18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Free Modules (Lecture 7)

We first recall a bit of notation: If $I = (i_1, \ldots, i_k)$ is a sequence of integers, we write Sq^I for the composition product $\operatorname{Sq}^{i_1} \ldots \operatorname{Sq}^{i_k}$ in the Steenrod algebra \mathcal{A} (or the big Steenrod algebra $\mathcal{A}^{\operatorname{Big}}$). We say that I is *admissible* if $i_j \geq 2i_{j+1}$ for $1 \leq j < k$. The *excess of* I is defined to be the expression

$$i_1 - i_2 - i_3 - \ldots - i_k = (i_1 - 2i_2) + (i_2 - 2i_3) + \ldots + (i_{k-1} - 2i_k) + i_k.$$

We wanted to prove that the Steenrod algebra has a basis $\{Sq^I\}$, where I ranges over the admissible sequences of positive integers. This was reduced to the following assertion:

Proposition 1. Let F(n) denote the free unstable A-module generated by one generator ν_n in degree n. Then the collection of elements $\{\operatorname{Sq}^I \nu_n\}$ is linearly independent in F(n), where I ranges over admissible sequences of positive integers having excess $\leq n$.

To prove this, it will suffice to find any unstable \mathcal{A} -module M with a element $x \in M^n$ such that the set $\{\operatorname{Sq}^I x\}$ is linearly independent in M (here again I ranges over admissible positive sequences of excess $\leq n$). To see this, we observe that the freeness of F(n) implies that there is a (unique) map $\phi : F(n) \to M$ with $\phi(\nu_n) = x$. Consequently, any linear relation among the expressions $\{\operatorname{Sq}^I \nu_n\}$ would entail a linear relation among the expressions $\{\operatorname{Sq}^I x\}$.

It will therefore suffice to choose M to be some sufficiently nontrivial unstable A-module. We have seen that for any topological space X, the cohomology $H^*(X)$ has the structure of an unstable module over the Steenrod algebra. The most interesting example we have studied so far is the case where $X = B\Sigma_2 \simeq \mathbf{R}P^{\infty}$. In this case, the cohomology ring $H^*(X)$ is isomorphic to a polynomial ring $\mathbf{F}_2[t]$, and the action of the Steenrod algebra is described by the formula

$$\operatorname{Sq}^{k} t^{m} = \binom{m}{k} t^{m+k}.$$

We can obtain a more interesting example by taking X to be a product of n copies of the space $\mathbb{R}P^{\infty}$. In this case, the cohomology of X can be identified with a polynomial ring $\mathbb{F}_2[t_1, \ldots, t_n]$ in several variables (obtained by pulling back the cohomology class t along the n different projections). Using the Cartan formula

$$\operatorname{Sq}^{k}(xy) = \sum_{k=k'+k''} \operatorname{Sq}^{k'}(x) \operatorname{Sq}^{k''}(y),$$

we deduce that the action of the Steenrod algebra on $H^*(X)$ is described by the following formula:

$$\operatorname{Sq}^{k}(t_{1}^{a_{1}}\dots t_{n}^{a_{n}}) = \sum_{k=k_{1}+\dots+k_{n}} \binom{a_{1}}{k_{1}}\dots \binom{a_{n}}{k_{n}} t_{1}^{a_{1}+k_{1}}\dots t_{n}^{a_{n}+k_{n}}.$$

We now make a crucial observation about the formula above. Suppose that each exponent a_i is a power of 2. The binomial coefficient $\binom{a_i}{k_i}$ is equal to 1 if $k_i = 0$ or $k_i = a_i$, and vanishes otherwise (since we are working over the field \mathbf{F}_2). Moreover, the exponents appearing on the right hand side have the form $a_i + k_i$,

which will again be a power of two if $k_i = 0$ or $k_i = a_i$. In other words, we can rewrite the preceding formula as follows:

$$\operatorname{Sq}^{k}(t_{1}^{2^{b_{1}}} \dots t_{n}^{2^{b_{n}}}) = \sum_{k=\delta_{1}2^{b_{1}}+\dots+\delta_{n}2^{b_{n}}} t_{1}^{2^{b_{1}+\delta_{1}}} \dots t_{n}^{2^{b_{n}+\delta_{n}}}$$

where the sum is taken over $\delta_1, \ldots, \delta_n \in \{0, 1\}$.

Let $x = t_1 \dots t_n \in \mathbf{F}_2[t_1, \dots, t_n]$. Then, for every sequence of integers I, the expression $\operatorname{Sq}^I(x)$ can be identified with some polynomial $f(t_1, \dots, t_n) \in \mathbf{F}_2[t_1, \dots, t_n]$. This polynomial necessarily has the following properties:

- (a) Every monomial appearing in f has the form $t_1^{2^{b_1}} \dots t_n^{2^{b_n}}$.
- (b) The polynomial f is symmetric in its arguments.

Let M denote the subspace of $\mathbf{F}_2[t_1, \ldots, t_n]$ consisting of those polynomials which satisfy (a) and (b) above. We observe that M is invariant under the action of the Steenrod algebra \mathcal{A} , and is therefore an unstable \mathcal{A} -module in its own right. Moreover, M contains the element $x = t_1 \ldots t_n$ of degree n. To complete the proof of Proposition 1, it will suffice to show the following:

Proposition 2. The expressions $\{Sq^{I}(x)\}$ form a basis for M, where I ranges over admissible sequences of positive integers having excess $\leq n$.

Let us now introduce a bit of notation. Given a monomial $f = t_1^{a_1} \dots t_n^{a_n}$, let

$$\sigma(f) = \sum_{g \in \Sigma_n/G} f^g$$

be the symmetric polynomial obtained by summing the conjugates of f; here we take G to be the stabilizer of f in Σ_n , so that f itself appears in this sum exactly once. For example, if n = 2, we have

$$\sigma(t_1^a t_2^b) = \begin{cases} t_1^a t_2^b & \text{if } a = b\\ t_1^a t_2^b + t_1^b t_2^a & \text{if } a \neq b \end{cases}.$$

The space M has a basis consisting of symmetric polynomials of the form $\sigma(t_1^{2^{b_1}} \dots t_n^{2^{b_n}})$, where $0 \leq b_1 \leq \dots \leq b_n$. It will be convenient to index this set of polynomials a little bit differently. Given a sequence of nonnegative integers $\epsilon = (\epsilon_0, \dots, \epsilon_k)$ with $\epsilon_0 + \dots + \epsilon_k = n$, there is a unique sequence $0 \leq b_1 \leq \dots \leq b_n$ such that ϵ_i is the cardinality of the set $\{j : b_j = i\}$. We then set $f_{\epsilon} = \sigma(t_1^{2^{b_1}} \dots t_n^{2^{b_n}})$. Thus M has a basis consisting of the polynomials $\{f_{\epsilon}\}$, where ϵ ranges over sequences of nonnegative integers $(\epsilon_0, \dots, \epsilon_k)$ such that $n = \epsilon_0 + \ldots + \epsilon_k$ and ϵ_k is nonzero.

There is a corresponding indexing for positive admissible monomials of the form Sq^{I} . Let $I = (i_{1}, \ldots, i_{k})$ be a sequence of positive integers. If I is admissible, then the integers $\epsilon_{1} = i_{1} - 2i_{2}$, $\epsilon_{2} = i_{2} - 2i_{3}, \ldots, \epsilon_{k-1} = i_{k-1} - 2i_{k}$ are all nonnegative. We then set $\epsilon_{k} = i_{k}$, which is positive so long as I is positive. The sum

$$\epsilon_1 + \ldots + \epsilon_k = i_1 - i_2 - \ldots - i_k$$

is equal to the excess of I. Thus, if I has excess $\leq n$, we can define $\epsilon_0 = n - (\epsilon_1 + \ldots + \epsilon_k)$, to obtain a sequence of nonnegative integers $\epsilon = (\epsilon_0, \ldots, \epsilon_k)$, where ϵ_k is positive. Conversely, given such a sequence of integers, we can construct a unique admissible sequence $I = (2^{k-1}\epsilon_k + \ldots + \epsilon_1, \ldots, 2\epsilon_k + \epsilon_{k-1}, \epsilon_k)$ of excess $\leq n$. We will denote this admissible sequence by $I(\epsilon)$.

We now wish to compare the expressions $\{\operatorname{Sq}^{I(\epsilon)}(x)\}\$ with the basis $\{f_{\epsilon}\}\$ for M. They do not coincide, but we get the next best thing: the translation between these two bases is upper triangular. To be more precise, we need to introduce an ordering on our index set. Let E be the collection of all finite sequences $\epsilon = (\epsilon_0, \ldots, \epsilon_k)$ of nonnegative integers (here k is allowed to vary) such that $\epsilon_k > 0$, and $\epsilon_0 + \ldots + \epsilon_k = n$. We equip E with the following lexicographical ordering: $\epsilon < \epsilon'$ if there exists an integer i such that $\epsilon_i < \epsilon'_i$, while $\epsilon_j = \epsilon'_j$ for j > i. Here we agree to the convention that $\epsilon_i = 0$ if i is larger than the length of the sequence ϵ .

To complete prove Proposition 2, it will suffice to verify the following:

Proposition 3. Let $\epsilon \in E$. Then

$$\operatorname{Sq}^{I(\epsilon)}(x) = f_{\epsilon} + \sum_{\alpha} f_{\alpha}$$

where α ranges over some subset of $\{\epsilon' \in E : \epsilon' < \epsilon\}$.

Proof. We compute:

$$\begin{aligned} x &= \sigma(t_1 \dots t_n) \\ \mathrm{Sq}^{\epsilon_k}(x) &= \sigma(t_1^2 t_2^2 \dots t_{\epsilon_k}^2 t_{\epsilon_k+1} \dots t_n) \\ \mathrm{Sq}^{\epsilon_{k-1}+2\epsilon_k} \, \mathrm{Sq}^{\epsilon_k}(x) &= \sigma(t_1^4 t_2^4 \dots t_{\epsilon_k}^4 t_{\epsilon_{k+1}}^2 \dots t_{\epsilon_k+\epsilon_{k-1}}^2 t_{\epsilon_k+\epsilon_{k-1}+1} \dots t_n) + \text{lower order} \\ & \dots \\ \mathrm{Sq}^{I(\epsilon)}(x) &= f_{\epsilon} + \text{lower order} \end{aligned}$$

We now wish to reformulate some of the above ideas, using Kuhn's theory of "generic representations". In what follows, we let V denote a finite dimensional vector space over \mathbf{F}_2 , and let V^{\vee} denote its dual space. We observe that

$$\mathrm{H}^*(BV^{\vee}) = \mathrm{H}^*(\mathbf{R}P^{\infty} \times \ldots \times \mathbf{R}P^{\infty}) \simeq \mathbf{F}_2[t_1, \ldots, t_N],$$

where N is the dimension of V. However, we can describe this cohomology ring more in a more invariant way: it is given by the symmetric algebra $\operatorname{Sym}^*(V)$ generated by the vector space $V \simeq \operatorname{H}^1(BV^{\vee})$.

Every admissible monomial Sq^{I} in the Steenrod algebra of degree k determines a map

$$\mathrm{H}^*(BV^{\vee}) \to \mathrm{H}^{*+k}(BV^{\vee}).$$

Restricting to a particular degree n, we get a map

$$\operatorname{Sym}^{n}(V) \to \operatorname{Sym}^{n+k}(V).$$

This map depends functorially on V, and vanishes if the excess of I is larger than n.

To study the situation more systematically, let Vect^f denote the category of finite dimensional vector spaces over \mathbf{F}_2 , and Vect the category of *all* vector spaces over \mathbf{F}_2 . We let Fun denote the category of functors from Vect^f to Vect.

Remark 4. Kuhn refers to objects of Fun as generic representations. If $F : \operatorname{Vect}^f \to \operatorname{Vect}$ is a functor, then for every finite dimensional vector space $V \in \operatorname{Vect}^f$, we obtain a new vector space F(V) which is equipped with an action of $\operatorname{Aut}(V) \simeq \operatorname{GL}_n(\mathbf{F}_2)$. In other words, we can think of F as providing a family of representations of the groups $\operatorname{GL}_n(\mathbf{F}_2)$, which are somehow connected to one another as n grows.

Example 5. For every nonnegative integer n, the functor

$$V \mapsto \operatorname{Sym}^n(V)$$

is an object of Fun, which we will denote by Sym^n . Let Sym^* denote the direct sum of these functors, so that $\operatorname{Sym}^*(V)$ is the free algebra generated by V.

If Sq^{I} is an admissible monomial (or any element of the Steenrod algebra), then Sq^{I} determines a natural transformation

$$\operatorname{Sym}^n \to \operatorname{Sym}^*;$$

in other words, a morphism in the category Fun. This natural transformation vanishes if the excess of I is larger than n.

Proposition 6. Let n be a positive integer. Then the natural transformations $\{Sq^I\}$ form a basis for $Hom_{Fun}(Sym^n, Sym^*)$, where I ranges over positive admissible sequences of excess $\leq n$.

Proof. We first show that the expressions Sq^{I} are linearly independent in $\operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^{n}, \operatorname{Sym}^{*})$. For this, it suffices to choose a vector space V such that the functors Sq^{I} are linearly independent in $\operatorname{Hom}_{\mathbf{F}_{2}}(\operatorname{Sym}^{n}(V), \operatorname{Sym}^{*}(V))$. Let V be the free vector space generated by a basis $\{t_{1}, \ldots, t_{n}\}$, and let $x = t_{1} \ldots t_{n}$; then it will suffice to show that the elements $\{\operatorname{Sq}^{I}(x)\}$ are linearly independent in $\operatorname{Sym}^{*}(V)$. This follows immediately from Proposition 2.

We now wish to prove that $\operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^n, \operatorname{Sym}^*)$ is spanned by the Steenrod operations $\{\operatorname{Sq}^I\}$. For this, we need to compute $\operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^n, \operatorname{Sym}^*)$. Suppose $\alpha : \operatorname{Sym}^n \to \operatorname{Sym}^*$ is a natural transformation. Choose $V = \mathbf{F}_2\{t_1, \ldots, t_n\}$ as above, and let $x = t_1 \ldots t_n \in \operatorname{Sym}^n(V)$. Then $\alpha(x) = f(t_1, \ldots, t_n) \in \mathbf{F}_2[t_1, \ldots, t_n] \simeq \operatorname{Sym}^*(V)$, for some polynomial f. The construction $\alpha \mapsto f$ determines a linear map

$$\phi : \operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^n, \operatorname{Sym}^*) \to \mathbf{F}_2[t_1, \dots, t_n].$$

We first claim that ϕ is injective. For suppose that $\phi(\alpha) = 0$. Let W be any vector space over \mathbf{F}_2 . We wish to prove that the induced map

$$\alpha_W : \operatorname{Sym}^n(W) \to \operatorname{Sym}^*(W)$$

is equal to zero. Since α_W is a linear map, it will suffice to show that α_W vanishes on each monomial $w_1 \dots w_n$ in $\operatorname{Sym}^n(W)$. But in this case we have a map $V \to W$, given by $t_i \mapsto w_i$. This linear map determines a commutative diagram

$$\begin{array}{ccc} \operatorname{Sym}^{n}(V) & \stackrel{\phi}{\longrightarrow} & \operatorname{Sym}^{*}(V) \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{Sym}^{n}(W) & \stackrel{\alpha_{W}}{\longrightarrow} & \operatorname{Sym}^{*}(W), \end{array}$$

so that $\alpha_W(w_1 \dots w_n) = f(w_1, \dots, w_n) = 0 \in \operatorname{Sym}^*(W).$

We now wish to describe the image of the map ϕ . Fix α : Symⁿ \rightarrow Sym^{*}, and let $f = \phi(\alpha)$. Since $x = t_1 \dots t_n \in \text{Sym}^n(V)$ is invariant under the permutation action of the symmetric group, we deduce immediately that f is a symmetric polynomial.

Let V' be the \mathbf{F}_2 -vector space spanned by a basis $\{t_1, \ldots, t_n, t_{n+1}\}$. Then we have an equation

$$t_1 \dots t_{n-1}(t_n + t_{n+1}) = t_1 \dots t_n + t_1 \dots t_{n-1} t_{n+1}.$$

Since the map $\alpha_{V'}$ is linear, we get

$$f(t_1,\ldots,t_{n-1},t_n+t_{n+1}) = f(t_1,\ldots,t_n) + f(t_1,\ldots,t_{n-1},t_{n+1}).$$

In other words, the polynomial f is *additive* in its last argument. If we write

$$f(t_1,\ldots,t_n) = \sum_k g_k(t_1,\ldots,t_{n-1})t_n^k,$$

then we deduce that $g_k(t_1, \ldots, t_{n-1})$ vanishes unless k is a power of 2. Since f is symmetric, we can apply the same reasoning to each argument of f. It follows that f can be written as a sum of monomials of the form $t_1^{2^{b_1}} \ldots t_n^{2^{b_n}}$. Since f is symmetric, we conclude that $f \in M \subseteq \mathbf{F}_2[t_1, \ldots, t_n]$.

We therefore have a factorization

$$\phi : \operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^n, \operatorname{Sym}^*) \hookrightarrow M \subseteq \mathbf{F}_2[t_1, \dots, t_n].$$

The map ϕ carries Sq^{I} to $\operatorname{Sq}^{I}(x)$. Proposition 2 implies that M is generated by these expressions, so that ϕ restricts to an isomorphism $\operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^{n}, \operatorname{Sym}^{*}) \simeq M$. Since the expressions $\{\operatorname{Sq}^{I}(x)\}$ form a basis for M (where I ranges over admissible positive sequences of excess $\leq n$), we conclude that the expressions $\{\operatorname{Sq}^{I}\}$ form a basis for $\operatorname{Hom}_{\operatorname{Fun}}(\operatorname{Sym}^{n}, \operatorname{Sym}^{*})$.

This gives another approach to constructing the Steenrod algebra (at least with mod-2 coefficients): it can be regarded as an algebra of natural transformations between functors of the form

$$\operatorname{Sym}^n : \operatorname{Vect}^f \to \operatorname{Vect}$$
.

We will return to this point of view in the next lecture.