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Tensor Products and Algebras (Lecture 11)


Recall that if X is a topological space, then the cohomology H∗(X) has the structure of an unstable 
module over the Steenrod algebra A. Moreover, H∗(X) is equipped with a multiplication which satisfies the 
Cartan formula: � 

Sqn(xy) = Sqn
� 

(x) Sqn
�� 

(y). 
n=n�+n�� 

In other words, the multiplication map 

H∗(X) ⊗ H∗(X) → H∗(X) 

is compatible with the Steenrod operations Sqn, if we let Sqn act by the formula 

Sqn(x ⊗ y) = Sqn
� 

(x) ⊗ Sqn
�� 

(y). 
n=n�+n�� 

Our goal in this lecture is to prove that the preceding formula endows H∗(X) ⊗ H∗ with the structure of an 
unstable module over the Steenrod algebra. Moreover, a similar result is true for any pair M,N of unstable 
modules over the big Steenrod algebra ABig. 

Definition 1. We let ABig denote the big Steenrod algebra, and UBig the category of (graded) unstable 
ABig-modules. 

Let R denote the free F2-algebra F2[. . . , Sq−1 , Sq0 , Sq1 , . . .], so that ABig is the quotient of R by the ideal 
I ⊆ R generated by the Adem relations. 

For every pair of objects M,N ∈ UBig, we let R act on M ⊗ N by the formula 

Sqk(x ⊗ y) = Sqk
� 

(x) ⊗ Sqk
�� 

(y). 
k=k�+k�� 

Observe that the sum appearing above is automatically finite, since Sqk
� 

(x) ⊗ Sqk
�� 

(y) vanishes if k� > 
deg(x) or k�� > deg(y). The same argument shows that M ⊗ N is unstable, in the sense that Sqk(x ⊗ y) = 0 
for k > deg(x) + deg(y). 

We would like to prove the following: 

Theorem 2. For any pair of objects M,N ∈ UBig, the tensor product M ⊗ N is again an unstable ABig
module. 

In other words, we wish to show that the action of R on M ⊗N factors through the quotient R/I � ABig. 
In other words, we wish to show that the submodule I(M ⊗N ) ⊆ M ⊗N vanishes. The submodule I(M ⊗N) 
is generated by the submodules I(x ⊗ y) ⊆ M ⊗ N , where x and y are homogeneous elements of M and N . 
Let m = deg(x) and n = deg(y), so that x and y determine maps FBig(m) M , FBig(n) N . Here FBig(k)→ →
denotes the free unstable ABig-module on a single generator νk in degree k. The submodule I(x⊗y) ⊆ M ⊗N 
is a quotient of I(νm ⊗ νn) ⊆ FBig(m) ⊗ FBig(n). It will therefore suffice to prove that this latter submodule 
vanishes. 
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For every integer k, let FBig(k) denote the free R-module on a single generator ν�k, so that FBig(k) has 
a basis consisting of expressions {SqI ν�k} where I ranges over all sequences of integers. We have canonical 
quotient maps 

FBig(k)� FBig(k) F (k).→ → 

The construction of Definition 1 produces for us a map 

ψm,n : � → FBig(m) ⊗ FBig(n).FBig(m + n) 

We wish to show that ψm,n factors through FBig(m + n). 
In a previous lecture, we defined a shift isomorphism 

� FBig(k) �S : � FBig(k + 1)→ 

by the formula 
Sqik . . . Sqi0 ν�k �→ Sqik +2k 

. . . Sqi0+1 ν�k+1 

and showed that S� covers and isomorphism S : FBig(k) FBig(k + 1).→ 

FBig(m+n) FBig(m+n)Suppose (for a contradiction) that there exists z in the kernel of the projection �
such that ψ(z) = 0. Then we can write� ψ(z) as a nontrivial linear combination 

� 
SqI νm ⊗ Sq

→
J νn, where I 

and J range over (finitely many) admissible sequences of integers having excess ≤ m and ≤ n, respectively. 
Consequently, for p � 0, we can write (S ⊗ S)p(ψz) as a nontrivial linear combination 

� 
SqI

� 

νm+p ⊗
SqJ

� 

νn+p, where the sequences I � and J � consist entirely of positive integers. It follows that the image of 
ψ(z) under the composite map 

FBig(m) ⊗ FBig(n) S
p⊗Sp 

FBig(m + p) ⊗ FBig(n + p) F (m + p) ⊗ F (n + p)→ → 

is nonzero. 
We now observe that the diagram 

� ψm,n

FBig(m + n) �� FBig(m) ⊗ FBig(n) 

Sp⊗Sp
Se2p 

� ψm+p,n+p

FBig(m + n + 2p) �� FBig(m + p) ⊗ FBig(m + p) 

commutes, where the horizontal arrows are defined as in Notation 1. Replacing z by S�2p(z) if necessary, we 
may assume that the composition 

F�Big(m + n) 
ψm,n FBig(m) ⊗ FBig(n)→ → F (m) ⊗ F (n) 

does not vanish on z. 
We have seen that there are injections F (m) � H∗((RP ∞)m) and F (n) � H∗((RP ∞)n). Amalga→ →

mating these, we obtain an injection F (m) ⊗ F (n) �→ H∗((RP ∞)m+n). Since the Cartan formula holds in 
H∗((RP ∞)m+n), the composite map 

ψm,nFBig(m + n) FBig(m) ⊗ FBig(n)φ : � → → F (m) ⊗ F (n) �→ H∗((RP ∞)m+n) 

is simply the map of R-modules determined by the element t1t2 . . . tn+m ∈ Hn+m(RP ∞)m+n). Since 
H∗((RP ∞)m+n) satisfies the Adem relations, we have φ(z) = 0, a contradiction. This completes the proof 
of Theorem 2. 

It follows that the tensor product of Definition 1 determines a functor ⊗ : UBig × UBig → UBig. It is easy 
to see that this operation is commutative and associative, up to coherent isomorphism. In other words, it 
endows UBig with the structure of a symmetric monoidal category. 
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Corollary 3. Let M and N be unstable modules over the Steenrod algebra A. Then the tensor product 
M ⊗ N inherits the structure of an unstable module over the Steenrod algebra. 

Proof. We have seen that M ⊗ N has the structure of an unstable module over ABig. To complete the proof, 
it will suffice to show that Sq0 acts by the identity on M ⊗ N . Unwinding the definition, we have 

Sq0(x ⊗ y) = Sqk(x) ⊗ Sq−k(y). 
k 

The right hand side vanishes if k = 0, and coincides with � x ⊗ y when k = 0. 

The tensor product operation on the category of unstable Steenrod modules results from a comultiplicative 
structure which exists on the Steenrod algebra A itself: 

Proposition 4. There exists a ring homomorphism 

A A ⊗ A→ 

given by � 
Sqk �→ Sqk

� 

⊗ Sqk
�� 

. 
k=k�+k�� 

Proof. The formula above evidently defines a ring homomorphism Δ : R → A ⊗ A. Let K denote the kernel 
of the projection map R A. It will suffice to show that Δ(K) = 0. Suppose otherwise. Then there exists 
a nonzero element 

→ � 
T = SqIα ⊗ SqJα 

α 

belonging to the image Δ(K), where (Iα, Jα) ranges over some finite set of admissible positive sequences. 
Choose a pair of positive integers (m,n) such that for some index α, m is at least as large as the excess of 
Iα and n is at least as large as the excess of Jα. Then we have T (νm ⊗ νn) =� 0 ∈ F (m) ⊗ F (n), which 
contradicts Corollary 3. 

The comultiplication A → A ⊗ A of Proposition 4 is in some respects simpler than the multiplication on 
A: for example, it is commutative while the multiplication on A is not. We will return to this point in a 
future lecture. 

We now introduce some terminology which we will need later. 

Definition 5. An unstable ABig-algebra is an unstable ABig-module M equipped with a commutative and 
associative multiplication m : M ⊗ M → M satisfying the following conditions: 

(1) The Cartan formula is satisfied: 

Sqk(xy) = Sqk
� 

(x) Sqk
�� 

(y). 
k=k�+k�� 

In other words, m is a map of ABig-modules. 

(2) For every homogeneous element x ∈ M , Sqdeg(x)(x) = x2 . 

(3) M contains a unit element 1 satisfying 

1 if i = 0 
Sqi(1) = 

0 otherwise. 

An unstable A-algebra is an unstable ABig-algebra which is an A-module: that is, an unstable ABig-algebra 
M which satisfies Sq0(x) = x for all x ∈ M . 
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Example 6. The cohomology H∗(X) of any space X has the structure of an unstable A-algebra. 
The cohomology H∗(A) of any E -algebra over F2 has the structure of an unstable ABig-algebra. ∞

Our next goal is to understand the structure of free unstable algebras. For every integer n, we let 
FAlg(n) denote the free unstable A-algebra generated by a single element µn of degree n, and FBig (n) the Alg

free unstable ABig-algebra generated by a single element µn of degree n. We have an evident quotient map 
π : FBig (n) FAlg(n), uniquely determined by the requirement that π(µ ) = µn.Alg → n


Let X denote the subspace of FBig (n) spanned by the products
Alg

{SqI1 (µn) SqI2 (µn) . . . SqIk (µn)}. 

Using relations (1) and (3), we deduce that X is a subalgebra of FBig (n), so that X = FBig (n). Moreover, Alg Alg

relation (2) allows us to reduce any such monomial to a form where the sequences I1, . . . , Ik are all distinct. 
Using the Adem relations and the instability condition, we can further reduce to considering such monomials 
where each sequence Ij is admissible and has excess ≤ n. We have therefore proven half of the following 
result: 

Theorem 7. (1) The free unstable ABig-algebra FBig (n) has a basis of monomials Alg

{SqI1 (µn) SqI2 (µn) . . . SqIk (µn)} 

where I1 < . . . < Ik (with respect to the lexicographical ordering, say) are admissible sequences of excess 
≤ n. 

(2) The free unstable A-algebra FAlg(n) has a basis of monomials 

{SqI1 (µn) SqI2 (µn) . . . SqIk (µn)} 

where I1 < . . . < Ik are admissible positive sequences of excess ≤ n. 

The proof follows the same lines as our proof of the analogous fact for modules, and our construction of 
tensor products earlier in this lecture: we will reduce assertion (1) to assertion (2), using a shifting argument. 
Namely, there exists an isomorphism of algebras FBig (n) FBig (n + 1) given by the formula Alg → Alg

(Sqij
1
1 . . . Sqi0

1 

µ ) . . . (Sqij
k

k . . . Sqi0 
k 

µ ) �→ (Sqij
1
1 
+2j1 

. . . Sqi0
1+1 µ ) . . . (Sqij

k

k 
+2jk 

. . . Sqi0 
k +1 µ ).n n n+1 n+1

Consequently, any linear dependence among the expressions 

) ∈ FBigM(I1, . . . , Ik) = SqI1 (µn) SqI2 (µn) . . . SqIk (µn Alg(n) 

) ∈ FBigresults in a linear dependence among analogous expressions M(I1
� , . . . , I � Alg(n + p), for each p ≥ 0.k

Choosing p � 0, we get a linear dependence involving monomials in which all of the sequences (I1
� , . . . , Ik

� ) 
are positive, which contradicts (2). 

To prove (2), we need to produce some examples of unstable A-algebras. We will return to this point in 
the next lecture. 
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