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The Arithmetic Square (Lecture 32)


Our goal in this lecture is to address the following question: given a nice space X, to what extent can X 
be recovered from its completions at all primes? We begin by reviewing the situation for abelian groups. 

Let A be a finitely generated abelian group. For each prime p, let Ap denote the p-adic completion 
A ⊗Z Zp. Let AQ denote the rationalization A ⊗Z Q. We have canonical maps � 

AQ ← A → Ap, 
p 

which fit into a commutative diagram � 
A ��

p Ap 

�� ��
AQ �� (×pAp)Q. 

Remark 1. This diagram is a pullback square: in other words, it determines a short exact sequence 

0 → A → AQ × Ap → (×pAp)Q → 0. 
p 

We wish to prove an analogue of this result where the abelian group A is replaced by a nice topological 
space X. 

We first discuss the rationalization of topological spaces. 

Definition 2. Let f : X Y be a map of topological spaces. We say that f is a rational homotopy→ 
equivalence if it induces an isomorphism on rational cohomology H∗(Y ; Q) H∗(X; Q) (this is equivalent→
to the assertion that f induces an isomorphism on rational homology). We say that a space Z is rational 
(or Q-local) if, for every rational homotopy equivalence f : X Y , the induced map→ 

Map(Y, Z) Map(X, Z)→ 

is a homotopy equivalence. 
Given a topological space X, a rationalization of X is a topological space X � equipped with a rational 

homotopy equivalence X X �, such that X � is rational.→ 

If X is any topological space, then a rationalization X � of X is determined by X, up to canonical homotopy 
equivalence. This follows from Yoneda’s lemma: for any rational space Z, we have an equivalence of mapping 
spaces Map(X �, Z) � Map(X, Z), so that the functor co-represented by X � (on rational spaces) is already 
determined by X. A fundamental result of Bousfield implies that every space X admits a rationalization. 
We will be content to prove the following less general, but more explicit result: 

Theorem 3. Let X be a simply connected topological space. Then: 
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(1) A map X X � is a rationalization of X if and only if X � is simply connected, and for each i > 1 the→ 
map πiX → πiX

� induces an isomorphism πiX ⊗Z πiX
�. 

(2)	 X admits a rationalization XQ.


The proof proceeds in several steps.


Lemma 4. Let Z be a simply connected topological space. Assume that each homotopy group πiZ is a vector 
space over the rational numbers. Then Z is rational. 

Remark 5. The converse is also true; this follows from Theorem 3. 

Proof. Suppose first that Z is an Eilenberg-MacLane space K(V, n), where V is a rational vector space. 
Then, for any space X, we have 

πi Map(X, Z) � Hn−i(X; V ). 

If f : X Y is a rational equivalence, then f induces an isomorphism on rational homology. It follows from→
the universal coefficient theorem that f induces an isomorphism on cohomology with coefficients in V , so 
that f induces a homotopy equivalence Map(Y, Z) Map(X, Z). This proves that Z is rational. 

We now consider the general case. The space Z
→
is the homotopy limit of its Postnikov tower 

. . . τ Z . . . τ→ ≤n → ≤1Z � ∗. 

Since the collection of rational spaces is stable under homotopy limits, it will suffice to show that each τ≤nZ 
is rational. The proof proceeds by induction on n. We have a homotopy pullback diagram 

τ Z ��≤n ∗ 

τ≤n−1Z �� K(πnZ, n + 1). 

The inductive hypothesis implies that τ≤n−1Z is rational, and the first part of the proof shows that 
K(πnZ, n + 1) is rational. It follows that τ≤nZ is also rational, as desired. 

We now prove the “if” direction of assertion (1) in Theorem 3. Let f : X X � be a map of simply→ 
connected spaces which induces isomorphisms πiX ⊗Z Q → πiX

� for i > 1. We wish to show that X � is 
a rationalization of X. Lemma 4 shows that X � is rational; it therefore suffices to show that f induces an 
isomorphism on rational cohomology. We have a fiber sequence 

F X X �.→ → 

In view of the Serre spectral sequence, it suffices to show that the rational cohomology of F is trivial in 
positive degrees. The long exact sequence of homotopy groups shows that the homotopy groups of F consist 
entirely of torsion. The desired result is therefore an immediate consequence of the following: 

Lemma 6. Let F be a connected space, and assume that the homotopy groups of F are abelian torsion 
groups. Then H (F ; Q) vanishes for ∗ > 0.∗

Proof. We will prove by induction on i that the statement holds for the Postnikov section τ≤iF . Since 
Hi(F ; Q) � Hi(τ≤iF ; Q), this will imply the desired result. Using the inductive hypothesis and the Serre 
spectral sequence, we can reduce to the case where F is an Eilenberg-MacLane space K(A, i), where A is 
an abelian torsion group. Then A is a filtered colimit of finite abelian groups; we may therefore reduce to 
the case where A is finite. Using the Eilenberg-Moore spectral sequence, we can reduce to the case where 
i = 1. We now appeal to the following fact: in positive degrees, the homology groups of a finite group A are 
annihilated by the order |A|; in particular, the rational homology groups vanish. 

2 



� � � �

� � � �

� � � �

� 

We now prove the following version of the second part of Theorem 3: 

(2�) Let X be a simply connected topological space. Then there exists a map f : X XQ, where XQ is 
simply connected and f induces isomorphisms πiX ⊗Z Q → πiXQ. 

→ 

In view of what we have proven above, the space XQ will automatically be a rationalization of X, and 
therefore functorially determined by X. 

We now prove (2�) under the additional assumption that the homotopy groups πiX vanish for i > n, 
using induction on n. If n = 1, then X is contractible and there is nothing to prove. In general, if we let 
τX denote the space obtained by killing the nth homotopy group of X, then we have a homotopy pullback 
diagram 

X �� ∗ 

τX �� K(πnX, n + 1). 

Using the inductive hypothesis and the first step, we can extend this diagram as follows: 

X �� ∗ 

τX �� K(πnX, n + 1) 

(τX)Q �� K(πnX ⊗Z Q, n + 1). 

Here we have invoked the fact that (τX)Q is a rationalization of τX to complete the bottom square. The 
outer square determines a map from X into the homotopy pullback 

XQ = (τX)Q ×K(πnX⊗Z Q,n+1 ∗. 

It is easily checked that XQ has the desired properties. 
We now handle the general case. The simply connected space admits a Postnikov tower 

. . . → τ≤nX → τ≤n−1X → . . . → τ≤1X � ∗. 

Since the process of rationalization is functorial and (2�) is satisfied by each τ≤kX, we get an induced tower 

. . . → (τ≤nX)Q → . . . → (τ≤1X)Q � ∗. 

Let XQ denote the homotopy inverse limit of this tower; it is easy to see that XQ has the desired properties. 
This completes the proof of (2�), and therefore the proof of part (2) of Theorem 3. 

We now prove the “only if” direction of Theorem 3. Let X be a simply connected topological space. In 
view of (2�), there exists a rationalization X → XQ which induces isomorphisms πiX ⊗Z Q → πiXQ. Since 
a rationalization of X is determined up to homotopy equivalence by X, it follows that any rationalization 
of X has the same property. 

We are now ready to return to the main theme of this lecture. Let X be a simply connected topological 
space, and assume that each homotopy group πiX is finitely generated. For every prime p, let X�p = lim Xp

∨

denote the p-adic completion of X discussed in the last lecture. We have a canonical map 
←− 

X X�p.→ 
p 
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Both sides are simply connected, and therefore admit rationalizations. We get a homotopy commutative 
diagram 

X �� ( p X
�

p) 

XQ �� ( p X
�

p)Q. 

Theorem 7. Let X be a simply connected space whose homotopy groups are finitely generated. Then the 
preceding diagram is a homotopy pullback square. 

In other words, under reasonable connectedness and finiteness assumptions, any space X can be recovered 
by “gluing” together its rationalizations and its completions at all primes. 

Proof. Let Y denote the homotopy fiber product 

( X�p) ×(
Q

Xbp 
XQ,)Qp 

p 

so that we have a canonical map α : X Y and we wish to show that it is a homotopy equivalence. By→
construction, the homotopy groups of Y fit into a long exact sequence 

) 
φn 

. . . → πnY → πnXQ × πn( X�p → πn( X�p)Q → . . . 
p p 

Let A = πnX. Then we can identify the domain of φn with the product AQ × Ap, and the codomain of p 
φn with ( p Ap)Q. Remark 1 implies that φn is surjective. It follows that the long exact sequences above 
breaks up into short exact sequences, and gives isomorphisms 

πnY � ker(φn) � A. 

These isomorphisms are induced by the map A πnX πnY , so that α is a homotopy equivalence as→ →
desired. 
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