18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Tensor Products and Algebras (Lecture 11)

Recall that if X is a topological space, then the cohomology $H^*(X)$ has the structure of an unstable module over the Steenrod algebra \mathcal{A} . Moreover, $H^*(X)$ is equipped with a multiplication which satisfies the Cartan formula:

$$\operatorname{Sq}^{n}(xy) = \sum_{n=n'+n''} \operatorname{Sq}^{n'}(x) \operatorname{Sq}^{n''}(y).$$

In other words, the multiplication map

$$\mathrm{H}^*(X) \otimes \mathrm{H}^*(X) \to \mathrm{H}^*(X)$$

is compatible with the Steenrod operations Sq^n , if we let Sq^n act by the formula

$$\operatorname{Sq}^{n}(x \otimes y) = \sum_{n=n'+n''} \operatorname{Sq}^{n'}(x) \otimes \operatorname{Sq}^{n''}(y).$$

Our goal in this lecture is to prove that the preceding formula endows $H^*(X) \otimes H^*$ with the structure of an unstable module over the Steenrod algebra. Moreover, a similar result is true for any pair M, N of unstable modules over the big Steenrod algebra \mathcal{A}^{Big} .

Definition 1. We let \mathcal{A}^{Big} denote the big Steenrod algebra, and \mathcal{U}^{Big} the category of (graded) unstable \mathcal{A}^{Big} -modules.

Let R denote the free \mathbf{F}_2 -algebra $\mathbf{F}_2[\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^0, \mathrm{Sq}^1, \ldots]$, so that $\mathcal{A}^{\mathrm{Big}}$ is the quotient of R by the ideal $I \subseteq R$ generated by the Adem relations.

For every pair of objects $M, N \in \mathcal{U}^{Big}$, we let R act on $M \otimes N$ by the formula

$$\operatorname{Sq}^{k}(x \otimes y) = \sum_{k=k'+k''} \operatorname{Sq}^{k'}(x) \otimes \operatorname{Sq}^{k''}(y).$$

Observe that the sum appearing above is automatically finite, since $\operatorname{Sq}^{k'}(x) \otimes \operatorname{Sq}^{k''}(y)$ vanishes if $k' > \operatorname{deg}(x)$ or $k'' > \operatorname{deg}(y)$. The same argument shows that $M \otimes N$ is unstable, in the sense that $\operatorname{Sq}^k(x \otimes y) = 0$ for $k > \operatorname{deg}(x) + \operatorname{deg}(y)$.

We would like to prove the following:

Theorem 2. For any pair of objects $M, N \in \mathcal{U}^{Big}$, the tensor product $M \otimes N$ is again an unstable \mathcal{A}^{Big} -module.

In other words, we wish to show that the action of R on $M \otimes N$ factors through the quotient $R/I \simeq \mathcal{A}^{\operatorname{Big}}$. In other words, we wish to show that the submodule $I(M \otimes N) \subseteq M \otimes N$ vanishes. The submodule $I(M \otimes N)$ is generated by the submodules $I(x \otimes y) \subseteq M \otimes N$, where x and y are homogeneous elements of M and N. Let $m = \operatorname{deg}(x)$ and $n = \operatorname{deg}(y)$, so that x and y determine maps $\operatorname{F}^{\operatorname{Big}}(m) \to M$, $\operatorname{F}^{\operatorname{Big}}(n) \to N$. Here $\operatorname{F}^{\operatorname{Big}}(k)$ denotes the free unstable $\mathcal{A}^{\operatorname{Big}}$ -module on a single generator $\overline{\nu}_k$ in degree k. The submodule $I(x \otimes y) \subseteq M \otimes N$ is a quotient of $I(\overline{\nu}_m \otimes \overline{\nu}_n) \subseteq \operatorname{F}^{\operatorname{Big}}(m) \otimes \operatorname{F}^{\operatorname{Big}}(n)$. It will therefore suffice to prove that this latter submodule vanishes. For every integer k, let $\widetilde{\mathrm{F}^{\mathrm{Big}}}(k)$ denote the free *R*-module on a single generator $\widetilde{\nu}_k$, so that $\widetilde{\mathrm{F}^{\mathrm{Big}}}(k)$ has a basis consisting of expressions {Sq}^I $\widetilde{\nu}_k$ } where *I* ranges over all sequences of integers. We have canonical quotient maps

$$\mathbf{F}^{\mathrm{Big}}(k) \to \mathbf{F}^{\mathrm{Big}}(k) \to F(k).$$

The construction of Definition 1 produces for us a map

$$\psi_{m,n}: \widetilde{\mathrm{F}^{\mathrm{Big}}}(m+n) \to \mathrm{F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n).$$

We wish to show that $\psi_{m,n}$ factors through $F^{Big}(m+n)$.

In a previous lecture, we defined a shift isomorphism

$$\widetilde{S}: \widetilde{\mathbf{F}^{\mathrm{Big}}}(k) \to \widetilde{\mathbf{F}^{\mathrm{Big}}}(k+1)$$

by the formula

$$\operatorname{Sq}^{i_k} \dots \operatorname{Sq}^{i_0} \widetilde{\nu}_k \mapsto \operatorname{Sq}^{i_k+2^k} \dots \operatorname{Sq}^{i_0+1} \widetilde{\nu}_{k+1}$$

and showed that \widetilde{S} covers and isomorphism $S: F^{\operatorname{Big}}(k) \to F^{\operatorname{Big}}(k+1)$.

Suppose (for a contradiction) that there exists z in the kernel of the projection $\overline{\mathbf{F}^{\operatorname{Big}}}(m+n) \to \overline{\mathbf{F}^{\operatorname{Big}}}(m+n)$ such that $\psi(z) \neq 0$. Then we can write $\psi(z)$ as a nontrivial linear combination $\sum \operatorname{Sq}^{I} \overline{\nu}_{m} \otimes \operatorname{Sq}^{J} \overline{\nu}_{n}$, where Iand J range over (finitely many) admissible sequences of integers having excess $\leq m$ and $\leq n$, respectively. Consequently, for $p \gg 0$, we can write $(S \otimes S)^{p}(\psi z)$ as a nontrivial linear combination $\sum \operatorname{Sq}^{I'} \overline{\nu}_{m+p} \otimes$ $\operatorname{Sq}^{J'} \overline{\nu}_{n+p}$, where the sequences I' and J' consist entirely of positive integers. It follows that the image of $\psi(z)$ under the composite map

$$F^{\operatorname{Big}}(m) \otimes F^{\operatorname{Big}}(n) \xrightarrow{S^p \otimes S^p} F^{\operatorname{Big}}(m+p) \otimes F^{\operatorname{Big}}(n+p) \to F(m+p) \otimes F(n+p)$$

is nonzero.

We now observe that the diagram

commutes, where the horizontal arrows are defined as in Notation 1. Replacing z by $\tilde{S}^{2p}(z)$ if necessary, we may assume that the composition

$$\widetilde{\mathbf{F}^{\mathrm{Big}}}(m+n) \stackrel{\psi_{m,n}}{\to} \mathbf{F}^{\mathrm{Big}}(m) \otimes \mathbf{F}^{\mathrm{Big}}(n) \to F(m) \otimes F(n)$$

does not vanish on z.

We have seen that there are injections $F(m) \hookrightarrow H^*((\mathbb{R}P^{\infty})^m)$ and $F(n) \hookrightarrow H^*((\mathbb{R}P^{\infty})^n)$. Amalgamating these, we obtain an injection $F(m) \otimes F(n) \hookrightarrow H^*((\mathbb{R}P^{\infty})^{m+n})$. Since the Cartan formula holds in $H^*((\mathbb{R}P^{\infty})^{m+n})$, the composite map

$$\phi: \widetilde{\mathrm{F^{Big}}}(m+n) \stackrel{\psi_{m,n}}{\to} \mathrm{F^{Big}}(m) \otimes \mathrm{F^{Big}}(n) \to F(m) \otimes F(n) \hookrightarrow \mathrm{H}^*((\mathbf{R}P^{\infty})^{m+n})$$

is simply the map of *R*-modules determined by the element $t_1t_2...t_{n+m} \in \mathrm{H}^{n+m}(\mathbf{R}P^{\infty})^{m+n}$). Since $\mathrm{H}^*((\mathbf{R}P^{\infty})^{m+n})$ satisfies the Adem relations, we have $\phi(z) = 0$, a contradiction. This completes the proof of Theorem 2.

It follows that the tensor product of Definition 1 determines a functor $\otimes : \mathcal{U}^{\operatorname{Big}} \times \mathcal{U}^{\operatorname{Big}} \to \mathcal{U}^{\operatorname{Big}}$. It is easy to see that this operation is commutative and associative, up to coherent isomorphism. In other words, it endows $\mathcal{U}^{\operatorname{Big}}$ with the structure of a symmetric monoidal category.

Corollary 3. Let M and N be unstable modules over the Steenrod algebra A. Then the tensor product $M \otimes N$ inherits the structure of an unstable module over the Steenrod algebra.

Proof. We have seen that $M \otimes N$ has the structure of an unstable module over \mathcal{A}^{Big} . To complete the proof, it will suffice to show that Sq^{0} acts by the identity on $M \otimes N$. Unwinding the definition, we have

$$\operatorname{Sq}^{0}(x \otimes y) = \sum_{k} \operatorname{Sq}^{k}(x) \otimes \operatorname{Sq}^{-k}(y)$$

The right hand side vanishes if $k \neq 0$, and coincides with $x \otimes y$ when k = 0.

The tensor product operation on the category of unstable Steenrod modules results from a comultiplicative structure which exists on the Steenrod algebra \mathcal{A} itself:

Proposition 4. There exists a ring homomorphism

$$\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$

given by

$$\operatorname{Sq}^k \mapsto \sum_{k=k'+k''} \operatorname{Sq}^{k'} \otimes \operatorname{Sq}^{k''}.$$

Proof. The formula above evidently defines a ring homomorphism $\Delta : R \to \mathcal{A} \otimes \mathcal{A}$. Let K denote the kernel of the projection map $R \to \mathcal{A}$. It will suffice to show that $\Delta(K) = 0$. Suppose otherwise. Then there exists a nonzero element

$$T = \sum_{\alpha} \operatorname{Sq}^{I_{\alpha}} \otimes \operatorname{Sq}^{J_{\alpha}}$$

belonging to the image $\Delta(K)$, where (I_{α}, J_{α}) ranges over some finite set of admissible positive sequences. Choose a pair of positive integers (m, n) such that for some index α , m is at least as large as the excess of I_{α} and n is at least as large as the excess of J_{α} . Then we have $T(\nu_m \otimes \nu_n) \neq 0 \in F(m) \otimes F(n)$, which contradicts Corollary 3.

The comultiplication $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ of Proposition 4 is in some respects simpler than the multiplication on \mathcal{A} : for example, it is commutative while the multiplication on \mathcal{A} is not. We will return to this point in a future lecture.

We now introduce some terminology which we will need later.

Definition 5. An unstable \mathcal{A}^{Big} -algebra is an unstable \mathcal{A}^{Big} -module M equipped with a commutative and associative multiplication $m: M \otimes M \to M$ satisfying the following conditions:

(1) The Cartan formula is satisfied:

$$\operatorname{Sq}^{k}(xy) = \sum_{k=k'+k''} \operatorname{Sq}^{k'}(x) \operatorname{Sq}^{k''}(y).$$

In other words, m is a map of \mathcal{A}^{Big} -modules.

- (2) For every homogeneous element $x \in M$, $\operatorname{Sq}^{\operatorname{deg}(x)}(x) = x^2$.
- (3) M contains a unit element 1 satisfying

$$\operatorname{Sq}^{i}(1) = \begin{cases} 1 & \text{if } i = 0\\ 0 & \text{otherwise.} \end{cases}$$

An unstable \mathcal{A} -algebra is an unstable \mathcal{A}^{Big} -algebra which is an \mathcal{A} -module: that is, an unstable \mathcal{A}^{Big} -algebra M which satisfies $\operatorname{Sq}^{0}(x) = x$ for all $x \in M$.

Example 6. The cohomology $H^*(X)$ of any space X has the structure of an unstable A-algebra.

The cohomology $\mathrm{H}^*(A)$ of any E_{∞} -algebra over \mathbf{F}_2 has the structure of an unstable $\mathcal{A}^{\mathrm{Big}}$ -algebra.

Our next goal is to understand the structure of free unstable algebras. For every integer n, we let $F_{Alg}(n)$ denote the free unstable \mathcal{A} -algebra generated by a single element μ_n of degree n, and $F_{Alg}^{Big}(n)$ the free unstable \mathcal{A}^{Big} -algebra generated by a single element $\overline{\mu}_n$ of degree n. We have an evident quotient map $\pi : F_{Alg}^{Big}(n) \to F_{Alg}(n)$, uniquely determined by the requirement that $\pi(\overline{\mu}_n) = \mu_n$.

Let X denote the subspace of $\mathbf{F}_{Alg}^{Big}(n)$ spanned by the products

{Sq^{I₁}(
$$\overline{\mu_n}$$
) Sq^{I₂}($\overline{\mu_n}$)...Sq^{I_k}($\overline{\mu_n}$)}.

Using relations (1) and (3), we deduce that X is a subalgebra of $F_{Alg}^{Big}(n)$, so that $X = F_{Alg}^{Big}(n)$. Moreover, relation (2) allows us to reduce any such monomial to a form where the sequences I_1, \ldots, I_k are all distinct. Using the Adem relations and the instability condition, we can further reduce to considering such monomials where each sequence I_j is admissible and has excess $\leq n$. We have therefore proven half of the following result:

Theorem 7. (1) The free unstable \mathcal{A}^{Big} -algebra $F^{Big}_{Alg}(n)$ has a basis of monomials

$$\{\operatorname{Sq}^{I_1}(\overline{\mu_n})\operatorname{Sq}^{I_2}(\overline{\mu_n})\ldots\operatorname{Sq}^{I_k}(\overline{\mu_n})\}$$

where $I_1 < \ldots < I_k$ (with respect to the lexicographical ordering, say) are admissible sequences of excess $\leq n$.

(2) The free unstable A-algebra $F_{Alg}(n)$ has a basis of monomials

{Sq^{$$I_1$$}(μ_n) Sq ^{I_2} (μ_n)...Sq ^{I_k} (μ_n)}

where $I_1 < \ldots < I_k$ are admissible positive sequences of excess $\leq n$.

The proof follows the same lines as our proof of the analogous fact for modules, and our construction of tensor products earlier in this lecture: we will reduce assertion (1) to assertion (2), using a shifting argument. Namely, there exists an isomorphism of algebras $F_{Alg}^{Big}(n) \rightarrow F_{Alg}^{Big}(n+1)$ given by the formula

$$(\operatorname{Sq}^{i_{j_{1}}^{1}} \dots \operatorname{Sq}^{i_{0}^{1}} \overline{\mu}_{n}) \dots (\operatorname{Sq}^{i_{j_{k}}^{k}} \dots \operatorname{Sq}^{i_{0}^{k}} \overline{\mu}_{n}) \mapsto (\operatorname{Sq}^{i_{j_{1}}^{1}+2^{j_{1}}} \dots \operatorname{Sq}^{i_{0}^{1}+1} \overline{\mu}_{n+1}) \dots (\operatorname{Sq}^{i_{j_{k}}^{k}+2^{j_{k}}} \dots \operatorname{Sq}^{i_{0}^{k}+1} \overline{\mu}_{n+1}).$$

Consequently, any linear dependence among the expressions

$$M(I_1,\ldots,I_k) = \operatorname{Sq}^{I_1}(\overline{\mu_n}) \operatorname{Sq}^{I_2}(\overline{\mu_n}) \ldots \operatorname{Sq}^{I_k}(\overline{\mu_n}) \in \operatorname{F}_{\operatorname{Alg}}^{\operatorname{Big}}(n)$$

results in a linear dependence among analogous expressions $M(I'_1, \ldots, I'_k) \in \mathcal{F}^{\mathrm{Big}}_{\mathrm{Alg}}(n+p)$, for each $p \geq 0$. Choosing $p \gg 0$, we get a linear dependence involving monomials in which all of the sequences (I'_1, \ldots, I'_k) are positive, which contradicts (2).

To prove (2), we need to produce some examples of unstable A-algebras. We will return to this point in the next lecture.