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Free Modules (Lecture 7)


We first recall a bit of notation: If I = (i1, . . . , ik) is a sequence of integers, we write SqI for the 
composition product Sqi1 . . . Sqik in the Steenrod algebra A (or the big Steenrod algebra ABig). We say that 
I is admissible if ij ≥ 2ij+1 for 1 ≤ j < k. The excess of I is defined to be the expression 

i1 − i2 − i3 − . . . − ik = (i1 − 2i2) + (i2 − 2i3) + . . . + (ik−1 − 2ik) + ik. 

We wanted to prove that the Steenrod algebra has a basis {SqI }, where I ranges over the admissible sequences 
of positive integers. This was reduced to the following assertion: 

Proposition 1. Let F (n) denote the free unstable A-module generated by one generator νn in degree n. 
Then the collection of elements {SqI νn} is linearly independent in F (n), where I ranges over admissible 
sequences of positive integers having excess ≤ n. 

To prove this, it will suffice to find any unstable A-module M with a element x ∈ Mn such that the set 
{SqI x} is linearly independent in M (here again I ranges over admissible positive sequences of excess ≤ n). 
To see this, we observe that the freeness of F (n) implies that there is a (unique) map φ : F (n) M with→
φ(νn) = x. Consequently, any linear relation among the expressions {SqI νn} would entail a linear relation 
among the expressions {SqI x}. 

It will therefore suffice to choose M to be some sufficiently nontrivial unstable A-module. We have seen 
that for any topological space X, the cohomology H∗(X) has the structure of an unstable module over the 
Steenrod algebra. The most interesting example we have studied so far is the case where X = BΣ2 � RP ∞. 
In this case, the cohomology ring H∗(X) is isomorphic to a polynomial ring F2[t], and the action of the 
Steenrod algebra is described by the formula 

Sqk tm = 
m

tm+k . 
k 

We can obtain a more interesting example by taking X to be a product of n copies of the space RP ∞. In 
this case, the cohomology of X can be identified with a polynomial ring F2[t1, . . . , tn] in several variables 
(obtained by pulling back the cohomology class t along the n different projections). Using the Cartan formula 

Sqk(xy) = Sqk� (x) Sqk�� (y), 
k=k�+k�� 

we deduce that the action of the Steenrod algebra on H∗(X) is described by the following formula: 

Sqk(t1 
a1 . . . tn

an ) =	
a1 

. . . 
an 

t1 
a1+k1 . . . tn

an+kn . 
k1 kn

k=k1+...+kn 

We now make a crucial observation about the formula above. Suppose that each exponent ai is a power 
of 2. The binomial coefficient a

ki

i is equal to 1 if ki = 0 or ki = ai, and vanishes otherwise (since we are 
working over the field F2). Moreover, the exponents appearing on the right hand side have the form ai + ki, 
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which will again be a power of two if ki = 0 or ki = ai. In other words, we can rewrite the preceding formula 
as follows: � 

Sqk(t1
2b1 

. . . tn 
2bn 

) = t1
2b1+δ1 

. . . tn 
2bn+δn 

, 
k=δ12b1 +...+δn2bn 

where the sum is taken over δ1, . . . , δn ∈ {0, 1}. 
Let x = t1 . . . tn ∈ F2[t1, . . . , tn]. Then, for every sequence of integers I, the expression SqI (x) can be 

identified with some polynomial f(t1, . . . , tn) ∈ F2[t1, . . . , tn]. This polynomial necessarily has the following 
properties: 

(a) Every monomial appearing in f has the form t21 
b1 

. . . t2n 
bn . 

(b) The polynomial f is symmetric in its arguments. 

Let M denote the subspace of F2[t1, . . . , tn] consisting of those polynomials which satisfy (a) and (b) 
above. We observe that M is invariant under the action of the Steenrod algebra A, and is therefore an 
unstable A-module in its own right. Moreover, M contains the element x = t1 . . . tn of degree n. To 
complete the proof of Proposition 1, it will suffice to show the following: 

Proposition 2. The expressions {SqI (x)} form a basis for M , where I ranges over admissible sequences of 
positive integers having excess ≤ n. 

Let us now introduce a bit of notation. Given a monomial f = ta1 . . . tan , let 1 n � 
σ(f) = fg 

g∈Σn/G 

be the symmetric polynomial obtained by summing the conjugates of f ; here we take G to be the stabilizer 
of f in Σn, so that f itself appears in this sum exactly once. For example, if n = 2, we have 

σ(t1 
at2

b ) = 
ta 
1 t2 

b if a = b
. 

ta 
1 t

b + t1
b ta if a =� b2 2 

The space M has a basis consisting of symmetric polynomials of the form σ(t21 
b1 

. . . t2n 
bn ), where 0 ≤ b1 ≤ 

. . . ≤ bn. It will be convenient to index this set of polynomials a little bit differently. Given a sequence of 
nonnegative integers � = (�0, . . . , �k) with �0 + . . . + �k = n, there is a unique sequence 0 ≤ b1 ≤ . . . ≤ bn 

such that �i is the cardinality of the set {j : bj = i}. We then set f� = σ(t21 
b1 

. . . t2n 
bn ). Thus M has a basis 

consisting of the polynomials {f�}, where � ranges over sequences of nonnegative integers (�0, . . . , �k) such 
that n = �0 + . . . + �k and �k is nonzero. 

There is a corresponding indexing for positive admissible monomials of the form SqI . Let I = (i1, . . . , ik) 
be a sequence of positive integers. If I is admissible, then the integers �1 = i1 − 2i2, �2 = i2 − 2i3, . . . , �k−1 = 
ik−1 − 2ik are all nonnegative. We then set �k = ik, which is positive so long as I is positive. The sum 

�1 + . . . + �k = i1 − i2 − . . . − ik 

is equal to the excess of I. Thus, if I has excess ≤ n, we can define �0 = n − (�1 + . . . + �k), to obtain a 
sequence of nonnegative integers � = (�0, . . . , �k), where �k is positive. Conversely, given such a sequence of 
integers, we can construct a unique admissible sequence I = (2k−1�k + . . . + �1, . . . , 2�k + �k−1, �k) of excess 
≤ n. We will denote this admissible sequence by I(�). 

We now wish to compare the expressions {SqI(�)(x)} with the basis {f�} for M . They do not coincide, 
but we get the next best thing: the translation between these two bases is upper triangular. To be more 
precise, we need to introduce an ordering on our index set. Let E be the collection of all finite sequences 
� = (�0, . . . , �k) of nonnegative integers (here k is allowed to vary) such that �k > 0, and �0 + . . . + �k = n. 
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We equip E with the following lexicographical ordering: � < �� if there exists an integer i such that �i < ��i, 
while �j = ��j for j > i. Here we agree to the convention that �i = 0 if i is larger than the length of the 
sequence �. 

To complete prove Proposition 2, it will suffice to verify the following: 

Proposition 3. Let � ∈ E. Then 
SqI(�)(x) = f� + fα 

α 

where α ranges over some subset of {�� ∈ E : �� < �}. 

Proof. We compute: 
x = σ(t1 . . . tn) 

Sq�k (x) = σ(t1
2t2

2 . . . t�
2 

k 
t�k +1 . . . tn) 

Sq�k−1 +2�k Sq�k (x) = σ(t41t
4
2 . . . t

4 
�k 

t2 
�k +1 . . . t

2 
�k +�k−1 

t�k +�k−1+1 . . . tn) + lower order 

. . . 

SqI(�)(x) = f� + lower order 

We now wish to reformulate some of the above ideas, using Kuhn’s theory of “generic representations”. 
In what follows, we let V denote a finite dimensional vector space over F2, and let V ∨ denote its dual space. 
We observe that 

H∗(BV ∨) = H∗(RP ∞ × . . . × RP ∞) � F2[t1, . . . , tN ], 

where N is the dimension of V . However, we can describe this cohomology ring more in a more invariant 
way: it is given by the symmetric algebra Sym∗(V ) generated by the vector space V � H1(BV ∨). 

Every admissible monomial SqI in the Steenrod algebra of degree k determines a map 

H∗(BV ∨) H∗+k(BV ∨).→ 

Restricting to a particular degree n, we get a map 

Symn(V ) Symn+k(V ).→ 

This map depends functorially on V , and vanishes if the excess of I is larger than n. 
To study the situation more systematically, let Vectf denote the category of finite dimensional vector 

spaces over F2, and Vect the category of all vector spaces over F2. We let Fun denote the category of 
functors from Vectf to Vect. 

Remark 4. Kuhn refers to objects of Fun as generic representations. If F : Vectf Vect is a functor, →
then for every finite dimensional vector space V ∈ Vectf , we obtain a new vector space F (V ) which is 
equipped with an action of Aut(V ) � GLn(F2). In other words, we can think of F as providing a family of 
representations of the groups GLn(F2), which are somehow connected to one another as n grows. 

Example 5. For every nonnegative integer n, the functor 

V �→ Symn(V ) 

is an object of Fun, which we will denote by Symn . Let Sym∗ denote the direct sum of these functors, so 
that Sym∗(V ) is the free algebra generated by V . 

If SqI is an admissible monomial (or any element of the Steenrod algebra), then SqI determines a natural 
transformation 

Symn Sym∗;→ 

in other words, a morphism in the category Fun. This natural transformation vanishes if the excess of I is 
larger than n. 
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Proposition 6. Let n be a positive integer. Then the natural transformations {SqI } form a basis for 
HomFun(Symn , Sym∗), where I ranges over positive admissible sequences of excess ≤ n. 

Proof. We first show that the expressions SqI are linearly independent in HomFun(Symn , Sym∗). For this, it 
suffices to choose a vector space V such that the functors SqI are linearly independent in HomF2 (Symn(V ), Sym∗(V )). 
Let V be the free vector space generated by a basis {t1, . . . , tn}, and let x = t1 . . . tn; then it will suffice 
to show that the elements {SqI (x)} are linearly independent in Sym∗(V ). This follows immediately from 
Proposition 2. 

We now wish to prove that HomFun(Symn , Sym∗) is spanned by the Steenrod operations {SqI For this,}. 
we need to compute HomFun(Symn , Sym∗). Suppose α : Symn Sym∗ is a natural transformation. Choose→
V = F2{t1, . . . , tn} as above, and let x = t1 . . . tn ∈ Symn(V ). Then α(x) = f(t1, . . . , tn) ∈ F2[t1, . . . , tn] �
Sym∗(V ), for some polynomial f . The construciton α �→ f determines a linear map 

φ : HomFun(Symn , Sym∗) F2[t1, . . . , tn].→ 

We first claim that φ is injective. For suppose that φ(α) = 0. Let W be any vector space over F2. We 
wish to prove that the induced map 

αW : Symn(W ) Sym∗(W )→ 

is equal to zero. Since αW is a linear map, it will suffice to show that αW vanishes on each monomial w1 . . . wn 

in Symn(W ). But in this case we have a map V → W , given by ti �→ wi. This linear map determines a 
commutative diagram 

φ
Symn(V ) �� Sym∗(V ) 

Symn(W ) 
αW �� Sym∗(W ), 

so that αW (w1 . . . wn) = f(w1, . . . , wn) = 0 ∈ Sym∗(W ). 
We now wish to describe the image of the map φ. Fix α : Symn Sym∗, and let f = φ(α). Since→ 

x = t1 . . . tn ∈ Symn(V ) is invariant under the permutation action of the symmetric group, we deduce 
immediately that f is a symmetric polynomial. 

Let V � be the F2-vector space spanned by a basis {t1, . . . , tn, tn+1}. Then we have an equation 

t1 . . . tn−1(tn + tn+1) = t1 . . . tn + t1 . . . tn−1tn+1. 

Since the map αV � is linear, we get 

f(t1, . . . , tn−1, tn + tn+1) = f(t1, . . . , tn) + f(t1, . . . , tn−1, tn+1). 

In other words, the polynomial f is additive in its last argument. If we write 

f(t1, . . . , tn) = gk(t1, . . . , tn−1)tk ,n

k 

then we deduce that gk(t1, . . . , tn−1) vanishes unless k is a power of 2. Since f is symmetric, we can apply 
the same reasoning to each argument of f . It follows that f can be written as a sum of monomials of the 
form t2

b1 
. . . t2

bn . Since f is symmetric, we conclude that f ∈ M ⊆ F2[t1, . . . , tn].1 n 
We therefore have a factorization 

φ : HomFun(Symn , Sym∗) �→ M ⊆ F2[t1, . . . , tn]. 

The map φ carries SqI to SqI (x). Proposition 2 implies that M is generated by these expressions, so that φ 
restricts to an isomorphism HomFun(Symn , Sym∗) � M . Since the expressions {SqI (x)} form a basis for M 
(where I ranges over admissible positive sequences of excess ≤ n), we conclude that the expressions {SqI }
form a basis for HomFun(Symn , Sym∗). 
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This gives another approach to constructing the Steenrod algebra (at least with mod-2 coefficients): it 
can be regarded as an algebra of natural transformations between functors of the form 

Symn : Vectf Vect .→ 

We will return to this point of view in the next lecture. 
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