by Auf = Z (H;j )uﬁl ® ud.

it+j=k
e With PID coefficients, there are isomorphisms:

IR

H*(Q8%" ) = T[ay,] as Hopf algebras,
H*(Q8%*") 22 Aoy 1] @ T2y _2] as algebras,
H,(QS8*) = H,(S** 1) @ H,(QS*1) as coalgebras, not as algebras.

Lecture 15. The maps ¢ and h in the EHP long exact sequence

The march to the EHP sequence continues.

Keep? Recall for a connected CW complex X the James construction gave a homotopy equivalence
V =x® = soxy,
k>0
50 in particular we have a map going back. The map
\ SX® — mxm
k>0
given by smashing everything else to a point gives a composite

PP — (1) 0.4
Vizo Bott-Samelson-Jams

$x(m)

whose adjoint hy, : Q52X — QXX is the “m™ James-Hopf invariant.”

Applying the James-Hopf invariant construction when X = S™ and m = 2 gives a map hy : QS"T! —
0527+ The EHP sequence comes from the long exact sequence of the homotopy we get from taking the
homotopy fiber of this map. To start finding out the fiber, we computed the cohomology algebra of QSm*1:

Alz1] ® T[z2] when n is odd,

. (where |z;| = ni).
[[x4] when n is even,

H* (QSTH-I) — {
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Now the adjoint of the James-Hopf map factors:

Eﬂanrl ha S2n+1

oA

2952n+17

which is just the expression of adjointness32 between ) and . hs came from a splitting, so it splits:

§2n+1 ~1d §2n+1

| E
Viso (58 T2 s gt
Thus hs is surjective in homology. As Ha, 1 (3Q52%H1) 22 Z the surjective map Hapy1(ho) : Z — Z must
be an isomorphism. Then the universal coefficients theorem shows that H2"*!(hy) is an isomorphism.2¢ In

particular, H?"T1(Xhy) is an isomorphism, so that H?"(hsy) is an isomorphism. To finish computing the
map on cohomology induced by hy : QS+ — Q8527 +1 there are two cases:

e First, assume n to be odd. Then x; — ug under hj:

B

H*(QS™ 1) «—2— H*(Q52m+1) |z1] = 2n, and
I I where:

Afur] @ T'ug) «————I'[z] |u;| = ni.

As h3 is an algebra map, klz; = x’f — u§ = klugg, hence h} : xp — ugg. A simple argument (see
claim 15.2) using the Serre spectral sequence of the homotopy fibration F — Qs — Qe+l
shows that H*(F;Z) = Alu1] with |u1| = n. That is, F' has the same cohomology algebra as S™. On
the other other hand, we have a map a : S — QS™"! (the map from the Bott-Samelson theorem).
We produce the diagram

Sn

’Y/ 7 g o null - " nan
p where j*(u1) = uy and a*(uy) generates H™(S™).

}7]< Y y QGntl ha y 0,§2n+1

The rightmost diagonal map is null-homotopic2% so the dotted map 7 exists. Moreover, v* is an
isomorphism in cohomology. if n > 1, then m1(F) = 0 and v is a homotopy equivalence by the
Whitehead theorem. In case n = 1, the long exact homotopy sequence shows 1 (F) 2 71(25?) = Z,
S0 7y is an isomorphism on 7;. Now - lifts to a map of universal covering spaces

F—7 LR
F RE S

32Here, suppose that F': 2 +— € : G is an adjunction, that X € 2 and Y € %, and that h:X —GYandh: FX — Y are
adjoint. The commuting diagram on the left induces the other commuting diagram, by naturality of the Hom-set isomorphisms:

X —3GY FX T> G
h
H\L lG(Idy) induces F(ﬁ)l N lld
=
ay -4 s ay Fay 250y

33Recall that the reduced homology of QS™*! consists of a copy of Z in degrees n + 1, 2n + 1, 3n + 1, etc.
34Simply because 25271 is (2n — 1)-connected.
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which are homotopic by the Whitehead theorem; since ¥ is equivariant with respect to deck transfor-
mations, v : F — S! is a homotopy equivalence (I do not understand this). So now for n odd
we have the homotopy fibration S» — QS+ — QS?2"+! whose long exact sequence is the EHP
sequence

o (8™ =S T (ST S i (2 B 1 (S™) =S (ST —

e The case when n is even is even more interesting. Then z; — ug under h3:

h3
H*(QS" ) «+—— H*(QS5%n+1) |z1| = 2n, and
I I where:
Iuq] ¢+———I'[z4] lui| = n.

Now, however, uy is not this bottom class of the divided polynomial algebra, so it is no longer true
that ub = klugy; instead,
k

u? 2k)!
Uz = (?1) - (2k) k-

This is a pretty awful number, but if we look at the prime 2 it’s not so bad:

(2k)! 2 4 2k
—1.-2.3.2..... —
ok 2733 2

El-(1-3-...-(2k— 1)),

so over Zy) this is k! times a unit. So working over Z(y), h3 : xx — (unit) - usg. So the Serre spectral
sequence over Z) looks the same as it did in the odd case, and H.(a;Z(s)) is an isomorphism. So
v : 8™ — F isn’t a homotopy equivalence, but it is an isomorphism on , localized at 2, by Serre’s
mod-% theory.

Theorem 15.1. Let o : X — Y be a map of simply connected spaces. If a, @ Ho(X;Zp)) —
H.(Y;Zy)) is an isomorphism, then o, : m.(X) ® Z,) = T (Y) @ Zpy is too.

So for n even, the 2-local homotopy groups are the same; we have no idea about the unlocalised
homotopy groups, but for present purposes we don’t care: we get the same EHP sequences for n even,
but now localized at 2.

Claim 15.2. When n is odd, the cohomology of the fiber F' of he has the same cohomology algebra as S™,
and F — QS"*1 is an isomorphism on H™. When n is even, the same holds after localising at (2).

Proof. Let R denote Z when n is odd, and Zy) when n is even. We always use coefficients in R, and write
E =QS""! and B = Q52"+, Whether n is even or odd, we know that:

e The cohomology algebra H*(E) has a copy of R in each degree which is a multiple of n.

e The cohomology algebra H*(B) has a copy of R in each degree which is a multiple of 2n, and the map
h% : H?k"(B) — H?*"(E) is an isomorphism (for all k € N).

e Ifa € H'(E) and b € H**"(E) are generators (for any k € N), then ab generates H2*+1)n(E) 32

As the maps H?*"(hy) are isomorphisms, no differentials can ever hit the entries E2¥™ of the associated
Serre spectral sequence3S, and E2¥0 is identified isomorphically with H?*"(E). Thus, the only nonzero E.,
term with total degree 2kn is E250,

351f n is odd, H*(E) = Alu1] ® I'[ug], and this is obvious. If n is even, we are using coefficients in Z(y), and H*(E) = I[u1].
We calculate ujugy = (2k;r1)u2k+1 = (2k + 1)ugg41, and 2k + 1 is a unit in Zy).

36T understand this, consider the edge homomorphism.
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Now no differentials out of the entries E%7 for j < n can possibly be nonzero, so that all of the Eg’j for
j < n are zero, and Ey™ ~ R. Then ES™ = E%" is identified isomorphically with H™(E).

Now (for each k) we have identified the places where the generators a € H"(E) and b € H**"(E) appear
on the E., page — at E%" and E2™0 respectively. Thus, the generator ab € HZ*+1)"(E), must appear in
E2kntin=i for some i < n (see Subtlety 15.3). These groups are zero for i > 0, so that ab appears in E2Fmn,

which is thus identified isomorphically with HZ*+Dn(E).

2k . . . . .
Moreover, as E; " ~ R surjects onto E?*"" = R as R-modules, this map is an isomorphism, so no

differentials can ever hit position E2Fm",

To summarise, the groups EQ%"’0 and EQ%"” are all equal to R, these entries are never hit by any
differentials, and never support nonzero differentials, and only these entries are nonzero at E,. Thus, none
of the Eg “ can be nonzero except when j = n, for if j is chosen minimally amoungst exceptions to this rule,

then E%J # 0, a contradiction. O

Subtlety 15.3. In the Serre spectral sequence, suppose that x € ES! detects u € H*T(E) and y € ERY
detects v € HPT4(E). That is, writing Fy H***(E) for the s*® subgroup in the associated decreasing filtration
of HSTH(E):

u € FsH*YY(E)\ Fs4 1 H°YY(E) and v € F,H?T(E) \ Fp.1 H?TI(E).

Then certainly uv € Fs;, H¥tPTT4(E), but it is not necessarily the case that uv ¢ Fsi 1 HSTPTT(E). In
particular, uv could be detected on the E,, page at any of the positions ESIPHmtTa=" for » > (.

WEell now there’s lots to do. Each of these maps has its own personality, so we’ll take each in turn.
e is most familiar, so we’ll start with it. In fact, e : m(S™) — m1(S™*!) is simply the suspension
homomorphism: from the above calculations of i3, we see that e is induced by a : S — QX.5™.

You could think of the rest of the maps as the obstruction to e being an isomorphism: since ;41 (S?" 1) =
0 for i < 2n — 1, we have the following excerpts of the EHP sequence:

0

Ton—1 (Sn) 46” 7r2n(5n+1)

0 T (S™) —> mipq (87— 0, (i < 2n—2)

so e : m(S™) — mi41(S™ 1) is epic if i = 2n — 1 and an isomorphism if i < 2n — 1. This is precisely the
statement of the Freudenthal suspension theorem for S™, so the homotopy groups 74 (S?"*1) and the h and
p maps are the obstructions to extending the Freudenthal suspension theorem to higher dimensions.

By the way, earlier we studied the Hopf invariant 1 problem; there were two main results: using Sq" we
found that if there is an element of Hopf invariant 1 in 7g,_1(S™), then n is a power of 2. Similarly, we
defined a stable version of the Hopf invariant, a homomorphism 7o, ;_1(S" %) — Zs, in which Sq™ takes
the place of the cup square.

Since Sq" commutes with suspension, this is a stable result: if K = S" " Uge?" ™ for f € mappi—1(S™T),
and if H"V(K;Zy) = Zo(z) and H*""(K;Zy) = Za(y), then Sq" z = y implies that n is a power of 2.
Using K-theory we showed that if the (unstable) Hopf invariant is one, then n must be 1, 2, 4, or 8. This
result is not obviously stable from K-theory because the Adams operations are not stable. But now the
EHP sequence gives this to us:

ﬂgn_l(sn) i» 7T2n_1+i(Sn+i) is surjective,

so no new elements are born after suspending any number of times. This is an example of the EHP sequence
taking unstable information and giving back stable information.
Now we move up one row and look at h:

h
Ton+1(S™) — mop1(S*" ) ~Z

We also have the Hopf invariant H : mo,1(S"*!) — Z. To keep them straight, h is the “James-Hopf
invariant” and H is the “Hopf Hopf invariant.” We will show in lemma 15.5 that the two coincide.
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Claim 15.4. If f : S?nt1 — S"HL g5 an element of moni1(S™TY), then h(f) = deg {f : 87— QES"},
where f is the adjoint of f, and by deg{f} we mean the degree of Han(f) : Z — Z, defined only up to sign.

Proof. h(f) is the degree of §, the adjoint of the composite

g: 52—y oxgn 2 gygn

Now there are commuting diagrams

252n 4/‘)252n O3 g7 ﬁzzs@n
rOxns »s2n

From the left diagram, h(f) = deg§ = (deg ¢)(dege) = degq = (deg f)(deg hs), where the reader can figure
out what we mean each time we write deg. However, from the right diagram, deghy = degha =1 (as hs is
a collapse map). Note that we have used that e and n both have degree one in the appropriate sense. O

Lemma 15.5. h(f) = £H(f) for all f € wa,11(S™1), so that the names are well-chosen.

Proof. We'll calculate h(f) = £H(f) for f € ma,11(S™*1). Moreover, we'll write H for H(f) and h for h(f).

First take the case n is even. Then H is calculated by squaring an odd dimensional cohomology class,
so that H = 0. Now let g generate Ha,(S?"), and write us as usual for the generator of Ho,(Q2S"*!). By
the claim, f,(g) = h - us (up to sign). Now f, is a coalgebra map, and we have computed the Hopf algebra
structure on H,(QS™1) = T[u,], so there is a compatibility:

gt h - usy,

. \
A
AI
fe®fs

gR14+1Rg——=h- (U2, @1+ 1Qugp) ——h- (U2, @1+ 2u; Qui + 1 ® ugy,)

But this equality can hold only if A = 0, so we are done when n is even.
In the case that n is odd,2Z there are two steps; first we show h | H, then that H | h. To show that h | H,
study these two Barratt-Puppe sequences and the associated exact sequences in cohomology:

§2n+1 fo gnt1 . O(f) —» §20+2 Gnt2
Iﬂ IX 8
§2n+1 if, QS BDO(f) ——» 5202 2 ZQQS"H
0« Z < Z{x) 0
e T
0—2 7. 7(%) 0
0 Z{y) = Z < 0
T
Z1(3) = z—" 3,

37Note that the argument showing that h = 0 no longer applies since now us = u% is primitive; recall that there is a coalgebra

isomorphism H.(Q5%%) 2 H,(S%¢~1) ® H.(Q25% 1) in this case.
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Now we may choose the generators # and ¥ such that £ — Z and y — 7. In particular, 2> = Hy then
implies that 2 = H7y. However, as EC’(f) is a suspension 22 we have Hy = 0, so that h|H.

To show that H | h, we study the map Qk, where k is the cofiber map k : S"*1 — C(f). We wish
to show that 25"t — QC(f) induces a map on Ha, of the form Z — Zjy. For then, if we look at the
Barratt-Puppe sequence:

Q92n+1 af s Qg+l QC(f) (€26)~

Z
aT / on Ha,(—): ~T
Z

S2n

Z Ly

F

In particular, as the composite S2* — QC/(f) is null, h — 0 under Z — Zp, so that H|h.
In the rational cohomology spectral sequence for the fibration QC(f) — PC(f) — C(f), we compute
a crucial differential (marked (x)):

U TU
nt Q Q Q
n+1
Qs \ (%) dpi1(ru) =dv-u+a-du=22= Hy
T Hy
0t Q Q(x) Q(y)
0 n+1 o+ 2
Sn+1

Because there is no torsion in these two groups, the integral cohomology spectral sequence embeds in the ra-
tional cohomology spectral sequence, and is dual to the homology spectral sequence. So the same differential
is multiplication by H in the integral homology spectral sequence (drawn at right):

H,, (Qk)
ml z---""" "z 0 TS /. Ty Ty
Qg+l \ ac(f) \
nt z Z--___ 0 . nl z  __SZ z
< = K O
0 Z z 0 0 Z z 7
0 n+1 M+ 2 0 n+1 M+ 2
gntl c(f)

As the right hand sequence converges to H.(pt), we deduce that Hs, (QC(f)) = Zpu, and the differential
dpt1: Eﬁilln — Eg;é is the quotient map Z — Zy.

Now the map k : S"*1 — C(f) induces a morphism of spectral sequences, from that of the fibration
Q87 — pSntl s 87+ to that of QC(f) — PC(f) — C(f), as drawn above. Moreover, the map
of interest, Hs,(Q2k), is one of the two dashed arrows. The other dashed arrow, x, is an isomorphism, as
it is induced by the isomorphisms H,,1(k) : H,1(S"™) — H,+1(C(f)) and H,(Qk) : H,(QS") —
H, (2C(f)). Consideration of the commuting square in the above diagram reveals that Hs, (2k) is surjective,
and completes the proof. O

38Cup products vanish in any cohomology theory on any suspension.
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Maybe now we should show that there exists an element of Hopf invariant 1; all the results we have proven
so far have been negative. Let’s see that an H-space structure S™~! yields an element of Hopf invariant one
on S™, then real, complex, quaternionic, and Cayley multiplication will provide elements of Hopf invariant
one on S, §%, §4 and S8.

We will construct such elements using the “Hopf construction”; to understand this construction, it
helps to look at it in extreme generality. Remember from the beginning of the course that this takes a
“multiplication” pu: X xY — Z and yields a map Hu : X *Y — XZ. The construction (see lecture 1) is
by forming a morphism of pushout diagrams, pictured on the left and right faces of the following cube:

XxY K -7
\
CX XY ‘ cz
l
X xCY - CZ
\ \
X+y — T ey

To explain this pictorially, we represent X, Y and Z each as a single point, so that X %Y is represented as

an “L” shape:
c_Yl ch_y‘ ey
[ S—

X CL X Y XxY Ci X XY

Moreover, we represent ¥Z as another L shape, drawn a little larger (below, to the left). The map H(u)
can then be represented pictorially as in the center below. Finally, we observe that the cone on X *Y is in
fact simply C1 X x C_Y, as drawn on the right below.

-
c_z w‘ % C(X *Y)
X7z ? C+X|>|<C,Y
A XY
ey
z £z
ciz

For brevity, write j for H(u). Now we will be interested in the Hopf invariant of j, when X =Y = Z = §n~1.
In particular, we should consider the cofiber C'(j). We already understand C(X *Y’), and can represent
this cofiber pictorially (below, left), where the red arrows indicate gluing. Moreover, since the composite
X *xY — XZ — C(j) is null-homotopic, it extends to a map k : C(X *Y) — C(j) In fact, we obtain a
map k for every nullhomotopy of this composite, and the obvious choice of nullhomotopy gives rise to the
obvious map k. In fact, k is a relative homeomorphism (C(X *Y), X xY) — (C(j), Z). It is drawn below,
on the right, where the subspaces that form the data of a pair of spaces are drawn in green:

— —
by

ooum ooa

Now we have the following commuting diagram of relative diagonal maps of pairs of spaces.?2 Here, we still
draw the subspace A in a pair (W, A) in green, and still indicate gluing by drawing red arrows.

39Recall that for any pair (W, AUB), there is a relative diagonal map (W, AUB) — (W, A)x (W, B) := (W xW, AxWUW x B).
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(CLX xC_Y, X xY) (C(45),22) C(j)

— —
by by
b DY

oy oy
x - x| — |- x|
A | 4l |
(CLX x C_Y,CLX x Y) SO L /0L L

—~

X ) . ) .
(C4X xC_Y,X xC_Y) (C(),C+2) x (C(4),C-2) C(j) x C ()
We are particularly interested in the case where X =Y = Z = S"~!. In this case, restricting p to S~ x{zg}

gives a self map of S"~!, whose degree we denote a. Similarly, we denote by b the degree of the restriction
to {wg} x S"~L. The claim is:

Lemma 15.6. The Hopf invariant of H(u) : S*"~1 — S™ is +ab.

Proof. We use the above diagram of relative diagonal maps. Then the cofiber C(j) of j = H(u) : S*"~1 —
S™ has only an n-cell and a 2n-cell, so we can write H"(C(j)) = Z(z) and H*"(C(j)) = Z(y).

Now the inclusion of C(j) in the pair (C(j),C+Z) is an isomorphism on H", and we will write z €
H™(C(j),C+Z) for the element mapping to x € H™(C(j)). We'll do the same for (C(j),C_Z). Consider
the element = ® z € H?"((C(j),C+Z) x (C(j),C_Z)), in the context of the above diagram. We have:

abz? Lt | Hy | 2 ~ Hy

i I

3.
brRar ~—zRr+— Tz R,

with the following explanations:
1. This diagonal defines the cup product on C(j), so x @ x — x — = = Hy.
2. The inclusion C(j) < (C(j),S™) is an isomorphism on H?".

3. We can do this one factor at a time. On the left factor, we must consider the effect of the inclusion
i: (CLXxCY,C X xY)— (C(4),C+Z) on H"(—,—). We have a diagram, in which the vertical

arrows are inclusions inducing isomorphisms on H"(—,—) (when X =Y = Z = §"71):
(C4X x C_Y,C4X xY) % ﬁ, % (C(j),C1.2)
g///v/;_r"j ,-:"l 7| l
Gt

map of cones induced by plrgxy

C_Z.z
(xoxc_KxOXY) 1 degree bon H™(—,—) ( : )
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Note that we use the following commuting diagram to understand that the lower map has degree b:
H"(xg x C_Y,29 XY) H"(C_Z,7)

| =[o

H" Yzg xY) (”"T‘fb”) H"(2).

In particular, *(z) is b times a generator (and we call this generator x as well).
4. This relative diagonal defines the smash product map.
Thus, k*(Hy) = abxz”?, and as k is a relative homeomorphism, this shows that H = +ab. O]
Corollary 15.7. There is a map of Hopf invariant one in ma,—1(S™) forn =1,2,4,8.

Proof. Apply the previous lemma to the Hopf construction j = H(u) where p : S"71 x §771 — §n—1 s
the H-space multiplication on S™~! given by viewing S™ ! as the unit sphere in R, C, H, or O. O

e Under XQXS" = \/i>o 25", we have a map hy : Q5" — Q82" +1. More-
over, H?"(hs) is an isomorphism. We can calculate all of H*(hsy) as we know the
algebra structure on QS*.

e If n is odd, or if n is even and we localise at (2), then a SSS argument shows
that F(h2) has the same cohomology as S™. Now the counit o : S* — QS"T!
is an isomorphism on H", and hoa is null, so « can be taken to be the fiber.

e The fiber sequence 8™ — Q8" — QS2"*! has a LES of homotopy, the
EHP sequence. The tail end exactly proves the Freudenthal suspension theorem.
e A map h: w1 (S") — o, 1(S?" L) =2 Z appears. We prove that it is
precisely the Hopf invariant.

o We exampine more closely the Hopf construction, taking p: X x Y — Z and
returning j = H(p) : X *Y — XZ. f X =Y = Z = S"~1, we prove that j
has Hopf invariant ab, where a and b are the degrees of the restrictions to each
factor. This constructs a map of Hopf invariant one on S™ for n =1, 2,4, 8.

Lecture 16. Whitehead products and the EHP spectral sequence

OK, so now we’ll go back to the EHP sequence, and conclude this look at the map h by seeing what we
get from the existence of elements of Hopf invariant 1. Last time we constructed maps 7 : §2"+! — gnt!
of Hopf invariant one (for n = 0,1,3,7)22, by applying the Hopf construction to H-space multiplications
w: 8™ x S" — S™. We'll consider this map when n = 1,3,7. To see this phenomenon in the EHP sequence,
we view 7 as an element of 7o, (25™T1), examining the 7, level of the long exact sequence of the fibration

7 5 Q8+ Iy 0§27+ We can fit 7 into this picture:

§" s QL L, g2t
o

Qs2n+1{ @ S2n

We have decorated this diagram for readability only. The dotted map ¢ is defined to be the composite hT.
The wavy maps are highlighted, as their composite is a self map of 25271 which we would like to show is a
homotopy equivalence. The diagram commutes, as the left triangle simply expresses that 7 is adjoint to 7.

40These maps are often denoted 7, v and o respectively.
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Now because 7 has Hopf invariant one, and h detects the Hopf invariant, ¢ must be homotopic to +a
(where « is the adjoint of Idsg2n ). Now 7o, (@) is an isomorphism, so by the Hurewicz theorem, so is Ha, (),
and by universal coefficients, so is H?"(a). In particular, the wavy composite induces an automorphism
H?(QS? ). As H*(228?"*1) is a divided polynomial algebra, it follows that the wavy composite is a
cohomology isomorphism, and (by the Whitehead theorem) a homotopy self-equivalence of Q.5%7+1,

This is amazing: it means that .5"*! splits, and so the long exact sequence for this fibration splits into
split short exact sequences:

h

04)7‘@(5") %e ﬂ'j(QSn-i_l)ﬁﬂ'j(QSQn-‘_l);)O
(1)«

Now addition on 7;(©25"*1) is inducediL by the loop multiplication u on QS™*1, so that the composite

ex QT

C: 8" x 82t 5T ggntl gt _E ggntl
induces the following composite on homotopy groups, which is an isomorphism:

eX (Q7)x
—

7S x QS —— 7,(57) x m; (52 ) T (S ¢y (et 29 (et

Thus C is a homotopy equivalence22 and this never happens for other n, as it is equivalent to the existence
of an element of Hopf invariant one. To re-emphasise, on homotopy groups we have isomorphisms:

5 (S™) X i (201 Sy (S7HY)
(o, B) —— ea + 7.(B).

OK, now let’s talk about the “P” part of the EHP sequence; “P” stands for product, I guess, so first
let’s take a step back and talk about Whitehead products. I'm not going to prove everything; for more
information, refer to George Whitehead’s novel [9].

The Whitehead product is a map m,(X) X 74(X) — mp44—1(X), which is easiest to describe in terms of
its universal example, a map W : SPT4=1 — §P v/ §9. With W understood, then for a € 7,(X), 8 € my(X),
we define the Whitehead product [«, 8] € mp4q—1(X) to be the composite:

grta-t Wogpyga VB xyx 2L x

The map W is constructed as follows: SP x S? has three non-zero cells; the first two compromise the
axes SP V S% and the third is a (p + q)-cell whose attaching map is the map W : SPT4=1 — §P v §9,

I’ve removed a bunch of pictures that aren’t looking too good. Maybe some of them will get
replaced a little later.

I don’t really see the correctness/usefulness of the following statement: So the top dimensional
cell is the mapping cone of W.

Another way to think about W is as follows. SP x S? is a quotient of eP x e?, under the product of the
quotient maps 7 : e? — SP and 7’ : e? — S? given by collapsing boundaries. In fact, this quotient map is
part of a pushout diagram (drawn on the left):

P x el 2"y 5P % §4 P — TGPV SI¢ T el
where pr1T WT Tprz
SPra—l = 9(eP x 1) L §P S eP x S 9(eP x e7) «—5PL x 4

4INote that from this fact, (i.e. that if X is a connected H-space then addition on 7. (X) is induced by the multiplication),
it follows that the fundamental group of an H-space is abelian.

42By the Whitehead theorem. Note that this agument applies when n = 1, as both spaces involved are simple spaces. A
simple space is one in which the action of 71 on 7, is trivial for all n. Note that all H-spaces are simple, as all Whitehead
products are zero in an H-space. See below.
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[T could probably put the diagram from my notes here. |

Facts about the Whitehead product: once again, for real proofs, see Whitehead’s book.

1. In the case p = ¢ = 1 it is a map 71 (X) x 7 (X) — 71(X), given by [, 5] = aBa~!37!, as can be
seen by considering the attaching map of the top cell of the torus. This justifies the bracket notation.
In the case p =1 and ¢ > 1, this product gives the natural action of 71 (X) on 7, (X).

2. Skew commutativity: [3,a] = (—1)!°18l[a, 3].
3. The Jacobi identity: for a € m,(X), 5 € my(X), v € 7 (X):

(=1 Pla, [8,9]] + (=P Dy, [, B]] + (=1)D7[B, [, a]] = 0.

4. Interaction with the Hurewicz map. One way to straighten out the degree shift is to write all the
homotopy groups in terms of QX; then the Whitehead product is a map m,(2X) X m,(QX) —
Tp+q(2X). On the other hand there is the Hurewicz map h : 7, (QX) — H,.(QX) (and H,.(2X) is a
noncommutative algebra with Pontryagin product). Then h([«, 8]) = h(a)h(8) — h(B)h(w), i.e., h is a
map of Lie algebras.

5. The suspension Y[a, 8] = 0. We know this fact, that X VY — X x Y splits after one suspension, so
that W is nullhomotopic.

6. If X is an H-space, then [«, 8] = 0. This follows from the commutative diagram

grta-1 W, ooryga VB vy x 2, x
|
\ » /

SP x 81 — X x X.

Now consider the Whitehead product in the case p = ¢ = n; here the most interesting case is the
“Whitehead square” [a, . It can be computed in terms of its universal example [iy, L] = wy,, where ¢, is
the fundamental class in 7,(S™). That is, for o € 7, (X), [, & € map_1(X) is the composite a0 wy,:

W,

Sl SP—2 s X
“"\

:V\ % e
SPvSP s X v X

Now before, we saw that W was part of a pushout square, drawn on the left below. We also have it that &
is part of an adjoining pushout square, drawn at the right:

eP x b TGP 5 Py T (™)

T

521 = 9(eP x eP) Xy GPTy G 2 gn

Now the outer square is a pushout diagram, and the inclusion of S?’~! in the contractible space e? x eP is
a cofibration, so that J3(S™) is the mapping cone C(w,,).

Now wy, € m2,-1(S™) so we should compute its Hopf invariant, and the inclusion J2(S™) < J(S™) ~
Q571 induces an isomorphism on cohomology algebras up to degree 2n.23 Moreover,

2

T[xq], n even,
Elz1] @ T[z2], n odd,

2, n even,

H*(an+l) o
0, n odd.

which shows that H(w,) = {

43Recall that after one suspension, Ja(S™) splits as LJ2(S™) = \/k<2 Snk+1 compatibly with the splitting $J2(S™) =
\/k S7k+1In particular, the inclusion J2(S™) — J(S™) is an isomorphism on homology and cohomology up to degee 2n.
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Well, this is pretty nice, in fact it’s pretty amazing: what we’ve done is look at
Ton_1(S™) = Ton_1(S2"" 1) = Z
and show that the image contains 27Z is n is even. Thus there is a short exact sequence
0 — ker(h) — map—1(S™) — (im(h) £ Z) — 0.
As Z is free, this sequence splits, and 7o, —1(S™) ~ ker(h) & Z. This, and 7, (S™) = Z are in fact the only

free abelian summands in higher homotopy groups! Now if you're away from 2, 2 is as good as one; in other
words a corollary of the above and our calculation of H*(QS"*1) is:

Don’t we also need to be away from all the other primes, so that the EHP sequence is a fiber
sequence? IL.e. Doesn’t this need to be done rationally? Wait, maybe not! ‘the above’ may simply
refer to what'’s a couple of lines above this box.

Corollary 16.1. For n even, away from 2, QS™ ~ S"~1 x Q8271 je.:
Tes1(8™) ® Z[Y/2] 2 (m(S"71) @ merr (2 71)) @ Z[V/2).

Now remember the h map appeared in the long exact sequence

h
Than(S™) ——= Thpnt1 (8™ ) —= Tppny1 (S77H1)

as the obstruction to desuspending a class in 7, 1(S™"1), so that:

Corollary 16.2. For n odd, w,_1 € 7o, 3(S" 1) doesn’t desuspend, and for n even it desuspends at least
once.

Now w,,_1 might desuspend more times; you might ask where it was “born” in the sequence
e —— 71'2”_6(5’”_4) L} 7T2n_5(Sn_3) L} 71.2"_4(511—2) é 7T2n_3(Sn_1)

And here we see the (as yet) mysterious rebirth of the vector field problem:

Theorem 16.3. w,_1 € Ta,_3(S""!) desuspends to an element in mo,_pny—2(S" ™) and no further.

That is, w,,_1 desuspends exactly p(n) — 1 times.2%

Now in order to prove this theorem, we have to relate w, to the EHP sequence; here’s one way:
Theorem 16.4. The Whitehead square factors as:

2
§2n—1 ¢ 0g2nt1

In particular, under p : w,(S?" 1) — m,_2(S™) we have e2a — Fwy, o« (for any o € mp_2(S*~1)). This
is why the p map is called the “Whitehead product”.25.

n |1 2
p(n) |1 2
45However, the behavior of p on a class which is not a double suspension is more erratic.

8 16 32 64
8 9 10 12

44Recall that p(n) was the number from the vector field problem (see lecture 1): j
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Proof. Starting with the undecorated arrows in the following diagram, we obtain the wavy arrow since eow,,

is null, and the dotted arrow by exactness of oy 1(S2 ) —2— 1 (S™) —S 79, (S 1)

W

Sanl

y S7 Cwy)

é

QQS\gn—&-l p NN € }QSTL—O—I

All we need to show is that the dotted map is e?. By the Hurewicz theorem, it is enough to show that it
induces an epimorphism on Ha,_1. This follows from the diagram

Hon(Clwn)) —— 22— Han(257+1)

| e

Hap (8", wa(S2"71)) —— Han (5", p(Q2S5*711))

gla gl@

Hzn_1(52n71) 5 H2n_1(Q232n+1)

if we verify the isomorphisms (1) and (2). (1) is the fact we already showed in a previous footnote.42 (2) follows
from the following argument involving the spectral sequence of the fibration Q252"+t — §n — QSn+L,
For ease of reading, write F — E — B for the three terms of this fibration. Then the transgression
EQQQVO — Egjénq must be an isomorphism, however, there can be no other nonzero differentials in or out
of Fop o and Ey2,—1. Now the following diagram defines the transgression:

2
Hop1(F) —— Han(E, F) —2 Hy (B, #) ¢—— Hon(B)

If (2) were not an isomorphism, then the transgression could not be either. O
One consequence of this is
Corollary 16.5. t3,.1 — Fw, under p : mo,11(S?" ) — 12, _1(S™).

And so we get

Theorem 16.6 (G. Whitehead). The kernel of ma,_1(S™) —— 7o, (S"H1) is

0 whenn=1,3,7
ker(e) = { Zo({wy,) m odd, n#1,3,7

Z{w,) n even.

Proof. We'll focus on the excerpt mapi1(S™+1) —— w41 (S20H1) —2 7191 (S7) —— 72, (S . We
can describe ker(e) = im(p) as the subgroup generated by £p(t2n+1) = wy.

When n = 1,3, 7, there is an element of Hopf invariant one in 7o, 1(S™1), so that h is surjective, and
p = 0. In particular, w, = 0.

When n # 1,3,7 is odd, there is an element of Hopf invariant two in 7a,41(S™*1), but no element of
Hopf invariant one, so that im(h) has index two in g, 1(S?"+1).

When n is even, w,, has hopf invariant two, and so has infinite order. O
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OK, now we want to address the desuspension problem, and in order to do that we’ll link up all the EHP
sequences, I mean, here they are:

€

g an—i-l h 052n+1;

apply Q" to get
Qngn € Qntlgn+i 4}1’ Qn+1lg2ntl

Now these link together:

e

pt QST S 0282 S L0383 .. QST = QS0
b
Qs? 0253 0385,

Here, e : Q"S" — Q18"+ can be viewed as the n-fold looping of the inclusion of the straight loops
5" — QS"HL. In particular, each e realises the suspension homomorphism on homotopy. Moreover, QS°
is given the quotient (a.k.a. direct limit) topology, and as such (as S* is compact):

™ (QS%) = [S*,lim Q" 5" = limy[S*, Q"™ = lim my4.,,(S™) = L.

We also note that the map m(2".8") — II}, induced by mapping Q"S"™ — QS is the stabilisation map.
In particular, this sequence has filtered the stable homotopy groups of spheres by unstable homotopy

groups. But each leg is a fibration, and the corners match, so if you apply homotopy something wonderful

happens: you get a sequence of exact triangles whose ends match up (the maps p have degree —1 on 7,).

e

To(pt) — T (QS1) =5 1, (0282) 5> m, (2353) . - 11,

N RN

7. (QS1) m.(Q253) 7. (Q35%),

This is an ezact couple, so you get a spectral sequence converging to 7. (QS?) = IL,, whose E; page consists
of the bottom line of the above diagram:

Bl = mop (TS M) = mog 144 (5>
so the columns of the spectral sequence are homotopy groups of odd spheres. So here it is:
DRAW ME, PLEASE.

The differentials d,. : £y, — E{_, ;.. 1, of total degree —1, are like the differentials in the usual homology
spectral sequence. They are ‘defined’ by the ‘formula’ d, = he~("~Up, that is:

r—1

QS—T+1SS—T+1) 7Ts+t71(QSSS)

_
desuspensions
P
lh \

1 _ s—r+1 Qg2s—2r+1 1 s+1 Q2s+1
Es—7',t+7'—1 _7T8+t—1(Q S ) Es,t _ﬂ-s-‘rt(Q S )

7rs+t71(
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Of course, this ‘definition’ does not make sense on the groups Esl’t. Instead, it makes sense on the subquotients
E7, of the E!,. In fact, we may define, for 0 < r < co:2&

Zy ={x € meu (15> | p(2) € im(e")}
={z | p(x) € me4+—1(2°5*) desuspends to an element of w1 (Q°7"5°7")}.
B, := h(ker(e"))
={h(y) | y € eyt (PTISHY), € (y) = 0 € meq (TG}
= {James-Hopf invariants h(y) of classes y vanishing after r suspensions} .
By = Z},/By,.

Given this definition, and the above definition of the differentials d,., it is an exercise in diagram chasing to
check that we have given the data of a spectral sequence.

For each s,t > 0, let ey : me1 ¢ (Q25T155TH) — T4, be the stabilisation homomorphism. Then there is an
increasing filtration on IT;,; defined by FiIls;; := im(es:). Let Grg; be the subquotient FiIls s/ Fs 115 14:

im(ws+t(Qs+1Ss+1) — Hs+t)

GrSt = im(7T5+t(QSSS) — Hs+t)

Note also: Z = h(mey(Q°T1S*Th)); and B = h(ker(es)).

The spectral sequence converges to Il ¢, in that there are isomorphisms EYY — Grg; defined by:
[2(y)] — [est(y)] for y € mepe(Q°F1S°H)

Now if 2 € F,Il, ¢, then there is some z € im(7r5+t(Qs+lSs+1) — HSH) such that es(Z) = 2. The inverse
isomorphism Grg — EZf is then given by:

[2] — [n(Z)]-

That is to say the following. Given an element z € II,, in the stable n-stem, desuspend z as far as possible
to an element of z € m, (Q¥T1.55+1), then h(z) € m, (Q*T15*1) =: E} |, is a permanent cycle detecting z.
One could summarise by stating that z is recorded by the James-Hopf invariant of a maximal desuspension.

Now an obvious question is this: if you think of a spectral sequence as a way of computing the £ term
from the E' term, well, why isn’t this game hopeless? We have a spectral sequence converging to stable
homotopy whose input is unstable homotopy, which could very well be more difficult to compute. But one

really neat feature of this game is that in

pt - Q51 - 0262 — Q363 0353 Q383
Qtst 0253 0355 0 0

we can just stop the exact couple anywhere, and get an identical spectral sequence to the one we just saw
except that we’ll have zeroes in the columns beyond where we stop; otherwise, the picture is the same. And
the spectral sequence we get will converge to the homotopy of the sphere in the last column; in the case
above, for example, 7, (Q235%). So actually we have a whole family of spectral sequences converging to the
input of our original spectral sequence.

WEell, that still doesn’t sound very good, except that you can play all of these facts off each other and
often you can get pretty far. For example, let’s look at d;, the composite:

Bl , =meq (Q5T1§25H) s T (8% s 1 (0871 = El

460ne should check that this definition gives Es1 : = st (Q25T1525F1) and that can be made to make sense when r = co.
By convention, we regard 2™ S"™ to be the one point space when n < 0.
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Well, on the bottom row (when ¢t = 0), E;’t and E;q,t are both isomorphic to the integers. We only need

to know what happens to the generator 1944 1:

21951, S even,

2 p h
19541 = €951 > Figs_1 0 W = ws — th(w,) = {O s odd
, .

Thus we have calculated the d; differential on the bottom row.

But we can get more out of this information: notice that this is the only differential into the bottom
row, and the only differential out of the bottom row for columns s < 2. So we can truncate this spectral
sequence and nothing more happens. This spectral sequence computes 7, (225%), so we have found that
74(S3) = Zy. But by the Freudenthal theorem, for stem degree 1, S? is already in the stable range. So in
fact m,41(S™) = Zg for n > 3. And this in turn lets us fill in a whole row of the original spectral sequence.

Now earlier we claimed that introducing the EHP spectral sequence would help to attack the theorem
about desuspending w,,. In order to see why this might be true, let’s take a look at how to interpret the
differentials in the spectral sequence. Note that this discussion will apply in general to any spectral sequence
arising from an exact couple. Two lessons are of great importance in sorting everything out:

1. We can truncate the sequence of triangles anywhere we want, obtaining a spectral sequence, compatible
in some sense with the first, that converges to the homotopy of a finite sphere. To be explicit, for any
M < oo, we have a diagram of fibrations:

pt 0s! 0282 — 0383 y Qstlgstl s QM M
Qsl 9253 9355 Qs+152s+1 QMSQMfl

The corresponding spectral sequence has exactly M nonzero columns (0 < p < M), and converges to
the stem 7,4 (QMSM) of SM. Now El, = 0 for s > M, and:

Bl = 1o (QT1S25T) = 7, (Q2715257 1) which is in the stable range when ¢ < 2s.

2. The second lesson concerns how an element of 7, (S*) is recorded in the truncated spectral sequence
(and therefore in the big spectral sequence if you take M large enough). Since everything is recorded in
terms of its James-Hopf invariant, and this is the obstruction to desuspending an element of 7, (2 SM),
the recipe is

(a) Desuspend as far as possible, and then

(b) compute the James-Hopf invariant h;

this is the filtration at which a given element appears. In fact, if an element z of m, (M S™) has
a maximal desuspension Z in 7,4, (Q°T1S*1), then it is the class of h(%) in EgS which detects z. Of
course, when you study this at the E! level, viewing h(%Z) as an element of g, ¢(Q5T1525F1)  there is
an indeterminancy in the value of h(Z) associated with the choice of desuspension z of z. Evidently,
this indeterminacy is exactly B2y, but B2 precisely corresponds to the various differentials coming
into the target group from elsewhere.

Now the group gy ¢(Q571525T1) in which h(Z) resides lies in the stable range when t < 2s. So unless
the element z can be desuspended sufficiently many times that ¢ > 2s, h(Z) is a stable homotopy class
of sphere.

Moreover, if 2 desuspends so few times that ¢t = 0, (i.e. z € m5(QMSM) desuspends to 74(Q5+155F1)

and no furtherdZ), then h(Z) takes values in 7y (Q5+15%+1) = Z (with indeterminacy BSy) As we have
seen, h(z) = +H(Z), where H is the standard Hopf invariant.

47Tt must desuspend at least this far, by the Freudenthal suspension theorem! Alternatively, it must desuspend at least this
far, as all the groups Eslt with ¢ < 0 are zero, by the same connectivity considerations which were used to prove the suspension
theorem using the EHP long exact sequence.
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Now in the E' context, what do the differentials mean?4® Recall that di = hp, do = he 'p, d3 =
he~te~!p, and so on. So a description of the differential d, is this: take the class in m,(Q25+71.525%1) apply
p; then desuspend r — 1 times and record the result in the agreed way, that is, by taking the James-Hopf
invariant. The collection of the d, together can be understood as the obstruction to lifting an element of
7 (Q5F182571) t0 an element of m,(Q5+t1S5*1) (using the map h).

Before we go on, note that this helps explain why this spectral sequence might be useful in studying how
far we can desuspend w,. Explicitly, p(t2nt+1) = tw,, so studying how far you can desuspend w,, is the
same as looking for the first non-zero differential in the EHP spectral sequence on the fundamental class in
7.rn(Qn+1S2n+1) — Erlz,O'

Now usually when you attack a problem like desuspending a class, a standard approach is to convert
the problem to a stable one and hope that things become more cohomological. Now suspension gives
homomorphisms

2
1 s+1g2s+1y € s+2 g25+3 1
By = oo (Q°T1S2) 2 o104, (QF25%°70) = o1t

which provide a horizontal operation on the EHP spectral sequence which is an isomorphism when ¢ < 2s. So
there is a line of slope 2 on the E' term beneath which the columns are the same and in fact represent stable
homotopy. So this grid maps (via repeated application of the stabilisation map) to a grid whose columns
are stable homotopy and the map is an isomorphism below the line of slope 2. The question is: is this the
E' term of some spectral sequence which is compatible with the first? Our next goal is to construct this
spectral sequence and the map of spectral sequences. Then we can play off the differentials on either side,
and learn about desuspending the Whitehead square.

[

48] want to advertise this as a great way to understand how various homotopy groups interact.
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Lecture 17. The stable category

In order to set up the spectral sequence alluded to above, whose E' page conists of the stable homotopy
groups of spheres in each column, it’s a good idea to talk about stable homotopy a bit; for more information,
see Adams’ blue book [1]. The notation [X,Y] will mean pointed homotopy classes of point maps. There is
amap X : [X,Y] — [XX,XY], and the idea is to study this game in detail.

One nice thing about suspending is that when you suspend you get a group: [XX, Z] is a group naturally
in X and Z, and [¥2X, Z] is abelian. The group structure comes from

(91 +92) : EX P wX v X Y8 7y 7 M 7,

“Naturally in Z”, for example, means that given f: Z — Y in

g9
1 7 f

XX Y

92

we have fi(g1 4+ g2) = fi(g1) + fu(g2) in [EX,Y].

Note, however, that [£X, Z] is not natural in £X. As an example, consider the map S?"~1 % §"_ the
Whitehead square. Then w} = [S™,S"] — [S?"~1,S"] is not a homomorphism for n even. To see this,
recall that w,, = [tn, tn] € T2p—1(S™) is defined by

§2n—1 Wn qn
X fold
Smv ST,

where W is the attaching map for 27—t 25 gn v gn 4 Gn x §n — C(W). The following diagram
commutes, by definition of 2¢,,:

2in

Wnp

Sanl > S > S
X\ Ifold Ifold
STv.Ss” CYRVER StV ST,

The top row represents (L, + t) 0 w,, = w)(2t,). The lower composite represents [2ty,, 2t,] = 4[tp, tn] (by
bilinearity of the Whitehead product), which is equal to 4w,, or 4w (1,,). So w} cannot be a homomorphism
unless w,, = w; ¢y, has finite order in ma,—1(S™). But for n even, h(w,) = 2t,, so the image of w,, under the
Hopf map is infinite cyclic!

‘I’m just plain old confused about: So for example End(3"X) is not a ring.? ‘

The way to get around this is by continuing to suspend. In what follows we take X and Y to be finite
complexes. Then we define {X,Y} = [¥" X, X"Y] for n much larger than 0, in particular for n sufficiently
large [X"X,X"Y] = [£ntlX, X7 FLY] by the following theorem, and we define {X,Y} to be this “stable”
group, the “stable homotopy classes of maps” between X and Y.

Theorem 17.1 (Freudenthal suspension theorem). If Y is an (n — 1)-connected CW-complex, and X is a
finite dimensional CW-complex of dimension d, then ¥ : [X,Y] — [EX, XY is surjective when d < 2n — 1
and an isomorphism when d < 2n — 1.

Now composition gives a product

which is bilinear since we can assume all maps involved are suspensions.
So we get a category whose objects are finite complexes and whose morphisms are stable homotopy classes
of pointed maps. Some important properties of this category are:
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1. We’ve just seen that the category is pre-additive.

2. It has coproducts: if X and Y are finite complexes, X VY is the coproduct in this category:
[XVY,Z} = {X. 2} x {Y. Z}.
This is true because of the homotopy equivalence ¥"(X VY) ~ ¥"X v ¥"Y.

3. Well, these two facts together mean that now X VY is the product on our category as well! Using the
collapse maps out of X VY to X and Y, we have to show that {W, X VY} — {W, X} x {W,Y} is
an isomorphism.

(a) Surjectivity. If f : ¥"W — ¥"X and g : ¥"W — X"Y represent an element of {W, X} x
{W,Y}, then "W — "W Vv "W P snx v sny pushes forward to (f,g).

(b) Injectivity. Suppose that f € {W, X V Y} maps to zero under the above map. Then noting that
("W, 5" X] x [E"W,X"Y] 2 [E"W, X" X x X"Y], the composite kf is null:

S — Ly x v yry —E vy« ny

In particular, f lifts to the fiber F(k). Now the fiber is (2n — 1)-connected, so when n > dim W,
the lifting must be null, 22 and we’re done.

So, surprise, the wedge is the product in this category. Well, that’s nice; now let’s add “formal desus-
pensions.” Somehow the point is that now that 3 : {X,Y} — {XX, XY} is an isomorphism, we’ve really
obliterated the difference between the morphism sets here; we’ve made X a fully faithful functor. Now the
idea is to make it into an isomorphism. To fix it up, we’ll simply put in formal desuspensions.

The new category, the S-category, has as objects pairs (X,n), where X is a finite complex and n is an
integer, the “formal n-fold suspension of X.” And morph{(X,m),(Y,n)} = [E™**X ¥"+kY] for k much
larger than 0, namely k£ big enough that m + &k > 0, n + k > 0, and larger still so that one is in the stable
range.

Note that (X, 1) = (X£X,0), ie., the “formal suspension” is isomorphic to the informal suspension.
So we write (X,n) and "X and morph{(X,m),(Y,n)} as {£™X,¥"Y}. But now we have the object
(X,—1) = £71X. And so we talk about formerly pathological objects like {S°, S~} (i.e. [S*, S¥~1] for k
much larger than 0), which we know to be Zs.

As an example of how things work, remember earlier we studied the group J(X) which had to do with
stable fiber homotopy equivalence. Let V' | X be an (n — 1)-sphere bundle. In lecture 4, we saw that V' | X
being fiber homotopy trivial implied a splitting

T(V) gn
=
S,

Also we found out that such a coreduction meant that S xx V — X is fiber-homotopy trivial 2L And so
now in our new category we find

Lemma 17.2. V | X is stable fiber homotopy trivial if and only if S™ — T'(V') has a stable retraction.

T don’t really understand what’s going on in the following sentence: In other words, in the S-
category, T(V') ~ X" (X, ) implies that T(V) ~ S V (something) L

“This holds because the S-category is additive.

49Recall that by CW-approximation, a (2n — 1)-connected CW-comples is homotopic to a complex with no nonzero cells of
dimension less than 2n. By CW-approximation, all maps C(X"W) — X" X V ™Y will be null when n > dim W.

5080 xx V — X is the fiberwise suspension of V. If V is the sphere bundle of a vector bundle, fiberwise suspension
corresponds to adding a trivial bundle.
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Now earlier we also sketched a proof of Atiyah that J(X) is finite over a finite complex; so for any V' | X
there is an n so V*" | X is stably fiber homotopy trivial. So that says that in the S-category, {T'(V*¥)} is
periodic up to suspension. This is “James periodicity.”

As a final remark, note that now we can talk about the Thom space of a virtual bundle; for example,
T(V —g,) =X""T(V).

[

Lecture 18. Homotopical algebra and duality

Well, let’s continue with the discussion of stable homotopy, and really enter the stratosphere at this point, at
least for a short while. So remember last time we ended with the notion of a category C, the S-category of
finite complexes. In this category there is an important notion of “exact triangles”: X — Y — Z — XX

is an exact triangle if it is homotopy equivalent to X Ty C'f — XX on the level of spaces, perhaps
after suspending a lot. Two important facts about exact triangles are

1. A sequence X — Y — Z — ¥ X is exact iff it remains exact after application of {W, —} for all
wWecC

2.Y % 7 52X 2L %Y is an exact triangle iff X Ty 9 7 49X is an exact triangle.

This is somehow reminiscent of (co)homology. To make that hint precise, consider a category (containing
the category C) S, the “stable category”, such that, well, it has a bunch of properties:

e S has exact triangles, and the inclusion of C into S takes exact triangles to exact triangles.

S is additive: it has products [] and coproducts [, and finite products and finite coproducts coincide.

The equivalence 3 on C extends to one on S.

S has smash products with nice properties, e.g.: WA : S — S preserves exact triangles; S°A is a unit.
e “Brown representability” holds.
o “Whitehead representability” holds.

What do these last two mean? They have to do with cohomology and homology, so we’d better know
what those are: a function EY : S — Ab is cohomological if

1. E° sends exact triangles to exact sequences.

2. S is going to contain infinite complexes, so we’d better know what E° does to colimits, e.g., wedges.
EY must satisfy the “Milnor axiom”, that the following natural map is an isomorphism:

o~

E°\oXa) — [ E"Xa
«

If E° is cohomological, we define E9(X) := E°(X79X). “Brown representability” states that any coho-
mological functor (a.k.a. cohomology theory) of S is representable: there is a spectrum FE (the objects of
S are called “spectra”) such that the functors E° and {—, E} are naturally isomorphic.2L Analogously,
Ey : S — Ab is homological if

1. Ej sends exact triangles to exact sequences, and

51Note that in this context, the restriction of E? to spaces always refers to reduced E-cohomology, so usually the twiddle is
left out.
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2. The Milnor axiom holds: the natural map @, EoXa = Eo(\/ o Xo) is an isomorphism.
Whitehead representability says any homology theory is representable: there is a spectrum E so that Fj
is naturally isomorphic to the functor {S°,— A E} = 7§ (— A E). If you look at Adams’ blue book [1],
you’ll see how to construct S, with lots of technical details. For now, we’ll just see what an object, i.e., a
spectrum, is. One construction takes a spectrum to be a sequence ..., E,_1, E,, Fy 11, ... of pointed spaces,
with pointed maps X F,, — E, ;1. Two examples:

1. Take X a pointed space, define a spectrum »*°X by
X, n>0
pt, n < 0.

(X)), = {

This gives a name to the inclusion functor from the homotopy category of pointed spaces to S, which
has an adjoint function 2°° that goes the other way. in particular, there are maps

(03

X

Q®NxX,

B

E SO®E.

2. Fix an abelian group A; define the spectrum HA

K(A,n), n>0
pt, n < 0.
The map XK (A,n) — K(A,n+ 1) is given by the adjoint of the identity K(A,n) — QK(A,n+1).

Now let’s talk about a notion of duality that makes sense in the context of spectra. This is where we lift
off a bit; Michael Artin says this is the hardest thing in the world to write down. Namely, a duality is a map
a: X ANY — S% such that for all W € S, {W, Y} XA {XAW, X AY} 25 {X AW, S} is an isomorphism.
That is, given a map W — Y, we can form the composite:

XAW — XAY — S

and we require that this assignment is an isomorphism.

Do we need another axiom here? I once saw:
A map u:S — AN AL is called a duality if for all E, the maps
up: [AE] — [SSEAAY],  (A— E)r— (S — ANAY — EAAY)
uP [AY Bl — [S,AANE], (A — E)— (S — AANAT — ANE)
are isomorphisms. Duality is symmetric, as smash product is homotopy commutative. Moreover, given two

dualities, we have isomorphisms [4, B] —» [S, B A AL] «— [BL, AL], so that we can define the adjoint
fr:Bt — At ofamap f: A— B.

The first thing to note is that dualities exist:
Theorem 18.1. For all X there is a Y with a duality X NY — S9.

Proof. W —— {X A W, S} is a cohomology theory, so it has a representing spectrum Y'; hence there is a
natural isomorphism {X A W, S} = {W,Y}. The map « comes from taking for W the spectrum Y itself:
{X ANY,S% 2 {Y,Y}. Let a be the element of {X AY,S°} corresponding to the identity. The naturality
of Brown representability gives us that the isomorphism comes in the manner described in the definition of
duality: for any W €S, v € {W,Y }:

o > id Ayt -7y -y

WYy 22 (X AW, X AY) S (X AW,50) 25 (w,y)

YV, Y} 5 (X AY.XAY) 2 (X AY, 8% 25 (vy)

id + > id - ot > id.
The first two squares obviously commute; the third commutes by naturality of Brown representability. [
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In fact there’s more to be had from this use of Brown representability: the correspondence X ~» Y = DX
can be made contravariantly functorial in the sense that X A DX =% S° is a natural transformation. That
is, we can construct a functor D : S°° — S and a natural collection ax : X A D(X) — S° for X € S of
dualities. By “natural”, we mean that for any map f: X — Y, the following diagram commutes:

xADY 22 x ADx

o |

Y ANDY S0

ay

To make the dualities this way, first use a massive axiom of choice to pick a dual DX for any X; obtain the
ax in the manner described above. Now for any map f: X — Y we get, for any W € S, a map v via

{W, DY} —— {W, DX}

BR BR

(v AW, 59 Y20 rx AW, 80).

Take W = DY, then define Df : {DY,DY} — {DY, DX} by 1 — Df. Then we have

Df ¢ » INDf—— axo(lADf) ———— Df
{DY,DX} X {X ADY,X ADY} 2% {X A DY, S} % {DY,DX}
I(fAl)* v
{DY, DY} RS {Y ADY,Y ADY} 2% {Y A DY, S} % {DY, DY}

id ¢ > id > ay | > 1,

where the vertical map sends ay to ay o(f A1l). The maps in the rows are determined by the construction of
the dualities involved; the last square commutes by definition of D f, and the two composites at { X ADY, S"},
which are equal, are the two ways of going around the square that we wanted to show commutes.

All right, enough, let’s see what having D does for us.

Lemma 18.2. o You can choose DS° = S°.

o X — Y — Z — X an exact triangle means that DX < DY « DZ < Y7 'DX is an ezxact
triangle.

e DYXX =Y7'DX (um, well, so this explains the end of the previous point).
Corollary 18.3. A finite complex is built out of spheres using exact triangles, so we get
e D of a finite spectrum is finite.

e If K is finite, then D(K ANX) ~ DK ADX (but not if K is infinite; in general D isn’t nice when there
are limits around).

e X can be taken for DDX.

The whole function spectrum Spiel had been omitted, I took the following remark from the end of the next
chapter, where it had been misplaced.

Remark 18.4. The defining property of D was {W, DX} = {X AW, S°}. Now there’s nothing particularly
special about S°: if Y is any spectrum, W+ {X AW, Y} is a cohomology theory for W, so it’s represented
by a spectrum F(X,Y). If you think of X AW as a tensor product, F(X,Y) is a like a hom-space. So think
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of F(X,Y) as a “function spectrum,” and DX = F(X,SY). It’s not a function space in any way; we get it
out of Brown representability.
Notice that there is a map f: DX AY — F(X,Y) defined by

ax Al

(X AN(DXAY),Y}5(X ADX ANY =8 s0nYy 24 y)

| |

{DX AY,F(X,Y)} I

Now we’d like f to be an equivalence; this isn’t always true, but if some reasonable nice condition, say X or
Y a finite complex, then it is.

l

Lecture 19. Dualities

We were talking about duality; the last thing mentioned was the “function spectrum” F(X,Y) satisfying
{W,F(X,Y)} 2{X AW,Y} for all W € S. If X is finite then F(X,Y) = (DX)AY. Now call Y = E, take
W = S", and assume X is finite. Then,

(DX A E) == {S", DX A E} — {¥"X, E}

E7(X)
I want to apply this sort of duality, and relate it to other sorts of duality you're familiar with. For example,
how can we recognize a duality? Suppose X is finite and we have a map f : XAY — S9: then f corresponds
to amap f:Y — DX which makes the following triangle commute.

duality

XANDX
5
AD lax

XAY S0,

One could ask whether f is an equivalence. Counsider, for any spectrum F, (here being viewed as a homology
theory), the commuting diagram:

Ea(Y) = {5,V A E} Unlek

{S", DX NE} = E,(DX)

| |

i/l {XASYXAY AE} (X AS", X ANDX AE} |~

\L(f/\lE)* J/(Oéx/\l};)*

E-"(X)={X AS" E} (X AS", E} = E~"(X)

(lx/\f/\lE

R

In light of this diagram, if the obvious construction using f : XAY — SO actually produces an isomorphism
f/, then f is an E-homology equivalence. That is, f. : E,(Y) — E,(DX) is an isomorphism.

Note that if X and Y are finite spectra, and f : X — Y is an isomorphism on H,(—;Z), then f is an
equivalence (there’s no 7; problem here). So taking F = H(—;Z) will be enough. That’s what the standard
duality theorems give you.
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Alexander duality

Let X be a finite complex embedded in S™; let Y be another complex disjoint from X in S*. Fix a point p
not in X or Y, and consider the stereographic projection St, : S™ \ {p} — R”. Consider the map

Stp(x) — Sty(y)

X xY — 8"t defined by z,y) —
(:9) = 58, (@) — Sty (y)]

and apply the Hopf construction to get a map

S(XAY) = XxY — S
In the S category we get a map f : X AX1""Y — SO, Alexander duality says
Theorem 19.1. If Y ~ S™ — X then f is a duality; DX ~ X17"Y.

The proof consists of showing that f/ : H;(S1~"Y) —» H(X) is an isomorphism for i € Z.

Remark 19.2. If you think of X and Y as embedded in R™ instead of S™ and Y ~ R"—X, then Y ~ S"— X |
so D(X,) ~Xl=ny.

Milnor-Spanier duality

Take X C int(D") = R", and suppose N C int(D") is a regular neighborhood,2 so that the inclusion
X = N is a homotopy equivalence. Then D(X,) ~ £'="(D" — N), by Alexander duality. The virtue of
the regular neighborhood is that you can identify what the suspension of the complement is: all you need
to find the suspension is an inclusion into a contractible space, which we have, giving a degenerate cofiber
sequence:

(D" — N) — D™ — D" /(D" — N) = %(D" — N) — %D".

Thus, as D" /(D™ — N) is homeomorphic to N /N,
D(X,)~¥""(D" —= N)~%~"(D"/(D"™ — N)) ~ X""(N/ON).

Well that’s most useful when you can say something about N; if X is a d-dimensional manifold without
boundary, then the normal bundle v of the inclusion X < D is (n — d)-dimensional. N is homotopy
equivalent to the disk bundle of v, and N/ON ~ T(v), so D(X;) ~ ¥~ "T(v) ~ T(v — ne). This is called
“Milnor-Spanier duality” althought it’s not called that very often. In (co)homology,

E7(X4) = Ei(D(X4)) = Eyn(T(v)).
Observe also that v + 7 = ne where 7 is the tangent bundle, so D(X ) = T'(v — ne) = T(—7), giving

E7(X4) = Bi(D(X4)) = Ei(T(=7)).

Poincaré duality

If v (or equivalenctly, 7) is oriented for E in the Milnor-Spanier setup, then the Thom isomorphism says
Ein(T(v)) 2 Eiya(X4). Thus:2 _
E7N(X) = Eipa(Xy).

This gives standard Poincare duality, recalling that E stands for the reduced cohomology theory.

52If you embed a finite complex into a Euclidean space, any sufficiently small open neighborhood admits a deformation
retraction back to the complex — this is a ‘regular neighborhood’. If the complex is a manifold, you can identify the normal
bundle of the embedding with a regular neighborhood.

53More abstractly: the Thom isomorphism gives E;_q(T(—7)) & E;(X4), and E4~*(X4) & E;_4(T(—7)) by Milton-Spanier.
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Atiyah duality

This is a little mystical, so perhaps we should look at it more closely in the context of what’s called Atiyah
duality (for this, readers should look at Atiyah’s exposition [2]). Here we take for a change (X,0X) to be a
manifold with boundary. You have to be careful about interpreting the tangent bundle of a manifold with
boundary; Tx is best defined to be d-dimensional everywhere, but with an identified (d — 1)-dimensional
subbundle on the boundary.

Now suppose that X is embedded in D™ such that 0X lies in D" = S™~!, and moreover that X is
transverse to S™~! wherever they coincide. Suppose also that N is an open neighbourhood of X in D" such
that N N S"~! is a regular open neighbourhood of X in S"~!. The nice idea is to take the cone on this
situation, as in figure 10.

S™: boundary of whole thing

Figure 10: Atiyah duality.

Now, X/0X is homotopic to Y = X U COX, which is a subcomplex of 9(CD™) = §™. Moreover, Y has
NUC(N N S™ 1) as a regular neighborhood in S™; its complement is K = S™ — (N UC(N N S™"1)). Now
K deformation retracts onto (D™ — N), as the tip of the cone does not lie in K. So, applying Alexander
duality to Y C S™:

D(X/dX) ~ D(Y)

~ ¥I(K)

~ ®'""(D" — N)
~ Y""(N/ON)
~ Y "T(v)
=T(=7),

and this is Atiyah duality.
Now suppose X is a compact closed manifold and £ | X is a smooth vector bundle; then (D(), S(€)) is
a compact manifold with boundary. Atiyah duality says

D(T(€)) ~T(~7p(e))
(-7 (rx ®£))
(_TX - 5)7

where 7 is the projection D(§) — X (a homotopy equivalence).

12

T
T

Lefschetz duality

Now suppose that X is oriented for E, i.e., that there is a Thom isomorphism Ei{(Xy) 2 E;,_q(T(-7)). Then
from Atiyah duality we derive Lefschetz duality: F;(X,)~ E4(X,0X).

74



Stunted projective space

Here’s an example: X = RP*~! and ¢ = nlL Then we saw in lecture 3 (at least for n > 0) that T'(nL) =
RPrHE-1/RPn—1 = RP"k=1 More generally, we can define, whenever ¢ + b > 1:

RP! = T(=bL | RPPTY),

a spectrum with cells in every dimension from —b to t — 1 inclusive.
Moreover, it happens® that 7(RP*~1) + & = kL. By Atiyah duality, D(T'(nL)) ~ T(—nlL — 7), so that

D(RP 1) = D(T(nL)) ~ T(—nL — 7) = T(—nL + ¢ — kL) = ST (—(n + k)L) =: SRP_ "}

Summarizing:

D(RP",') ~ S(RPYY) for t +b > 1.

By the way, if you don’t like these somewhat ethereal spaces, you can use James Periodicity: let a be
the periodicity of L in J(RP***~1). Then T((ja — b)L) ~ 37%T(—bL); for j big enough, T((ja — b)L) is an
actual stunted projective space!

[

Lecture 20. The structure of stunted projective space

Today we look at the attaching maps for stunted projective spaces. In fact, the attaching maps we’re going
to look at are the “stable relative attaching maps,” so perhaps we should begin by saying what that means.
Suppose X is a CW complex; then it has a skeletal filtration Sk, (X). The (k + 1)-skeleton is obtained from
the k-skeleton by attaching (k + 1)-cells as in the following pushout square:

Skk(X) C— Skk+1 (X)
\/ Sk ., ka—H'

Although the attaching maps S¥ — Sk, (X) are to the k-skeleton, it’s certainly possible that an attaching
map pulls back to a lower skeleton. A “relative attaching map” for a (k + 1)-cell (attached via r) is a
factorization of this kind through the lowest possible skeleton; that is, the map a’ below:

Skk,jfl(X)(—) Skk,j(X); s — Skk(X)(—> Skk+1(X)

&}a\x\‘ﬁ/ | |

~ Sk( v Sk( \/Dk+1

A “stable relative attaching map” is a stable one of these. That is, the cells of the (k + 2)-skeleton of ¥X
are the suspension of the cells of the (k + 1)-skeleton of X, so one could ask how far down an attaching map

54To see this, one argues as follows. View L as a subbundle of RP*~1 x R¥, where RP*~1 is viewed as the set of lines R{z} in
R¥, for nonzero € R*. Then we can produce a bundle isomorphism Hom(L, L+) — 7(RP*~1) by sending h : R{z} — R{z}*
to the germ at 0 of the path t —— R{x + ¢ - h(x)} in RPF~!. Noting that Hom(L,L) is a line bundle with a nonvanishing
section, it is trivial, so 7(RP*~1) + R = Hom(L, L+ @ L) = Hom(L, R¥) = Hom(L,R)* = L*.
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factors, perhaps after suspending very often (ignoring momentarily the wavy arrow):

VSt = C()

!

Skk,j+n,1(ZnX)<z—> Skk,jq,n(EnX)Q C = Skk+n(EnX)(—> Skk+n+1(2nX)

$\é\\\ 4-///67/2 T T

= Sk+n( , v5k+n( \ \/Dk+n+1

The inclusion 2 of one skeleton in the next is a cofibration, and stably, the corresponding cofibration sequence
(drawn with the wavy arrow b) is also a fibration sequence. Thus, a being unable stably to factor through a
lower skeleton means that the composite ba defines a nonzero element of W,f n (\/ Sk=i +”) =P wf . Warning:
there’s indeterminacy in how you factor the attaching map, so the element you get may not be well-defined.

In any case, we want to understanding the stable relative attaching maps for RP>° using the standard
cell structure, with one cell in each dimension. We’ll format the diagrams a little differently now, to come
into line with what is to come. 7 will be the attaching map for the single cell in a given dimension, and ¢
will be the collapse map onto the top cell in some lower dimension.

In the following diagram, we may ask for the largest value of j, stably, and may ask what the compression
c7 of the stable attaching map onto the top cell is, as an element of wf .

RPF-I-1G S RPFIC— .. R PkC RPk+1

Sk*j y)

The answer will come out in terms of the image of the J-homomorphism — actually its stable version
J i 1(0) — 7 _1(QS%) = 72 ;. Remember 7, _1(0) = 7.(BO) = KO~ *. Here’s a table, leaving out
degrees where KO™* = 0:

i=v(2) x=p2) | KO " =m_1(0) ji:=jlg)ens,

0 ]. Zg<g0> jo = 72L

1 2 Z2<gl> Jji=n . .
o Hopf invariant

2 4 Z(g2) J2 =V } one elements

3 8 Z{gs) jz3=o

4 9 Z3(94) Ja=mno

5 10 Zo(gs) js =10

Implicit in the organisation of this table is the observation that the coefficient groups KO~ are all cyclic,
and nonzero only when x = p(2¢). Thus we write g; for a generator of the (i + 1)** nonzero coefficient group,
and j; for its image j(g;) under the stable J-homomorphism.

Note that go has order two, but jo := j(go) has infinite order, so that j : mo(O) — 75 cannot be a
homomorphism. However, it is a homomorphism in higher degrees.

To describe the attaching maps the discussion will begin where the answer is, which may seem like a
funny place at first, so have patience. Recall the following facts:

3 4
18 and agis = 16ag,

|

o kY - . 12 5 6
KO(RP®) = Z, (L. — 1), defining ar | 51 33

so that, ag|n <= k < p(n) — 1. Thus a; = 2" and a1 = 2¥™*! exactly when k = p(n) — 1, and: Now
note that +*(IL) = L, where 7 is the inclusion in the cofiber sequence RPP(M~1C 1 Rpr(n) by gen)
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Noting that +*(L) = LL, we examine the exact sequence

KO (RPP(™=1) KO (RP™) +2— KO(S7™)
I . I . I
Zoviny (L — 1) —— Zovimyra (L — 1) <b— (g,,(n)>

By exactness, b*(g,(n)) = 2/ (L — 1) = n(1 — L), the nonzero element22 of ker(:*) =~ Z».
In terms of bundles, this means that n(1 — L) over RP*(™ is classified by a map into BO that factors as
b followed by g, (n):

n(l-1L) E(gv(m)) ® E(gy(n)) is the virtual bundle

J/ classified by g, (n)
Go(m) o P (b; Zs) is an isomorphism

—— BO

RPpr(n) b\ gp(n)

That’s the starting point. Now study the Thom spaces to get stunted projective spaces. In the S-category,
we have a map on Thom spaces (relative to S°):

SO SO

| |

S RPY T 2 T(gy ()
The first question is: “what is T(g,,(n))?”. Well, by the Thom isomorphism, T'(g, ) has a 0-cell and a
p(n)-cell; the attaching map is an element of Wp(n),l(QSO). The fact is
Theorem 20.1. The attaching map for Tg,(n) 5 jun) = J(Gu(n)) € ’ﬂ'p(n)_l(QSO).

This has the status almost of a folk theorem; it’s due to Toda and Adams. We will prove it next time;
for now, what else could it be? Now we can line up two cofiber sequences vertically:

SO SO

| |

S RPP T s T(gy )

J J

o (Rpf(n"l;") c*> Sﬂ(n)

Now ¥"(RP” gﬁ;n) has a cell in each dimension from 1 to p(n) inclusive. Now H?(™ (b;Zs) is an isomor-
phism in dimension p(n), by naturality of the Thom isomorphism, so by the 5-lemma, H*)(c;Z,) is an
isomorphism, and c¢ is & the collapse map.

[Must we localise at two to assert this about ¢? |

In other words, L"RP” (71")7n has cells between dimensions 0 and p(n), and the map to T'(g,(,)) strips away
the cells in between.

Well that’s pretty good, only attaching maps are supposed to go the other way, so let’s dualize this
picture. Two facts about the Spanier-Whitehead dual we will use are that DRPﬁZl = ERPE?l (see lecture
19), and that the dual D(f) of f: S? — S0is £XPf: 80 — SP,

55Notice that in Zou(ny+1 (L — 1), 2"<”)(]L — 1) is congruent to any of its odd multiplies, and —n is an odd multiple of ov(n),
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RPN | _— T(guin))

Figure 11: Picture of the map b.

The only space whose dual we have left to compute is T'(g,(,)). Since by the folk theorem T'(g,(n)) =

C(ju(ny) we have a cofiber sequence gem=1 77 go T(gy(ny). Continuing the dual cofiber sequence:

_ 1.
¥ P+ JV(?L)SO

NPT (g, () $—— 5P FL D(T(gu(m)) -

Thus D(T(gy(n))) = ST (gy(n)), 50 T(gu(n)) is nearly self-dual. In particular, we can now write down
the dual diagram to that drawn above (at left) and its (n — 1)-fold suspension (at right):

SO SO Sn—l Sn—l
T D Db () ne S IDb e p(n)— .
SIrRPY T P () RP! oy ¢ " P10y )
—np pn—2 Dc —p(n n—2 »" ' Dc n—p(n)—
i RP) oy ¢S p(n) RP ) gn—p(n)—1
27250 ™ zrorm=15
S—l S—l Sn—2 Sn—2
Here, 7 is the attaching map for ]RP:__/?(”)_l — ]RP:L’__;(n)_l; this follows because the columns are cofiber

sequences. Moreover, as ¥ Dc is dual to the collapse map (up to sign), it is the inclusion of the bottom
cell (up to sign). Well so we've done it: we’ve factored 7 as j,(,) followed by inclusion of the bottom cell.

gn=2 T ppn-2

n—p(n)—1
On)
Snfp(n)fl’
1

In other words, the attaching map for the top cell of RPs_p(n)_l pulls all the way back to the (n — p(n) —1)-
skeleton. It goes no further: that would mean that m ~ pt, but if 7 is nullhomotopic, stably, then stably,
the top cell of RP/~)  splits off. Dualising, the bottom cell S° of SrRPP™M T = T(n(1 — L) | RPP(M)
splits off, which implies that n(1 — L) is stably fiber homotopy trivial. This is of course not the case, by the

solution to the vector fields problem — J(RPP(™) = Zg, (1 (L — 1).

For some reason I find this a bit confusing. I've put in an alternative. It goes no further: that
would mean that 7 = pt, but if 7 is nullhomotopic, stably, then we'd get

S0

~—ntlg pr—2 ~—nl pn-l 2

ETIRPI ) — BTIRPI n—p(n)-1’
because the sequence is an exact triangle, a map going back as above. Looking at what that means in terms
of the dual, it means there is a stable splitting of the O-sphere §¢ - SPRP™ ™" = T(n(1 — L) | RP?(")
which would mean that n(1—L) is stably fiber-homotopy trivial, equivalently that nlL is stably fiber-homotopy
trivial. But by the vector field problem, it’s not: n(1 — L) # 0 in JRPP™ = Zy, 41 (L — 1).
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Now it’s an easy matter to get back to the general case: consider RPE;,R where —N < n—p(n) —1.2¢ Then
we have a diagram with the bottom row a cofiber sequence (drawn at left):

2

n—2 coll n—
RP™ %an—p(n)—l [ 1
Applying m7_5(—): I I
2 = .
RPf;{P(”)*Q( ; RP:L;VP(”)*l coll y gn—p(n)—1 o P Ju(n)

From what we had before, the attaching map 7 : S"~2 — RP"? pulls back stably to a map 7 : S"~2 —
RP:L;,p(n)*l, whose compression onto the top cell §7~P(™~1 ig Ju(n) # 0. Thus, applying 75 _, to the above
diagram, we have elements as in the box at the right. As j,(,) is nonzero, and the bottom row is exact (73

is a homology theory) there can be no element of 75 _,(RP",” (n)fz) mapping to 7. Thus:

Theorem 20.2. The stable relative attaching map for the (n — 1)-cell of RP:LXR can be taken to be j,(n);
that is, stably, there is some T which does not pull back any further stably, and so that cT = j,(n):

RP M S RPIMTI S RPI S RP

= Sn72

It’s time to draw some pictures. First, here are the stable relative attaching maps in RP>:

no 772‘7

2L 21 2t 2L 2L 2L 2L 2t 2t 2t 2L 2L 2t 2t 2L 2L
-10 12 3 45672809 11 13 15 17 19 21 23 25 27 29 31

For example, if n is odd then p(n) = 1, v(n) = 0. So the attaching map for the top cell of RP?%; is
jo=2it. Forn—1=1, 3, or 7, the relative attaching map is to the (—1)-cell — so if it weren’t there, stably
these cells wouldn’t be attached; these splittings correspond to the Hopf-invariant 1 elements.

The second picture is a spectral sequence; it’s the Atiyah-Hirzebruch spectral sequence for stable homo-
topy of RP>]. The exact couple comes from:

.. .cimgp’“llc_> RPF S RPFIC ...
Sk—l\\ Sk Sk+1

Here the vertical arrows c¢ are the collapse maps, and the wavy arrows 7 are the attaching maps, so drawn
to indicate that they shift degree — they are in fact map maps X~'S* — RPEII. We can apply 72 to
obtain an exact couple (in which the wavy arrows lower the degree x by one):

- (RPN 7f (RPY) ) —— 7 (RPET) —— - -

I N N

w2 (SF7) 7 (S%) w7 (SHH)

56The quantity n — p(n) — 1 is —1 when n = 1,2,4,8, and positive for other n > 0.
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From this exact couple we obtain a spectral sequence as usual. It isn’t totally clear to what this spectral
sequence converges. However, the restriction principle applies, so any finite piece will converge to 72 (RPY)).
The columns at E; are 7rf . That is:

E;q p+q (S p)
As in the EHP sequence, the differentials record how far back you can pull a class. So our stable relative
attaching maps tell us about non-zero differentials in this spectral sequence.

The differential d, is defined as usual, that is, if [z] € £}, is a class with representative r € 7, +q(SP),
then m(x) € 7r§+q71(RPffl) pulls back to an element y € 7r§+q71(RP71 ), and cy € 7rp+q71(51’ ") represents
an element of EJ . .., which is our definition of d,([x]).

Consider the element + € E! |, = 77571(51’_1), and its fate in the spectral sequence. Now m(:) €

5 ,(RPP}?) is simply the attaching map for the (p — 1)-cell. Thus, theorem 20.2 can be rephrased:

Theorem 20.3. The differentials d, vanish on [i] € E}_4 o, for v < p(n) — 1, and dyiy[t] = [Jum)], a

n)

p(n
nonzero element of E = p(n)—1,p(n)—1"

We illustrate this theorem with the following picture of the nonzero differentials which occur on the
fundamental classes on the bottom row of the spectral sequence:

2L.

—

O P N Wk Tt 3 00 ©

WMMMWWM

-1012345¢6 7389 11 31

We will soon prove that there is a map of spectral sequences from the EHP sequence to the Atiyah-
Hirzebruch spectral sequence constructed here, and that on the E' page, the map is induced by stabilisation.
That is, EHpEzqu = Top+14¢(S?PT) and AHE}D q, and the map EHPE — AHEzl)q is just the iterated
suspension map, which is an isomorphism for ¢ < 2p.

Now as [] € AHE71171,0 survives to EP(") at which point it supports a nonzero differenial, [1] € gapEL_ o
must support a nonzero differential d,. for some r < p(n). This shows that w,_1 = pt desuspends at most
p(n) — 1 times.

The converse holds, and could presumably be proven by constructing an explicit desuspension. That is,

the first nonzero differential on [1] € gupE,,_; o is exactly d,(,).

‘What can now be said about the image of « under the crucial differential? Is it j(v(n)) or something? T
haven’t thought about it.

[

Lecture 21. Matching the EHP sequence to Atiyah-Hirzebruch

Last time we used a “folk theorem” due to Toda and Adams to the effect that the virtual bundle over SP(™)
classified by g,(n) has as its Thom space the space Cj, () from the cofibration sequence

SPM=1 1 G0y Oy
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where j,(,) is the image of g,(,) under the stable version of J.
This is a good time to remember how J is defined. The action of O(n) on R™ restricts to a map
O(n) x S"~1 — §"~1 If a represents a class in 74(O(n)), we get

Sk x 571 I On) x S e g1,
Applying the Hopf construction yields a map

Sn-l—k: Sk % Sn—l Jo

Sn

an—l’

which represents a class in m,45S™. In proving the theorem it pays to set up the geometry very precisely.
For this purpose, define

0,1] x X

CX = 7[ ] ,
(07 Jﬁ), (t7 JU())
XX =CX)/X.

We'll study the problem in somewhat astonishing generality; our data will be a map ¢ : A x X — X
which we’ll think of as a group action, although it doesn’t have to be one. ¢ has an obvious extension
@ : Ax CX — CX. With this data we’ll try to form a bundle, the first of two important constructions for
today:

1. Associated “bundle” construction: This will be a “bundle” p : Ep — YA formed using ¢ as the
clutching map. Ep = CA x X[[X/(1,a,z) ~ az. The fiber is p~1(0,a) = X. Note that when ¢ is
a group action this construction in fact does determine an isomorphism bewteen the fibers over the
clutched coordinates, so this is genuinely a fiber bundle. Also we can apply this construction to ¢,

R

getting E@, the “fiberwise cone on Ep;” we'll call it Eg. Then we get

Ep s Ep Ty

I

X - CX - 2 X.
In our case, we had a class g, () € 7y BO. Remember though that we think of g,(,) as a class in

~1 2 O(N). Now O(N) acts on S¥~1, so we can use

Tpn)—10- It can be thought of as a map Se(n)
this to clutch a bundle E(g,(,)) over Se(n) by

P15 GN=1 2L (N x §N-1
\ laction
SNfl

whose fiber is SN ~!. This is the sphere bundle of the R¥-bundle classified by S°(™) Loty BO(N), so the
Thom space we were studying last time arises from the constructions above applied to this composite,
ie., taking A = §P("~1 and X = N1,

This looks very good; it looks a lot like the definition of J. In order to state things correctly, we need
a careful definition of the Hopf construction that matches our definition of C'X and ¥ X:

2. The Hopf Construction on ¢ is the quotient

AxCX 2 . 0ox

|,

AxX 22 L wx.
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The theorem, then, is

Theorem 21.1.

Jo

Ax X - XX > CJp

1 /
T,
with the diagonal map a homomorphism relative to XX .

Note first of all that this is what we want: ¢ for us is the composite

P s SN O () x SN gN

and we are showing that T'v (= T(g,(n)) from last time) = CJy (= Cj,(,) from last time) relative to
$SN=1 = SN In fact we were interested last time in the relation between Tg, ) and Cj, () stably, and we
can make the fiber SV as connected as we want. So we get a stable equivalence Tgun) = CJun)-

Proof. The hard part was parameterizing things right; now it’s just a matter of drawing pictures. In these
pictures, we draw A as a point and X as a point. Then we can keep track of the suspension, join, and cone

coordinates.
Axax v
E A e cach point t TX

0 X~ 0

Figure 12: Diagram of C'Jp.

W A — ](:\'

Figure 13: Diagram of T'p.

So both pictures really are the same; they both look like a triangle. And homeomoprhisms with this
triangle for the two spaces above are given by

s — st
f(S,CL,t,’JJ) = (maaasuz) )

t
s,a,t,xr)=\|s+t—st,a, ——,x | .
9 ) ( * s+t— st )
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Figure 14: Triangle!

Remember how we got here: we were studying the EHP spectral sequence. This spectral sequence has
as its columns the homotopy groups of odd spheres and converged to 7,QS° = 72 SP; moreover we had
arranged it so that beneath a line of slope 2, the entries in each column were the stable homotopy of spheres:
INKSCAPE This feature suggested the queston: is there a spectral sequence whose columns are the stable
homotopy of spheres and a map of spectral sequences from the EHPSS to this SS such that the map is an
isomorphism below the celebrated line of slope 27

On Friday we constructed a candidate, an Atiyah-Hirzebruch spectral sequence for the attaching maps
on RP>®: H*(RP;n¥) which we hope converges to 7YRP{°, whose E'-term is INKSCAPE

Sure enough, there is a spectral sequence map between these two spectral sequences which is an isomor-
phism below the line at E'. To see this, remember the EHP sequence: Q" 187~1 — Qngn — Qrg2n—1,
Here we looped it (n—1) times as this is the forum in which it went into the EHPSS. This is a fibration, strictly
if n is even or localized at 2 if n is odd. Linking these together and applying 7. gave us the EHPSS. On the
other hand, the AHSS from Friday came from taking the cofibration sequence RP_E_Q — RPI_L_1 — Si_l
and applying 7¢ = 7.Q. (Recall QX = |J, 2*Y¥X.) The sequence QRPﬁ*2 — QRPﬁfl — QSfﬁ*l is a
9 is a homology theory and hence exact on ]RP_f_2 — RP_T_L_l — Sf__l. Next, note that

fibration, since 7

e n

we have Si_l — Q”Si"_l N QSi_l, and e*~" is an isomorphism on 7, for *x < n.
Theorem 21.2. There are maps s,, (“Snaith maps” or “Hopf-James” maps®” ) with

anlsnfl Qnsn Qns2n71

O R

QRP} > — QRP! ' — QST

So this theorem does it. This is a wonderful theorem; we’ll try to prove it. It was probably first proved
by Nick Kuhn, although the maps are constructed by Smith. Before we go on though, we should note two
corollaries which answer an old question we’ve been trying to answer for a long time now.

Corollary 21.3. In the portion of these sequences

— p _ _
Wn_lgnsﬂn 1 Wn—QQn 18n 1

ex_"’l lsn—l

S n—1 S n—2
1S — m, _,RP}

we have

p
L ————— Wp_1

]

L ———— T,

where m is the stable homotopy class of the attaching map for the top cell in RP™™' as before.

570h dear.
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Proof. The top row we’ve konwn for a while; the left leg is obvious. The bottom row is almost as obvious;
we’ll have the Barratt-Puppe sequence

sl — RP"2 — RP" ! = Cn — 5771 2% RP"2
in which the middle two maps are the cofibration on which the maps above were defined. O

WEell, we found out on Friday what happens to 7 in the AHSS: the differentials on the various 7 hit
elements in the image of the J-homomorphism.

Theorem 21.4. So w,,_1 desuspends to an element in Wgn,p(n),gsn_f’(") and no further.

[

Lecture 22. The space of little cubes

Today we’ll examine where the Snaith maps come from, but you’re going to have to believe some things.
Some references for this include May’s book [Z], Cohen’s paper [4], and Kuhn’s paper [6]. Remember, we're
trying to construct maps

Qnso 2n QRPL

And since constructing maps out of loop spaces is hard, we’d like a tractable model for Q™S™. Fortunately,
there are some hints as to how to proceed.

f
fg*gfg

Figure 15: Q%X and the little cubes operad.

First, we do have the map 92X x Q2X — Q2X giving the H-space structure; if we represent f € 22X
and g € Q2X by the leftmost pair of boxes where the edges go to the basepoint, then their product could
be represented by the second leftmost diagram, for example. Of course, the usual representative is the
second rightmost, but you have to fiddle with this any way, for example to show the product is associative
or commutative up to homotopy. So we’ll study spaces of rectangles. For example, the rightmost diagram is
a point in C3(2) (two rectanges in I?); in general, the space Ck(n) will be

Ck(n) = {space of k disjoint parallel n-rectangles in I},

so what you're really describing is the space of embeddings ], I™ < I™. This is called the space of “little
cubes.” The point is, this space parameterizes the multiplication in 2" X; namely for each k& we have a map
Cr(n) x (A" X)* — Q"X these piece together to give [y~ Ck(n) x (Q"X)F — Q" X.

To model the multiplicative structure yo uhave to make some identifications:

]2 7]

1. The constant loop obliterates a cube; e.g.,

2. The symmetric group ¥, acts diagonally on Cy(n) x (2" X)*, and the map is equivariant with respect
to this action.
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Now if X = X™A then we have the map ao: A — Q"X A, and get

szl Ck(n) Xy (QnX)k/ ~ — QPYNA

|

[[5>1Cr(n) x5, AFf o~
with the bottom ~ meaning the identification in 1) above, which we won’t mark down from now on.
Theorem 22.1 (May). If A is path-connected, this composite is a weak equivalence.

This is the basic theorem in the theory of iterated loop spaces. Note that it bear ssome resemblance to
James’ theorem.

Now you can replace each cube with its center; obviously the size of the cube doesn’t affect homotopy
properties. So we get a Yi-equivariant equivalence

Ci(n) —— FxR™,

k

where Fj (W) is defined to be the space of k-tuples in W with no repeated elements. So we have

HkZl FkRn X3k Ak/ ~ <i Hk21 C’k(n) X Ak/ ~ — QYA

What’s going on? We’re choosing a bunch of points, k of them, and not ordering them, but labelling them
with a point of A; sort of a charge; if the charge is zero, the basepoint, we’re ignoring it. So call this space
C(R™, A) (this is Fred Cohen’s notation).

WEell, this is a pretty simple model, and we ought to be able to understand it. For one thing, let’s relate it
to the James construction: so let n = 1. Then, Fj(R!) is equivalent Xi-equivariantly to {t; < -+ <t} x Iy
In this case the God-given ordering on R! tells us the unique permutation to bring a collection of poiints
into standard order. So

CR,A) = [[{t1 < <tr} x A/ ~

I1 Ak/ ~
where [] A¥/ ~ is the James construction J(A), the “free monoid” on A. So C(R", A) really is a general-
ization of the James construction.

In order to study C(R", A), look at the obviously filtration F(W, A)x = [[,;<x Fj(W) x5, A/ ~. The
associated quotient is

Dy (W, A) = Fy/Fj1
= F, (W) x5, A¥/F (W) x5, {fat wedge of A}
= F,(W) xx, AN /FL (W) xx, pt.
Now consider the case A = 9. (SONF =5, (Rk)‘i, the 1-point compactification. So if & is the vector bundle
fk = Fk(W) Xk Rk over Bk(W) = Fk(W)/Ek, then Fk/Fk:—l = Dk(VV, Sq) = T(qék i, Bk(W)) So you’re

filtering C'(W, A) by something whose successive quotients are Thom spaces. Take the example W = R"™,
k = 2. Then

Fy(R") —+ " x (R \ {0})

(,y) —— (5% 5Y),
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Figure 16: Contractibility of FR>.

and Bo(R") = R*"M x RP?"~!. Now & = 1+ L over R"T! x RP"™ 1 50 T¢; = Dy(R?,59) = T(q(1 + K) |
RP"1) = E‘ZRP;“W_I. Well that’s a good sign; we got a stunted projective space.

Here’s another example: we claim that the inclusion Fy(R"~!) < F,(R") is null-homotopic. A basepoint
in Fi(R™) consists of a choice of k distinct points, and any k points in Rn — 1 can be smoothly moved to
the fixed set of points in R™.

This means that F(R*) = |J,, Fx(R") is a contractible space with a free Xi-action, so it’s an Ey, and
Fp(R*) | Bi(R*) is a universal ¥;-bundle, and

QA) =[Ja"srA
= U H Fk(Rn) X Ak

n k>1

= HEZk XSk Ak/N .
k>1

Let’s see now how to use this to produce maps. We're going to do this in blinding generality; namely,

the map s; will be a map
si 1 C(W, A) — C(Br(W), De(W, A))

so a point of C(W, A) is a finite subset S C W and an assignment f : S — A. We have to take this to a
finite subset s;S of points of Bi(W). The points of By(W) are k-tuples in W, so we take for s;S the set
{T C S :|T| = k}. In addition to s;S we need an assignment sj f of points in s;S to charges in Dy (W, A).
But a charge in Dy (W, A) is an assignment of charges in A to a k-element subset of W. So for T € 555, we
define s f(T) = f|r!

Now take the case W = R™ and A path-connected. Then

C(W, A) — Qyn A —% C(BR(R™), Di(R™, A))

wea. 1

C(RY, Di(R™, A))

1

QNN DL (R™, A).

Now when A = S! (you'd like to take SY but it’s not connected), you get
59: Qg QNEN(SRP™).
So, looping once,

Qrtligntl 2, QN+IyzZN+lppn QRP".

There’s lots of work still to be done: you have to check the compatibility of the maps and so forth. But the
model’s so simple it’s not hard to believe that it works. For more information, see Kuhn’s paper [g].

[
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Lecture 23. The Becker-Gottlieb transfer

One of the advantages of a topics course is that you can change direction in midstream. So now let’s study
the Adams conjecture for a while, starting with a tool by Becker and Gottlieb which enables us to get a
slicker proof than the original ones of Quillen and Friedlander. It’s a construction that’s of interest anyway:
“transfer.” The basic construction is so simple that it’s hard to concentrate on it long enough to appreciate
how much information it contains.

1. Pontrjagin-Thom construction: If X is a locally compact Hausdorff space and U C X is an open
subset, then you get a map X, — X /(X \ U) ~ U, from the one-point compactification of X to
that of U, just by collapsing out the complement of U in X ;. This is called the “Pontrjagin-Thom
collapse,” and it gives a contravariance you may not have noticed before. The construction is natural
with respect to proper maps: if f : X — X’ is proper, U’ C X, and U = f~1(U’), then you get

x, —L +x1
v, —L v

2. The Gysin map: Next we apply the Pontrjagin-Thom construction to the case of a smooth fibration
of compact manifolds F — E -+ B. We'd like to convert p to an open embedding. By the Whitney
embedding theorem you can embed E in R" for n sufficiently large, and an embedding ' — R"™ induces
an inclusion

i

E B x R"
pl /
B.

Well, i still isn’t an open inclusion, so now consider v(i) the normal bundle of the inclusion and get a
tubular neighborhood N of E in B x R™. Now the Pontrjagin-Thom collapse gives a map

(B xR"), —— N, —\Tw) L B)
T(nJi B) \N/HGN
A,

Lots of Thom spaces are going to appear for a while, so perhaps we should give in and follow Atiyah’s
convention of writing the bundle as an exponent: T(v(i) | E) = E*(). So we have a map B"* — E¥().

In some sense what you’re going is inverting p, constructing a sort of multivalued inverse. It’s instructive
to think about the case that p : E — B is a finite cover.

The next question is: what is v(4)? Well, v(i) + 75 = i*(Tpxrn) = p*75 +neg. Now 75 = p*1p +7(p),
the “vertical vectors” or tangent vectors along the fiber. So v(i) + 7(p) = neg; this is sort of a tangent
bundle / normal bundle “relative to B.” So v(i) = ne —7(p), and so we get a stable map B, % E~7®)
called the Gysin map, denoted py for “p shriek” or “p surprise.” (We're also going to start writing -
from here on out for stable maps.)

3. The Becker-Gottlieb transfer: the inclusion v(i) < neg induces a map of Thom spaces E*() —s
E"® =¥"E,, which , together wtih the Gysin map,

EnBJr — pne p Ev(@)

E" =———Y"E,
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e

(B xR"), Ny

Figure 17: Constructing the Gysin map.

is the Becker-Gottlieb transfer ¢(p) : By - E, which has the virtue that it doesn’t shift dimensions.

4. Euler characteristic: The Euler characteristic in this context will be defined as x(p) € 7%(B), an
element in the stable cohomotopy of B. Namely, start with the transfer ¢(p) : By - Ey. Now there’s
a ridiculous map E, — S° which takes the basepoint to the basepoint and pinches everything else
(i.e., E) to the othe rpoint. On the level of complexes, this isn’t much of a map, but the claim is that

stably there’s a lot going on. So the Euler characteristic is defined as x(p) : B+ 2 Ey pindh G0 ¢ 73(B)
(i.e., unreduced stable cohomotopy).

Naturality of x(p) follows from the naturality of p; with respect to pullbacks: if £ = F*E’ in TERRI-
BLE DIAGRAM we get f*v(i') = v(i), and N’ is a tubular neighborhood for E’ in B’ x R™, we can
use f~LIN’ for one of E in B x R™ (we may have to choose N’ well, but because B and B’ and the
fiber are compact, there is no real difficulty). Then we get the following naturality:

Bne f N (B/)ns

X s

t(p) Ev0 L pr() ')
/ ; \

The naturality of x(p) follows by pinching out.

E‘TLE El 'ILE

We'd like to understand several things; for one, what does the Euler characteristic x(p) have to do with
the Euler characteristic in the usual sense? Here’s a start:

Lemma 23.1. The following diagram commutes:

t(p) Pt
B+ 4|—> E+ B+

x(p)A1

‘SO/\B+
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Before we prove the lemma, note this corollary. Any cohomology theory has an action of stable cohomo-

topy: if a € {X,h} is a class in h*(X) and 8 € 7%(X) = {X, S}, then we get U : 2X — ZX VIX Vi
S(hV S) — h.

Corollary 23.2. If x € h*(B), then t(p)*p*z = x(p) Uz.

Proof of the Lemma. Consider AWFUL DIAGRAM. Things on the left are the pullbacks of things on the
right. Then we get

an\ ‘~/B”5 A B°
t(p) /V(z) A, g /\BO\ t(p)AL
Emne A > BT A BO
\9
By X0 v
snABY. ¥

Now focus on x(p) as a cohomotopy class. We have

Lemma 23.3. In F — E -5 B the Hurewicz map 3B — H°B sends x(p) to x(F), the usual Euler
characteristic of F.

Remark 23.4. Of course it’s easier to prove the lemma if you take the right definition of x(F'). Notice
also that x(p) in stable cohomotopy has a lot more information; when you project to cohomology you forget
about p.

Proof. Suppose B is connected; pick a point in B, pt. Then H'(B) EAN H°(pt) is an isomorphism, and

F E
PFl lp
pt J B

is a pullback, so j*x(p) = x(pr). So we can assume B = pt. The only space left is F'. Given an embedding

i: F < S™, the Euler characteristic x(p) is defined by S 2 Fv(i) — pr(H)tF) pinch S™, and we must

show this composite has degree x(F).

Let N C R™ be a tubular neighborhood for the embedded image of F; then S(v) = ON, and ON is
a codimension - 1 submanifold with an outward-pointing normal direction. The map F” — S™ is the
Thom-space level of a map

v voeT R™
F > I pt

which on the level of sphere-bundles is a map v : N — S~ !, the Gauss map! The degree of « is a
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standard definition of the Euler characteristic x(F'); see Milnor [8] for further information. But that’s it:

S(v) —— g1
]
D(v) —— Dn
I
Fv sn,

and the bottom pieces receive a map S™ — F¥, the Pontrjagin-Thom collapse (which is degree 1 by
construction), and the composite S — S™ has degree x(F). O

It’s worth thinking about this on the level of cohomology. The bundle maps

y— 2. {0} xv
CJ lCX 1
n—">= +rxu
induce on the level of Thom spaces
FY ——~ FOAFY
1k
F"e —— FT NFY.
IfueH "(X¢) is the Thom class of ¢ define the Euler class e¢ as the image under pullback by (:
HrXE o A (X0) — H™(X)
Ug ——— e¢.
Then in the above square, the Thom classes go
e;UU, — e, NU,
{ |
Upe ~——U-NU,.

Let o € H"S™ be a generator; think of it as the Thom class of R™ over pt. The diagram

v veT R™
F . F pinch _ pt
gives maps of Thom spaces under which o pulls back as
gn c oz - [ve ~ gn

X(F)-0+—e,UU, ~——U,e ~——— 0.

Well, now we can use classical theorems about the Euler characteristic to study our new Euler characteristic;
for example, we can use Hopf’s theorem to compute it in a special case.
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Let M™ be a compact Riemannian manifold and let v be a non-degenerate
vector field (i.e., v(M) intersects the zero section (M) of TM transversally).
Then around each zero z of v there is a small sphere S.(z) so that Vg () # 0.
Define i, to be the degree of rr[s (x) : Sr—l — gn=l = 41.

Theorem 23.5 (Hopf). x(M) =3 zem ia.
v(z)=0

Proof. (See Milnor [§].) O

For example, suppose G is a compact Lie group; let 7' C G be a maximal
torus; let N(T') be its normalizer. Then the identity component of N(T) is T
itself, and N(T)/T is a finite discrete group, the “Weyl group.” The important
claim is that x(G/T) = |W/|and x(G/N(T)) = 1 if G is compact and connected.

To prove this, we’ll come up with a vector field and use Hopf’s theorem.
There is an action of G on G/T which restricts to an action of T. In T,T = L(T)
the Lie algebra of T there is a vector z such that expz = g, and expiz is a
path in T from e to g; let 74 be the induced flow on G/T; then %’Mt:o is a
vector field on G/T. Now suppose g € T is such that {g" | n € Z} is dense in
T (i.e., g is irrational on each component of the torus; T is called “topologically cyclic”); let v be the vector
field on G/T corresponding to this element. A zero of v is a fixed point of the action of g and therefore
(by continuity) a fixed point for the action of T. Such a point in G/T is a coset hT so that thT = hT
for all t € T, equivalently hth™'T = T for all tinT, equivalently h lies in the normalizer of T. So zeroes
correspond to elements of N(7T)/T = W. I claim all the zeroes are non-degenerate and have the same index,
so x(G/T) = |W|. Now the action of g descends to G/N(T") with only one fixed point, so x(G/N(T)) = 1.

Now let’s talk about the transfer in K-theory. Suppose p : E — B is a finite covering. Then the transfer
is a map t(p) : B"™® — E™ which induces a map in KO-theory KO(E) — KO(B). There’s an obvious
thing to do here, but there’s no obvious connection with the map #(p): if £ over E is a vector bundle, we
can form a vector bundle over B by taking as fiber over b € B the sum of the vector spaces over points in
E which cover b:

Figure 18: Picture of S.
about a zero at x.

be B~ P & =@

p(z)=b

This is more than you might hope for; it says there’s an underlying map Vect(E) — Vect(B). But in
fact, the two constructions are the same:

Lemma 23.6 (Nontrivial).

KO(E) ‘2% Ko(B)

A

Vect(E) —2» Vect(B).

Corollary 23.7. Let p : E — B be a finite covering and §& € KO(B); then if £ is stably fiber-homotopy
trivial, so is t(p)*¢.

Remark 23.8. Note that this isn’t a trivial fact: transfer is a cohomological construction but stable fiber
homotopy triviality isn’t. But it follows from the lemma: a map S(¢) — S™~! which is degree 1 on each
fiber gives a map S(p.&) — S™~4°8P which is degree one on each fiber.

Remark 23.9. The corollary can also be proved by noticing the factorization

KO(X) — Sph(X)

D

J(X)
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— —0
and that Sph = Sph is the zeroth level of a cohomology theory, using the infinite loop space theory of
Boardman and Vogt. So the transfer maps induce maps in this theory, and you can produce the result by a
naturality argument.

The second fact about transfer in K-theory is the relation to Adams operations. In fact, the result really
concerns the interaction of Adams operations with arbitrary stable maps.

Lemma 23.10. Suppose f : x, - Y, ; then f*¢YFx—yF f*x has order dividing a power of k (and independent
of x). So the ¥* are not stable operations.

Proof. To study the problem, you have to distinguish between the stable map f and an actual representative.
So denote the induced homomorphism by f*: KO(Y;) — KO(X). Suppose n is taken large enough that
there is an actual map f: X A S®" — Y, A S%". Then

¢ KOX;) 1Ko,

Lk e

T @Y KO(X, A S&") - KO(Y, A S87),

with v a generator of ?5(58) 2 Z. Choosing this, you find
V(@) @) = R (fH(z @)
KR () @ 4" = (e @a™)
= J* (ke o k)
= K" (W @y
= k" (frte) @ 4"
So k4 (yk f* — f**) = 0, and n depended only on f. O
U

Lecture 24. The Adams conjecture

Well, nothing in topology ever proceeds in a straightforward way; usually you end up having to talk about
some “relative” version. This time, we’ll use a sort of “relative” transfer. So, as before, let F — E -2+ B
be a smooth fiber bundle with F' and B compact; let £ over B be a vector bundle, and consider

prE——m¢&

.

E—' B
As before, consider an embedding E' <— R"™ and get

Ec— + BxR" s neape

| A

B.

Now you emb ed one step farther: ¢ : B x R™ < ne & £. And we can do the collapse on the inclusion given
by a tubular neighborhood for p*¢ in ne & &:

t(p) : B BE 2L preris «y predp’s — s ppte
So the relative transfer is the stable map t(p) : BS - EP’¢.
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Lemma 24.1. Suppose x(F) = 1. Then if J(p*¢) = 0 in J(E), then J(&) = 0 in J(B), so p is a
monomorphism in J-theory.

Proof. J(p*€) = 0 means that

3
S EPEé 1, gd

where the composite has degree 1 and d is the dimension of £. Then we have

Eré o, gd

It(p)

B¢

Sd

sS4,

and we’d like to show the degree of this right-hand composite is +1. Well, choose a basepoint in B; then
you have

de —— p*¢

and from this you get

Fde EPE > G4
8 L.
Sd BS.

But S¢ + F9 isn’t just the inclusion of the bottom cell; in fact, we found that it was y(F) times the

inclusion of the bottom cell! So if y(F) = £1, S¢ — B¢ 1P Br'e L 94 has degree one. O

Now I'm ready to tell you what the Adams Conjecture says, although not what it means: let B be a
finite complex, let ¢ € KO(B), and let k > 1 an integer. Then some power of k kills J(/*¢ — €) in J(B).

Admittedly, this is an obscure statement, but take it from me that it’s important and worth proving.
We’ll prove it bit by bit.

1. ¢ is a linear combination of line bundles. If k is odd then ¥*¢ = € so *¢ — & = 0. If k is even and ¢ is
a line bundle (by additivity it’s sufficient to consider this case), then *¢ — ¢ =1 —¢ € KO(B). ¢ is
classified by a map f: B — RP"Y for large enough N:

¢ L
B—1 RPN,

so1—¢&=f*(1—L), and KO(RPY) is a finite 2-group generated by (1 — L).
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2. The next case is that & is a 2-dimensional bundle. Let P be the associated principal bundle so that
§ =P X R2. We described the Adams operations ¥ in terms of representations, so now we have
to think a little about the representation theory of O(2): what is O(2)? Well, there are two parts:

Sl

S0(2) — 0(2) Zs,

where the splitting comes from choosing any reflection, say r is the reflection through the z-axis.

So what are the representations of O(2)? Let V = R? be the basic representaiton; then we can take
exterior powers:

(V) =1,
A(V) =V,
N (V) = det .

More interestingly, we have representations j, given by S* acting on C®¢* by, for z € S, z- (w1 ®---®
wy) = 2w @ -+ @ 2wy, = 2F(w; @ -~ @ wy), and we can extend to O(2) by letting r act by complex
conjugation. Note that uy = V.

Next we want to express the 1¥s in terms of Ms and pys, so that we have some chance of being able
to compute. In order to do that, we should write down the character table for O(2): WHAT A MESS
Ly is the natural candidate for ¢, but it’s wrong: the formula for ¥* is

- Mk if k is odd,
e+ (Mo — A2) if k is even.

Now we can use the uzs to check the Adams conjecture: ¥V — V differs from V' — V by a linear
combination of line bundles with virtual dimensions 0 (assuming k is even); these are killed by a power
of 2 by the above argument for the line bundle case. if k is odd, ¥*V —V = u,,V — V. The claim is
that for some e, k°(upV — V) =01in J.

The trick — which is the key point in understanding the Adams conjecture — is the map fr : V — ug
given by fi.(z) = 2¥, which is equivariant with respect to the O(2) action on either side, but certainly
not linear; it won’t induce a map of vector bundles, but it will induce one of sphere bundles, which is
degree k on each fiber. The result then follows from

Lemma 24.2 (Adams’ Mod k Dold Lemma, Adams, J(X) I, Topology around 1965). Let B be a finite
complex and let £,&" be vector bundles over B. Suppose f : S(§) — S(£') is degree k on each fiber. Then
ke(J(&) — J (&) =0 for some e.

Well, this is as far as Adams got; he decided it was unreasonable of others to expect him to do more.
Now you need a trick to be able to finish in a finite amount of time.

To do the general case we’ll make a few reductions, namely to oriented 2n-dimensional bundles. A vector
bundle ¢ over B has a Stiefel-Whitney class w; (§) € H'(B;Zy) which is the obstruction to the orientability
of £&. Now elements of H'(B;Zs) are in one-to-one correspondence via w; with line bundles.

Now perform the L and L constructions fiberwise on the bundle & over B and you get a fiber bundle

©) ¢
L(R*") g Ii(lf) - pE
-
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where L(R?") has x = 1 and ( is two plane bundles. The claim is that this wonderful formula is geometrically
clear: t(q)*¢ = g.¢ = p*€ over B, so in particular there is a line bundle A over B so that wi(§ @ \) =0, i.e.,
& @ A is orientable. The additivity of the Adams conjecture (plus the fact that we've already proved it for
line bundles) implies that we can assume ¢ is an oriented, 2n-dimensional vector bundle over B; moreover
B is compact so we can give & a metric.

Now suppose B is a 2n-dimensional inner product space over R; let F/(V') be the space of sequence of n
mutually orthogonal 2-planes in V. ¥, acts freely on F(V); let L(V) = F(V)/%,. I claim we’ve constructed
this space before as SO(2n)/NT. So x(L(V)) = 1.

Now let ¥,_1 act on F(V) by fixing the last element; then there is an n-sheeted cover L(V) =

F(V)/Sp_1 —% L(V). Moreover, there is a 2-plane bundle ¢ over L(V) defined fiberwise by setting
C({v1,eesvm_1},0n) = Un- Now from the lemma at the beginning of this lecture, it suffices to check the Adams
conjecture on p*¢. But by the formula,

PEp*E — p*& = ¥M(q)* ¢ — t(q)*¢
= ¢Ft(q)* ¢ — t(g" V"¢ + tq) W ¢ — t(q)*¢
= (W"t(q)* — t(q) V") + t()* (WF¢ = Q).

The left summand is killed by k¢ and the right summand is killed by kf for some f by the proof of the adams
conjecture for 2-plane bundles.

[

Lecture 25. Some summands of the stable homotopy groups of
spheres

All right, today we’ll study the meaning of the Adams conjecture; in particular I'm going to tell you about
the space J. We've talked about the KO spectrum, representing real K-theory: KO*(X) = {X, KO}. Tt is
a sequence of spaces {KO,,} with maps «a,, : X KO,, — KO, with
KOs, =7 x BO
KOg,_; = Q(Z x BO)
Y8 KOs, — KOg,4sis given by

S8 A (Z x BO) Z x BO

|~

(Z x BO) A (Z x BO).

Bott periodicity says Z x BO — Q¥(Z x BO).
— 0
Now KO(X) is a ring with unit; KO (S°) 2 Z > 1. So there is a map of spectra ¥*°5° = § — KO
representing 1 € KO(S°). One question is, how big is the image of the induced map 72 — KO.,?
Another way to ask this question is this: every spectrum has a space associated with it; in this case,
we get a map QS° = Q®°XN>®S% — Z x BO whose effect in unstable homotopy is the stable homotopy of

the map above. Viewed in this light, the answer depends on self-maps of Z x BO. We have the ©*s, so we
should use them. The operation ¥* : KO — KO corresponds to a map ¢* : Z x BO — Z x BO. We
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know the effect of ’l/Jk ON Tyt

* | m(Z x BO) Pk

0 Z

1 Za(m) n > kn
2| Zs(n®) 1 k*n
3 0

4 Z{ga) gs — k% gy
5 0

6 0

7 0

8 Z(gs) gs — k'gs.

Everything else on the table follows from periodicity.
These operations suffer from a bad defect: they’re not stable. But we've arleady seen how to study this
problem when we were studying transfer: namely,

S8 A(Z x BO) — """, §8 A (Z x BO)

o

(Z x BO) A (Z x BO) Y+ (Z x BO) A (Z x BO)

| o

d}k
Z x BO ~ 7. x BO.

By adjunction, you get

k41bk

KOy KOq

.| |-

wk,
Q8K 05 —2» Q3K 0.

The diagram measures how far ¥ is from being stable. The fix we shall use here is to localize so that k
becomes a unit.

The point is, KO* is a nice ring, so localization is easy to do: R C Q is flat over Z, so we can take
KO*(X;R) to be defined as KO*(X) ®z R; e.g., R = Z[1]. Then the diagram becomes

KOO KOO

| |

—408, .k
DBKOs =Y 08K O [L],
i.e., you can define a new operation U* : KO — KO[}] so that
1
U =k*"* . Z x BO — Z x BO H
Now Z[}] < Z(3), assuming 2 { k, so you get

Ko* — " KO [1]

.

* v *
KOp) —— KOy,

96



for k£ odd. Take the case k = 3 for the rest of this lecture. But we’re still not done massaging the Adams
operations; we need the notion of a “connective cover:” if X is a space, then its n'® connective cover is the
space X(n,...,00) — X, where this map is an isomorphism on m; for ¢ > n and m;X(n,...,00) = 0 for
i < n. For example, you have

BSpin —— BSO ~ BO ~ 7. x BO

as a sequence of connective covers. You can do this for spectra, in which case it’s interesting to take away
negative homotopy groups: E(0, c0),, = E,(n,c0) has no negative homotopy groups. For example, KO has
negative homotopy groups; its 0-connective cover localized at 2 is KO(0,...,00)(2) = bo, called “connective
real K-theory.” So

* ‘ 0 1 2 3 4 5 6 7 (8
7T*bO ‘ Z(g) ZQ ZQ 0 Z(g) 0 0 0
but now we restrict to * > 0. The construction of U¥ gives an operation on connective real K-theory

Uk : bo — bo and we know its effect on homotopy groups (k = 3 in what’s to follow):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Z(Q) Zo 7o 0 Z(z) 0 0 0 Z(Q) Zo Lo 0 Z(Q) 0 0 0 Z(g)
:l l l l-g 1»81 1729 l~94
Z(z) Zo 7o Lo Z(g) Zo 7o Z(Q) Z(g).

Notice that U3 induces the identity in dimensions below 4. So consider the map ¥3 — 1 : bo — bo; now the
map acts as 0,0,0,...,-9—1,...,-81 — 1,... in homotopy. You could just take the fiber of this map, but
because ¥3 — 1 induces zero in homotopy in dimensions one and two you would get copies of Zs from both

ends, and these are in fact unnecessary: the map U3 — 1 lifts to the 4-connective cover22
bo(4,...,00)
v
2.7 l

STws 1

bo —— bo

and that brings us to the space J — or at least the spectral j. Set j to be the fiber of ¢ : bo — bo(4, ..., 00).
The space J comes from the 0-space:

Z x J — 7 x BO -2+ BSpin

|

J » BO > BSpin.

OK, we can figure out the homotopy of J because we know about all the things that go into it. Recall
that (9% — 1) = v(k) + 3, so 9¥ — 1 is an odd multiple of 2*(¥)*3  or equivalently an odd multiple of 8k.
Hence W3 — 1 acts either as 0 or as multiplication by 8k and by a unit in Z2)- So we get

0 1 2 3 4 5 6 7

7T*J Z(g) ZQ ZQ ZS 0 0 0 Zlﬁ

mebo(d, ... 00) 0 0 0 0 L) 0 0 0.

58Why? I need to check the obstruction theory here.
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8 9 10 11 12 13 14 15 16

Ty Lo 73 Zo Zg 0 0 0 Zsa Zo
o]
. bo ZL2) Zo Zo 0 Z2) 0 0 0 Z
l-8171 lo lo l-9371 9%—1
m.bo(4, ..., 00) Z) Zo Zo 0 Z2) 0 0 0 Z.
What’s the point? The point is, this has to do with homotopy groups of spheres. You have
S0
|
j/bo % bo(4, ..., 00)

and the question is, how big is the image 7,5° — 7,J? The Adams conjecture answers this.

How? The adams conjecture says that for some e, 3¢ K (¥3—1) = 0. There is an inclusions O(n) < G, ( =
all degree +1 self-maps of S"~1) which is compatible with the inclusions O(n) < O(n+1) and G,, <= Gpy1.
So you get a map of the limits J : O — G = Q+S° which is an H-map. So you get a map of classifying
spaces BJ : BO — BG. Then the Adams conjecture implies that the composite

BSpin — BO —2Ls BGy,
\ I\Ijsl
o oF
BO.
This gives you a map a below:

J ~ BO —~ BSpin
L]

G > EG > BG(Q)

Now in fact o factors through the +1 component of G, SG = Q5°:
J ~ BO ~ BSpin

]

G > EG > BG(Q)

Well, this looks good, in fact it looks very good: the map S° — j is, after you apply Q> to it, a map
u: Q8% — Q®j =7 x J. And in fact

J

So if C is the fiber of u, then there is a homotopy equivalence QS° = SG ~ J x C. Thus all of the homotopy
of J listed above appears as a direct summand in 7,SG, and in particular in the iamge of S© — j.
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One game you can play now is to try to get out some information on unstable homotopy. First we’ll need

some names: pulling back the sequence J — BO — BSpin once, you get Spin 2 J— BO (where J
is essentially the J-homomorphism, in the sense that it restricts from «). It’s time for another table:

T Spin Txd 7. BO New names Traditional names
1 0 Zg <a1> ZQ a1 n
2 0 ZQ <042> ZQ (%) 772
3 Y/ Zg(j2) 0 az = 4jo Jo=v
4 0 0 /
5 0 0 0
6 0 0 0
7 Z Z16(j3) 0 oy = 853 Jja=o0
8 Lo Z(ja) Y/ Ja=mno
9 Zy Z2(js) ® Zalas)  Zo o, js = o
10 0 Zg <046> ZQ (675 nio
11z Zs(js) 0 ar=4js=n’uo Jos 7o
12 0 0 /
13 0 0
14 0 0
15 Z Zgg <j7> 0 ag = 16]7 j7.

The stuff coming from Spin are essentially classes in the image of the J-homomorphism; we had names for
these already (j;, see 777). Now there’s more, elements which come from m, BO, sort of “honorary members
of the image of J.” Note that n = j; has been demoted to an honorary member because we used Spin
instead of O. The elements «; all have order 2; in fact, we’ve given names to all the elements of order 2 that
didn’t have names before. All of these really live in 75! So what we can do now is study how they behave in
the EHPSS: how far they desuspend, and what their Hopf invariants are. Or at least Mark Mahowald can.
We’re in Mahowald territory in a big way now; for more information, see one of:

Mahowald citeMahowald, Cohen citeCohenKervaire, Barratt, Jones, and Mahowald citeBJM, Selick cite-
Selick, or Feder, Gitler, and Lan citeFGL.

Recall that there are “Snaith maps” s,, that match up fibrations:

Qns2 QnJrl Sn+1 . Qn+152n+1

o e

QRP"! . QRP" QS™.

You apply 7, to get a map of exact couples (and so of spectral sequences):

W*QnS" _ 7T*Qn+15n+1 . 7T*Qn+152n+1

| | |

aSRP"1 — 7SRP" e 8n.

72 is formidable, so now we could try to use something else to detect things; an obvious choice given the

above is the spectrum j : j,,(X) = m.(j A X), 80 7,5° = 7,5 = m.(J x Z), which we know, so we might hope
to be able to compute other things as well. So by smashing with j, we get a map

7RP"! —» 7SRP" — 725"

N T

JRP"L — s jRP & j ST
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of exact couples (and we know that j,S™ is a summand of 72!). The bottom exact couple gives the Atiyah-
Hirzebruch spectral sequence H,(RP®;j,.) = j.RP>.

Unfortunately, we can’t do all the proofs. Mahowald essentially does this work in the Annals paper, but
he doesn’t quite say it this way.

Anyway, one thing to do is to try to compute j,RP* by more direct means. You might expect that it’s
huge, since j, has lots of stuff, and RP° has a cell in each dimension. But in fact it’s very small; this reflects
all the cancellation going on in the EHPSS — there’s lots of it. To compute j,RP°° note the fibration
5 — RP* induces a transfer map RP® —» S7° ~ S0, There is an obvious map RP® — RPP, but
be careful: on the level of spaces this isn’t a pointed map. But on the level of spectra, you get a pointed
homotopy equivalence Y°X | ~ L®°X v 159 whereas on the level of spaces you certainly don’t get a
pointed homotopy equivalence X 2 X V S%. So anyway, you get

RP> s S0 - R > YRP>

P

RPS°,

where R is the cofiber of A.

The map RP* - RP? is interesting because it doesn’t exist unstably;
constructing it involves the same game as the shifting of components we .G
played when constructing the J-homomorphism. The cohomology of R
has a class x( in dimension zero coming from S° and then a class zj, in

w

dimension k > 2 coming from H*S~RP>, and Sq* z¢ = , for all k! The 4
reason for studying R is that bo,R is very simple; in fact, bo A R is a 3
bouquet of Eilenberg-Maclane spectra: 2

boA R~ \/ S¥HZy), 0

k>0

Figure 19: The Steenrod action on

and the cohomology of R.

bo(4,...,00) AR~ \/ S*HZp) v \/ 2¥ 2 HZ,.
E>1 E>1

And so we computed j A R from the sequence

. w1
JAR —— boA R —— bo(4,...,00) A R.

It’s a rational calculation; there’s just not that much to do. The result is striking: j A R is almost not
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there at all.

JAR boAR bo{4,...,00) AR
0 Zg  Zw
1
2
3
4 Loy Z2)
5 ZQ <0‘1>
6 Zo
7 ZQ <7'1>
2
8 Ly — Z2)
9 ZQ <0'2>
10 7o
11
13 ZQ <0‘3>
14 7o
15 Z4<TQ>
4
16 Ly — L)
17 Z2<0'4>.
That’s it!
Jsk—1(R) = Zovowy+1(Tk) k>1,
Jak+1(R) = Za(o) k> 1.

Now we’re really interested in RP>°.

jARP>® jASY AR

0 Z Z Z2)
1 ZQ ZQ<O¢1>

2 ZQ ZQ<OZ2>

3 Zg Zg(j2)

4 Z2<O'1>

5 0 Z2<0'1>
6 Z2<T1>

7 VAT Zie(js) Za(T1)
8  Zy®(Z2{o2)) Za(ja)

9 Ly ® Lo Lo ® Ly ZLy(oa)
10 Zs Zs

11 Zsg Zs(jo)

12 ZQ<03> 0

13 0 0 ZQ<03>
14 ZQ<T2> 0

15 Z32 Zg <] > Z4<T2>

2{J7
16 ZQ @Z2<O'4> Z2<j8>
AND AN UNREADABLE ROW. Various things could happen, but in fact nothing else does:
JRP® = j, & (ty, o).

So now we've computed the E?-term and the “abutment” of the Atiyah-Hirzebruch spectral sequence
H*(RP%;j,) = j.RP>. A picture is attached of what the filtration looks like; we’ve really reached the
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outer limits of human comprehension here. Note that each of the dots is a Zs, so a non-zero differential
connecting two dots is death to both of them. So you get to E> from E? pretty quickly, and you can see a
good deal of £ in this picture.

Remember what we had: there were three exact couples

W*Q”S" _ 7T*Qn+1sn+1 . ,R_*Qn-‘,-lSQn-i-l

| | |

TRP"™! — 15RP" T2 9m

| | |

JRP"L — jRP" J«S™,

and the last spectral sequence can be written out completely; it’s the chart. Today we’ll talk about two
problems: first, given a class v € j,RP>, where can be find a representative, which we will denote H(v), in
j.? and secondly, how do classes in j,RP> pull back to 7RP>, or even better, to the EHP sequence?

Sk

jARP®

NS

jARP3

|

jAS3.

Recall j,RP>* = j, & (1%, 0k, and j. contained elements «j of order 2 and elements ji. Recall also that
ay were often not generators; for example, az = 4j2. So we introduce the notation that cy/; is an element
such that Qi_lak/i = ay. For example, oy = 80, 50 ay/p = 40, ay/3 = 20, ayyy = 0, and ayy; = ag.
With this notation we can get all the classes in the image of J except juk, jak+1 € 7skJ, Tsk+1J. Then the
representatives of j*RP in this spectral sequence are found as follows:

H(ayi) = o
H(jak+1:) = Jak+i-1, 1=0,1
H(ok) =v = js € m3(J)
H(2'73,) = jiz1, i <v(k)

Some patterns you will observe when you compare this with the picture:

1. Elements in the image of J are born as early as possible, so they are concentrated on the left of the
table.

2. ogs are born as late as possible, so they occur to the right on their total degree lines.
3. Tis are born as late as possible, subject to the requirement that 2°7;, are born as late as possible too.

The next question we posed for ourselves was: how does this picture pull back to the EHP sequence and
72 = 1,Q8°? Mahowald’s answer is

Theorem 25.1. (Mahowald) The image of n¥ = m,QS° — 7SRP>® — j,RP™ contains I, ook for
k > 1, and may contain 287,k > 0 (coming from Kervaire invariant classes; we know that 0s,...,05 do
exist with Ox1o € 71—5-2’“72)’ and nothing else/
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What does this tell us about our picture? For elements in the image of J, the EHP spectral sequence
looks the same as our chart. Elements in the image 7..J — 7% are born on the expected spheres (they can’t
be born earlier than they are here, and Mahowald constructed such elements in the EHP spectral sequence
in the right dimensions in his paper) and their Hopf invariants have the right image in j,.S™ under the map of
spectral sequences. In fact, a great deal of the information from various parts of the course can be discerned
in the picture. For example, Hopf invariant 1 is present: if you project

1880 — = SRP>® — j,RP>® — j,RP>®

with n odd, then 775° — j,RP> = Z, is the Hopf invariant. So you have an element of Hopf invariant 1
if you have a survivor in the bottom row.

The issue of the desuspension of w,, (and so of vector fields on spheres) became a picture of differentials
off classes in the bottom row of the Atiyah-Hirzebruch spectral sequence for m2RP>; the desuspension of
wy, is represented by the end of the differential.

The desuspension of w,s brings us to the Kervaire Invariant classes. Notice in the picture at the (7,7)
position the differential coming in above from the bottom row: INKSCAPE What you would hope is that

03 = % times the desuspension of w15. So that’s part of the wish list for Kervaire invariant classes:

o Ok €EToin_,

e born on §2"" 1=kl

e Hopf invariant of ji (or at least having some image in j. as ji
e order 2 (since in j,RP>, 2*7,. has order 2)

e 0; halves a maximal desuspension of wor+1_4

e no further division by 2 is possible, because in j,RP further divisors exist, but these are not in the
image of 7%

e detected on the Adams 2-line.

Other things have been done: you could investigate further how the classes that are in 72 behave in the EHP
sequence; for example, you could try to compute p(ji). Mahowald’s theorem tells good information about
when these are nonzero. Feder, Gittler, and Lan (cite them) have shown other classes for which p(ji) = 0.
But the Kervaire Invariant classes represent a real missing case here, about which relatively little is known.

[
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