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Epilogue (Lecture 38)


Let U denote the category of unstable modules over the Steenrod algebra A. In the last two lectures, we 
defined two different filtrations of U by Serre classes. On the one hand, we have the classes 

. . . ⊆ Nil2 ⊆ Nil1 ⊆ Nil0 = U 

such that Nili is the kernel of the localization functor 

U 
fn Funan .→ n 

In other words, Nili consists of the collection of all unstable Steenrod modules M such that (TV M)j = 0 for 
all j < i and all finite dimensional vector spaces V . (We can also describe Nili as the smallest Serre class 
which contains all i-fold suspensions, though have not proven this.) 

On the other hand, we have the Krull filtration 

Krull0 ⊆ Krull1 ⊆ . . . , 

where Krulli consists of all unstable A-modules M such that T 
i 
M = 0. 

Our first goal in this lecture is to answer the following three questions: 

(A) In what sense do these filtrations “converge” to U? 

(B) How do these filtrations interact? 

(C) What do the successive quotients look like? 

We begin by discussing (A). 

Lemma 1. The canonical functor f : U lim Funan 
n is fully faithful. ∞ → ←−n 

Proof. The (2)-limit of the categories Funn can be identified with a category of enriched functors Vectf U. 
Then f∞ is defined by the formula 

→ 

(f∞M)(V ) = TV M. 

This functor has a left inverse, given by evaluation at the zero vector space. 

Lemma 2. The Krull filtration 
Krull0 ⊆ Krull1 ⊆ . . . , 

on U is exhaustive. In other words, the smallest Serre class containing each Krulli is U itself. 

Proof. The category U is generated under colimits by the free unstable modules F (n). We will show that 
F (n) ∈ Krulln for each n ≥ 0, using induction on n. Recall that we computed 

TF (n) � F (n) ⊕ F (n − 1) ⊕ . . . ⊕ F (0). 

Consequently, TF (n) � F (n−1)⊕. . .⊕F (0). By the inductive hypothesis, TF (n) ∈ Krulln−1, so T 
n+1 

F (n) �
T 

n 
TF (n) � 0 as desired. 
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We now address question (B). For each n ≥ 0, we can define a “shift” functor S from Funan to itself byn 
the formula S(G)(V ) = G(V ⊕ F2). By construction, the diagram 

U 
T �� U 

fn fn 

Funan S �� Funan 
n n 

commutes up to isomorphism. We note that the functor S(G) contains G as a retract (since V ⊕ F2 contains 
V as a retract); we therefore have S(G) = G ⊕ ΔG, where Δ is another functor from Funan to itself fittingn 
into a commutative diagram 

U 
T �� U 

fn fn 

Funan Δ �� Funan 
n n 

By definition, the kernel of Δk+1 can be identified with the subcategory Fun(k) ⊆ Funan consisting of functorsn n 

which are polynomial of degree ≤ k. One can show that Fun(k) is precisely the image of Krullk in Funn, son 
that the Krull filtration on U induces the filtration 

Fun(0) ⊆ Fun(1) ⊆ . . .n n 

on Funan .n 

Warning 3. This is not the Krull filtration on the category Funn. In fact, we have seen that every Noetherian 
object of Funn has finite length, so that Krull0(Funn) = Funn . 

We now address question (C). We begin by considering the associated graded of the Nil-filtration: 

Proposition 4. The iterated suspension functor Σn induces an equivalence of categories 

U / Nil1 → Niln / Niln+1 

Proof. We can identify U / Niln+1 with the category Funan 
n of enriched analytic functors from Vectf to 

U≤n . The Serre class Niln / Niln+1 can be identified with the kernel of the further localization obtained by 
composing these functors with the truncation τ ≤n−1 : U≤n U≤n−1 . This is equivalent to functors which→
land in the category U =n of unstable A-modules which are concentrated in degree n. But this category can 
be identified with the category of vector spaces, via the functor V �→ ΣnV . 

We will therefore restrict our attention to the category Funan = Funan
0 consisting of analytic functors 

from Vectf to Vect. This has a filtration by subcategories 

Fun(0) ⊆ Fun(1) ⊆ . . . 

where Fun(n) denotes the class of polynomial functors of degree ≤ n. 

Example 5. Let R be a represenation of the symmetric group Σn. Then the functor 

V �→ (V ⊗n ⊗ R)Σn 

is a polynomial functor of degree n, which we will denote by FR. 

The structure of the homogeneous layers Fun(n) / Fun(n−1) can be described by the following result: 
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Proposition 6. Let ModΣn denote the category of modules over the group ring F2[Σn]. Then the construc
tion 

R �→ FR 

defines a functor ModΣn Fun(n). Moreover, the composition→ 

ModΣn Fun(n) Fun(n) / Fun(n−1) → → 

is an equivalence of categories. 

Proof. Let F be a polynomial functor of degree ≤ n. Let S be a set of cardinality n, and let FS 
2 denote the 

corresponding n-dimensional vector space over F2. Let R be the kernel of the map 

F (FS 
2 ) F (FS

2 
−{s}).→ 

s∈S 

Then R is a vector space over F2, equipped with an action of the symmetric group Σn of permutations of S. 
Moreover, if F has degree < n, then R vanishes. This construction furnishes a functor Fun(n) / Fun(n−1) →
ModΣn which is inverse to the construction above. 

We can summarize our results as follows: 

Theorem 7. (1) The category U admits a filtration by Serre classes 

. . . ⊆ Nil2 ⊆ Nil1 ⊆ Nil0 = U . 

Moreover, U embeds fully faithfully into the inverse limit lim U / Niln, and the successive quotients 
Niln / Niln+1 are equivalent to Funan . 

←− 

(2)	 The Krull filtration on U induces a filtration on each Niln / Niln+1, which can be identified with the 
filtration of Funan by polynomial functors 

Fun(0) ⊆ Fun(1) ⊆ . . . 

(3)	 Each successive quotient Fun(n) / Fun(n−1) can be identified with the category of representations of the 
symmetric group Σn (in the category of F2-vector spaces). 

We conclude this lecture (and this course) with a digression on another topic. We have shown that if G 
is a finite p-group, then the classifying space BG is an atomic object in the category of p-profinite spaces 
S∨. However, we have also shown that BG is not atomic in the category of spaces unless G is the trivialp 
group. Nevertheless, some consequences of the atomicity of G still carry over to the setting of spaces: for 
example, we used the atomicity of BG in S∨ to show that every map from BG into a simply connectedp 
finite complex is nullhomotopic. 

One might try to prove that BG is atomic in S using the same techniques. Of course, such an attempt 
is doomed to failure, but might still teach us something or yield a weaker result. The basic idea is simple: 
given an arbitrary space X, we can attempt to compute the mapping space XBG using an arithmetic square 

X p X
�

p 

XQ �� ( X�p)Q,p 

and show that each term in this square behaves well with respect to pushouts in X. Of course, there are 
potentially many difficulties: 
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(1) The space X might fail to be simply connected. 

(2) The space X might fail to be of finite type, in which case the p-profinite completion is not the appro
priate thing to put into the arithmetic square. 

(3) We might not be able to assemble local information about pushout squares into global information, 
since homotopy pushouts and homotopy pullbacks generally do not commute. 

Rather than address these questions, we want to discuss a classical result which suggests that problem 
(1) is not as difficult as it seems: 

Theorem 8. Let G and H be groups and G � H their free product. Let F be any finite group. Then any 
homomorphism φ : F G � H is either conjugate to a homomorphism from F into G or conjugate to a 
homomorphism from F

→
into H. 

Remark 9. We can rephrase this result in terms of homotopy theory: any map 

BF BG ∨ BH→ 

is homotopic to a map from BF into BG or to a map from BF into BH. This is a kind of “atomicity” 
property enjoyed by the classifying space BF . 

Proof. We define a bipartite graph X as follows: the vertex set of X is V0 V1, where V0 = (G � H)/G 
and V1 = (G � H)/H. The edge set of X is G � H, where an element g ∈ G � H determines an edge from 
gG ∈ V0 to vH ∈ V1. The graph X is a tree, which admits an action of G � H by left translation. Given a 
homomorphism φ : F G � H, we see that the finite group F acts on the tree X. By the Bruhat-Tits fixed→ 
point theorem, the fixed point set XF is nonempty. In particular, XF contains a vertex of X. Without loss 
of generality, we may assume that this vertex has the form gG, for g ∈ G � H. In this case, conjugation by 
g carries φ to a homomorphism F G.→ 

Of course, this is only the tip of the iceberg as far as what can be proven using these sorts of techniques. 
For example, a more elaborate version of the same proof can be used to show the following: 

•	 Suppose given injections of groups

G0 ←� G � G1.
→ 

Let F be a finite group. Then the diagram 

(BG)BF �� (BG0)BF 

(BG1)BF �� B(G0 G1)BF 
G 

is a homotopic pushout square. 

This raises the following question: exactly how close is BF to being atomic in the category of spaces? It 
seems likely that a satisfying answer to this question will involve both the sort of combinatorial group theory 
argument sketched above, and the technology of unstable Steenrod modules developed in these lectures. 
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