MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Tensor Products and Algebras (Lecture 11)

Recall that if X is a topological space, then the cohomology $\mathrm{H}^{*}(X)$ has the structure of an unstable module over the Steenrod algebra \mathcal{A}. Moreover, $\mathrm{H}^{*}(X)$ is equipped with a multiplication which satisfies the Cartan formula:

$$
\mathrm{Sq}^{n}(x y)=\sum_{n=n^{\prime}+n^{\prime \prime}} \mathrm{Sq}^{n^{\prime}}(x) \mathrm{Sq}^{n^{\prime \prime}}(y)
$$

In other words, the multiplication map

$$
\mathrm{H}^{*}(X) \otimes \mathrm{H}^{*}(X) \rightarrow \mathrm{H}^{*}(X)
$$

is compatible with the Steenrod operations Sq^{n}, if we let Sq^{n} act by the formula

$$
\mathrm{Sq}^{n}(x \otimes y)=\sum_{n=n^{\prime}+n^{\prime \prime}} \mathrm{Sq}^{n^{\prime}}(x) \otimes \mathrm{Sq}^{n^{\prime \prime}}(y)
$$

Our goal in this lecture is to prove that the preceding formula endows $\mathrm{H}^{*}(X) \otimes \mathrm{H}^{*}$ with the structure of an unstable module over the Steenrod algebra. Moreover, a similar result is true for any pair M, N of unstable modules over the big Steenrod algebra $\mathcal{A}^{\text {Big }}$.

Definition 1. We let $\mathcal{A}^{\text {Big }}$ denote the big Steenrod algebra, and $\mathcal{U}^{\text {Big }}$ the category of (graded) unstable $\mathcal{A}^{\text {Big-modules. }}$

Let R denote the free \mathbf{F}_{2}-algebra $\mathbf{F}_{2}\left[\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right]$, so that $\mathcal{A}^{\mathrm{Big}}$ is the quotient of R by the ideal $I \subseteq R$ generated by the Adem relations.

For every pair of objects $M, N \in \mathcal{U}^{\mathrm{Big}}$, we let R act on $M \otimes N$ by the formula

$$
\mathrm{Sq}^{k}(x \otimes y)=\sum_{k=k^{\prime}+k^{\prime \prime}} \mathrm{Sq}^{k^{\prime}}(x) \otimes \mathrm{Sq}^{k^{\prime \prime}}(y)
$$

Observe that the sum appearing above is automatically finite, since $\mathrm{Sq}^{k^{\prime}}(x) \otimes \mathrm{Sq}^{k^{\prime \prime}}(y)$ vanishes if $k^{\prime}>$ $\operatorname{deg}(x)$ or $k^{\prime \prime}>\operatorname{deg}(y)$. The same argument shows that $M \otimes N$ is unstable, in the sense that $\mathrm{Sq}^{k}(x \otimes y)=0$ for $k>\operatorname{deg}(x)+\operatorname{deg}(y)$.

We would like to prove the following:
Theorem 2. For any pair of objects $M, N \in \mathcal{U}^{B i g}$, the tensor product $M \otimes N$ is again an unstable $\mathcal{A}^{\text {Big }}$ module.

In other words, we wish to show that the action of R on $M \otimes N$ factors through the quotient $R / I \simeq \mathcal{A}^{\operatorname{Big}}$. In other words, we wish to show that the submodule $I(M \otimes N) \subseteq M \otimes N$ vanishes. The submodule $I(M \otimes N)$ is generated by the submodules $I(x \otimes y) \subseteq M \otimes N$, where x and y are homogeneous elements of M and N. Let $m=\operatorname{deg}(x)$ and $n=\operatorname{deg}(y)$, so that x and y determine maps $\mathrm{F}^{\operatorname{Big}}(m) \rightarrow M, \mathrm{~F}^{\operatorname{Big}}(n) \rightarrow N$. Here $\mathrm{F}^{\operatorname{Big}}(k)$ denotes the free unstable $\mathcal{A}^{\text {Big }}$-module on a single generator $\bar{\nu}_{k}$ in degree k. The submodule $I(x \otimes y) \subseteq M \otimes N$ is a quotient of $I\left(\bar{\nu}_{m} \otimes \bar{\nu}_{n}\right) \subseteq \mathrm{F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n)$. It will therefore suffice to prove that this latter submodule vanishes.

For every integer k, let $\widetilde{\mathrm{F}^{\mathrm{Big}}}(k)$ denote the free R-module on a single generator $\widetilde{\nu}_{k}$, so that $\widetilde{\mathrm{F}^{\mathrm{Big}}(k) \text { has }}$ a basis consisting of expressions $\left\{\mathrm{Sq}^{I} \widetilde{\nu}_{k}\right\}$ where I ranges over all sequences of integers. We have canonical quotient maps

$$
\widetilde{\mathrm{F}^{\mathrm{Big}}}(k) \rightarrow \mathrm{F}^{\mathrm{Big}}(k) \rightarrow F(k)
$$

The construction of Definition 1 produces for us a map

$$
\psi_{m, n}: \widetilde{\mathrm{F}^{\mathrm{Big}}}(m+n) \rightarrow \mathrm{F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n)
$$

We wish to show that $\psi_{m, n}$ factors through $\mathrm{F}^{\mathrm{Big}}(m+n)$.
In a previous lecture, we defined a shift isomorphism

$$
\widetilde{S}: \widetilde{\mathrm{F}^{\mathrm{Big}}}(k) \rightarrow \widetilde{\mathrm{F}^{\mathrm{Big}}}(k+1)
$$

by the formula

$$
\mathrm{Sq}^{i_{k}} \ldots \mathrm{Sq}^{i_{0}} \widetilde{\nu}_{k} \mapsto \mathrm{Sq}^{i_{k}+2^{k}} \ldots \mathrm{Sq}^{i_{0}+1} \widetilde{\nu}_{k+1}
$$

and showed that \widetilde{S} covers and isomorphism $S: \mathrm{F}^{\operatorname{Big}}(k) \rightarrow \mathrm{F}^{\mathrm{Big}}(k+1)$.
Suppose (for a contradiction) that there exists z in the kernel of the projection $\widetilde{\mathrm{F}^{\mathrm{Big}}}(m+n) \rightarrow \mathrm{F}^{\mathrm{Big}}(m+n)$ such that $\psi(z) \neq 0$. Then we can write $\psi(z)$ as a nontrivial linear combination $\sum \mathrm{Sq}^{I} \bar{\nu}_{m} \otimes \mathrm{Sq}^{J} \bar{\nu}_{n}$, where I and J range over (finitely many) admissible sequences of integers having excess $\leq m$ and $\leq n$, respectively. Consequently, for $p \gg 0$, we can write $(S \otimes S)^{p}(\psi z)$ as a nontrivial linear combination $\sum \mathrm{Sq}^{I^{\prime}} \bar{\nu}_{m+p} \otimes$ $\mathrm{Sq}^{J^{\prime}} \bar{\nu}_{n+p}$, where the sequences I^{\prime} and J^{\prime} consist entirely of positive integers. It follows that the image of $\psi(z)$ under the composite map

$$
\mathrm{F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n) \xrightarrow{S^{p} \otimes S^{p}} \mathrm{~F}^{\mathrm{Big}}(m+p) \otimes \mathrm{F}^{\mathrm{Big}}(n+p) \rightarrow F(m+p) \otimes F(n+p)
$$

is nonzero.
We now observe that the diagram

commutes, where the horizontal arrows are defined as in Notation 1. Replacing z by $\widetilde{S}^{2 p}(z)$ if necessary, we may assume that the composition

$$
\widetilde{\mathrm{F}^{\mathrm{Big}}}(m+n) \xrightarrow{\psi_{m, n}} \mathrm{~F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n) \rightarrow F(m) \otimes F(n)
$$

does not vanish on z.
We have seen that there are injections $F(m) \hookrightarrow \mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{m}\right)$ and $F(n) \hookrightarrow \mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{n}\right)$. Amalgamating these, we obtain an injection $F(m) \otimes F(n) \hookrightarrow \mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{m+n}\right)$. Since the Cartan formula holds in $\mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{m+n}\right)$, the composite map

$$
\phi: \widetilde{\mathrm{F}^{\mathrm{Big}}}(m+n) \xrightarrow{\psi_{m, n}} \mathrm{~F}^{\mathrm{Big}}(m) \otimes \mathrm{F}^{\mathrm{Big}}(n) \rightarrow F(m) \otimes F(n) \hookrightarrow \mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{m+n}\right)
$$

is simply the map of R-modules determined by the element $\left.t_{1} t_{2} \ldots t_{n+m} \in \mathrm{H}^{n+m}\left(\mathbf{R} P^{\infty}\right)^{m+n}\right)$. Since $\mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{m+n}\right)$ satisfies the Adem relations, we have $\phi(z)=0$, a contradiction. This completes the proof of Theorem 2.

It follows that the tensor product of Definition 1 determines a functor $\otimes: \mathcal{U}^{\mathrm{Big}} \times \mathcal{U}^{\mathrm{Big}} \rightarrow \mathcal{U}^{\mathrm{Big}}$. It is easy to see that this operation is commutative and associative, up to coherent isomorphism. In other words, it endows U^{Big} with the structure of a symmetric monoidal category.

Corollary 3. Let M and N be unstable modules over the Steenrod algebra \mathcal{A}. Then the tensor product $M \otimes N$ inherits the structure of an unstable module over the Steenrod algebra.
Proof. We have seen that $M \otimes N$ has the structure of an unstable module over $\mathcal{A}^{\text {Big. To complete the proof, }}$ it will suffice to show that Sq^{0} acts by the identity on $M \otimes N$. Unwinding the definition, we have

$$
\mathrm{Sq}^{0}(x \otimes y)=\sum_{k} \mathrm{Sq}^{k}(x) \otimes \mathrm{Sq}^{-k}(y)
$$

The right hand side vanishes if $k \neq 0$, and coincides with $x \otimes y$ when $k=0$.
The tensor product operation on the category of unstable Steenrod modules results from a comultiplicative structure which exists on the Steenrod algebra \mathcal{A} itself:

Proposition 4. There exists a ring homomorphism

$$
\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}
$$

given by

$$
\mathrm{Sq}^{k} \mapsto \sum_{k=k^{\prime}+k^{\prime \prime}} \mathrm{Sq}^{k^{\prime}} \otimes \mathrm{Sq}^{k^{\prime \prime}}
$$

Proof. The formula above evidently defines a ring homomorphism $\Delta: R \rightarrow \mathcal{A} \otimes \mathcal{A}$. Let K denote the kernel of the projection $\operatorname{map} R \rightarrow \mathcal{A}$. It will suffice to show that $\Delta(K)=0$. Suppose otherwise. Then there exists a nonzero element

$$
T=\sum_{\alpha} \mathrm{Sq}^{I_{\alpha}} \otimes \mathrm{Sq}^{J_{\alpha}}
$$

belonging to the image $\Delta(K)$, where $\left(I_{\alpha}, J_{\alpha}\right)$ ranges over some finite set of admissible positive sequences. Choose a pair of positive integers (m, n) such that for some index α, m is at least as large as the excess of I_{α} and n is at least as large as the excess of J_{α}. Then we have $T\left(\nu_{m} \otimes \nu_{n}\right) \neq 0 \in F(m) \otimes F(n)$, which contradicts Corollary 3.

The comultiplication $\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$ of Proposition 4 is in some respects simpler than the multiplication on \mathcal{A} : for example, it is commutative while the multiplication on \mathcal{A} is not. We will return to this point in a future lecture.

We now introduce some terminology which we will need later.
Definition 5. An unstable $\mathcal{A}^{\text {Big }}$-algebra is an unstable $\mathcal{A}^{\text {Big-module } M \text { equipped with a commutative and }}$ associative multiplication $m: M \otimes M \rightarrow M$ satisfying the following conditions:
(1) The Cartan formula is satisfied:

$$
\mathrm{Sq}^{k}(x y)=\sum_{k=k^{\prime}+k^{\prime \prime}} \mathrm{Sq}^{k^{\prime}}(x) \mathrm{Sq}^{k^{\prime \prime}}(y)
$$

In other words, m is a map of $\mathcal{A}^{\text {Big-modules. }}$
(2) For every homogeneous element $x \in M, \operatorname{Sq}^{\operatorname{deg}(x)}(x)=x^{2}$.
(3) M contains a unit element 1 satisfying

$$
\mathrm{Sq}^{i}(1)= \begin{cases}1 & \text { if } i=0 \\ 0 & \text { otherwise }\end{cases}
$$

An unstable \mathcal{A}-algebra is an unstable $\mathcal{A}^{\text {Big }}$-algebra which is an \mathcal{A}-module: that is, an unstable $\mathcal{A}^{\text {Big }}$-algebra M which satisfies $\mathrm{Sq}^{0}(x)=x$ for all $x \in M$.

Example 6. The cohomology $\mathrm{H}^{*}(X)$ of any space X has the structure of an unstable \mathcal{A}-algebra.
The cohomology $\mathrm{H}^{*}(A)$ of any E_{∞}-algebra over \mathbf{F}_{2} has the structure of an unstable $\mathcal{A}^{\text {Big }}$-algebra.
Our next goal is to understand the structure of free unstable algebras. For every integer n, we let $\mathrm{F}_{\mathrm{Alg}}(n)$ denote the free unstable \mathcal{A}-algebra generated by a single element μ_{n} of degree n, and $\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)$ the free unstable $\mathcal{A}^{\mathrm{Big}}$-algebra generated by a single element $\bar{\mu}_{n}$ of degree n. We have an evident quotient map $\pi: \mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n) \rightarrow \mathrm{F}_{\mathrm{Alg}}(n)$, uniquely determined by the requirement that $\pi\left(\bar{\mu}_{n}\right)=\mu_{n}$.

Let X denote the subspace of $\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)$ spanned by the products

$$
\left\{\mathrm{Sq}^{I_{1}}\left(\overline{\mu_{n}}\right) \mathrm{Sq}^{I_{2}}\left(\overline{\mu_{n}}\right) \ldots \mathrm{Sq}^{I_{k}}\left(\overline{\mu_{n}}\right)\right\}
$$

Using relations (1) and (3), we deduce that X is a subalgebra of $\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)$, so that $X=\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)$. Moreover, relation (2) allows us to reduce any such monomial to a form where the sequences I_{1}, \ldots, I_{k} are all distinct. Using the Adem relations and the instability condition, we can further reduce to considering such monomials where each sequence I_{j} is admissible and has excess $\leq n$. We have therefore proven half of the following result:
Theorem 7. (1) The free unstable $\mathcal{A}^{\text {Big }}$-algebra $\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)$ has a basis of monomials

$$
\left\{\mathrm{Sq}^{I_{1}}\left(\overline{\mu_{n}}\right) \mathrm{Sq}^{I_{2}}\left(\overline{\mu_{n}}\right) \ldots \mathrm{Sq}^{I_{k}}\left(\overline{\mu_{n}}\right)\right\}
$$

where $I_{1}<\ldots<I_{k}$ (with respect to the lexicographical ordering, say) are admissible sequences of excess $\leq n$.
(2) The free unstable \mathcal{A}-algebra $\mathrm{F}_{\mathrm{Alg}}(n)$ has a basis of monomials

$$
\left\{\operatorname{Sq}^{I_{1}}\left(\mu_{n}\right) \operatorname{Sq}^{I_{2}}\left(\mu_{n}\right) \ldots \operatorname{Sq}^{I_{k}}\left(\mu_{n}\right)\right\}
$$

where $I_{1}<\ldots<I_{k}$ are admissible positive sequences of excess $\leq n$.
The proof follows the same lines as our proof of the analogous fact for modules, and our construction of tensor products earlier in this lecture: we will reduce assertion (1) to assertion (2), using a shifting argument. Namely, there exists an isomorphism of algebras $\mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n) \rightarrow \mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n+1)$ given by the formula

$$
\left(\mathrm{Sq}^{i_{j_{1}}^{1}} \ldots \mathrm{Sq}^{i_{0}^{1}} \bar{\mu}_{n}\right) \ldots\left(\mathrm{Sq}^{i_{j_{k}}^{k}} \ldots \mathrm{Sq}^{i_{0}^{k}} \bar{\mu}_{n}\right) \mapsto\left(\mathrm{Sq}^{i_{j_{1}}^{1}+2^{j_{1}}} \ldots \mathrm{Sq}^{i_{0}^{1}+1} \bar{\mu}_{n+1}\right) \ldots\left(\mathrm{Sq}^{i_{j_{k}}^{k}+2^{j_{k}}} \ldots \mathrm{Sq}^{i_{0}^{k}+1} \bar{\mu}_{n+1}\right)
$$

Consequently, any linear dependence among the expressions

$$
M\left(I_{1}, \ldots, I_{k}\right)=\mathrm{Sq}^{I_{1}}\left(\overline{\mu_{n}}\right) \mathrm{Sq}^{I_{2}}\left(\overline{\mu_{n}}\right) \ldots \mathrm{Sq}^{I_{k}}\left(\overline{\mu_{n}}\right) \in \mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n)
$$

results in a linear dependence among analogous expressions $M\left(I_{1}^{\prime}, \ldots, I_{k}^{\prime}\right) \in \mathrm{F}_{\mathrm{Alg}}^{\mathrm{Big}}(n+p)$, for each $p \geq 0$. Choosing $p \gg 0$, we get a linear dependence involving monomials in which all of the sequences $\left(I_{1}^{\prime}, \ldots, I_{k}^{\prime}\right)$ are positive, which contradicts (2).

To prove (2), we need to produce some examples of unstable \mathcal{A}-algebras. We will return to this point in the next lecture.

