18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Profinite Spaces (Lecture 26)

Let p be a prime number. In this lecture we will introduce the category of p-profinite spaces. We begin by reviewing an example from classical algebra.

Let C be the category of abelian groups, and let $C_0 \subseteq C$ be the full subcategory consisting of *finitely generated* abelian groups. Every abelian group A is the union of its finitely generated subgroups. Consequently, every object of C can be obtained as a (filtered) direct limit of objects in C_0 . Moreover, the morphisms in C are determined by the morphisms in C_0 . If A is a finitely generated abelian group and $\{B_\beta\}$ is any filtered system of abelian groups, then we have a bijection

$$\lim \operatorname{Hom}(A, B_{\beta}) \operatorname{Hom}(A, \lim B_{\beta}).$$

More generally, if A is given as a filtered colimit of abelian groups, then we get a bijection

$$\operatorname{Hom}(\varinjlim A_{\alpha}, \varinjlim B_{\beta}) \simeq \varprojlim_{\alpha} \operatorname{Hom}(A_{\alpha}, \varinjlim B_{\beta}) \simeq \varprojlim_{\alpha} \varinjlim_{\beta} \operatorname{Hom}(A_{\alpha}, B_{\beta}).$$

We can summarize the situation by saying that C is equivalent to the category of Ind-*objects* of C_0 :

Definition 1. Let \mathcal{C}_0 be a category. The category $Ind(\mathcal{C}_0)$ of Ind-*objects* of \mathcal{C}_0 is defined as follows:

- (1) The objects of $\operatorname{Ind}(\mathcal{C}_0)$ are *formal* direct limits " $\varinjlim C_{\alpha}$ ", where $\{C_{\alpha}\}$ is a filtered diagram in \mathcal{C}_0 .
- (2) Morphisms in $\operatorname{Ind}(\mathcal{C}_0)$ are given by the formula

$$\operatorname{Hom}("\varinjlim C_{\alpha}", "\varinjlim D_{\beta}") = \varprojlim_{\alpha} \varinjlim_{\beta} \operatorname{Hom}(C_{\alpha}, D_{\beta}).$$

Remark 2. There is a fully faithful embedding from \mathcal{C}_0 into $\operatorname{Ind}(\mathcal{C}_0)$, which carries an object $C \in \mathcal{C}_0$ to the constant diagram consisting of the single object C. We will generally abuse notation and identify \mathcal{C}_0 with its image under this embedding.

The category $\operatorname{Ind}(\mathcal{C}_0)$ admits filtered colimits. Moreover, an object " $\varinjlim C_{\alpha}$ " in $\operatorname{Ind}(\mathcal{C}_0)$ actually does coincide with the colimit of the diagram $\{C_{\alpha}\}$ in $\operatorname{Ind}(\mathcal{C}_0)$.

Remark 3. The category $Ind(\mathcal{C}_0)$ can be characterized by the following universal property: for any category \mathcal{D} which admits filtered colimits, the restriction functor

$$\operatorname{Fun}_0(\operatorname{Ind}(\mathfrak{C}_0), \mathfrak{D}) \to \operatorname{Fun}(\mathfrak{C}_0, \mathfrak{D})$$

is an equivalence of categories, where the left side is the category of functors from $\text{Ind}(\mathcal{C}_0)$ to \mathcal{D} which preserve filtered colimits.

Example 4. Let \mathcal{C} be the category of groups (or rings, or any other type of algebraic structure). Then \mathcal{C} is equivalent to $\operatorname{Ind}(\mathcal{C}_0)$, where $\mathcal{C}_0 \subseteq \mathcal{C}$ is the full subcategory spanned by the finitely presented groups (or rings, etcetera).

There is a dual construction, which replaces a category \mathcal{C}_0 by the category $\operatorname{Pro}(\mathcal{C}_0)$ of *pro-objects* in \mathcal{C}_0 : that is, formal inverse limits " $\lim_{\alpha \to \infty} C_{\alpha}$ " of filtered diagrams in \mathcal{C}_0 .

Example 5. Let C_0 be the category of *finite* groups. Then $Pro(C_0)$ is equivalent to the category of *profinite* groups: that is, topological groups which are compact, Hausdorff, and totally disconnected.

The construction $\mathcal{C}_0 \mapsto \operatorname{Pro}(\mathcal{C}_0)$ makes sense not only for ordinary categories, but also for homotopy theories. In other words, suppose that \mathcal{C}_0 is a category enriched over topological spaces (so that for every pair of objects $X, Y \in \mathcal{C}_0$, we have a mapping space $\operatorname{Map}_{\mathcal{C}_0}(X, Y)$). Then we can define a new topological category $\operatorname{Pro}(\mathcal{C}_0)$. Roughly speaking, the objects of $\operatorname{Pro}(\mathcal{C}_0)$ are given by formal filtered limits " $\varprojlim \mathcal{C}_{\alpha}$ " in \mathcal{C}_0 , and the morphisms are described by the formula

$$\operatorname{Map}("\lim C_{\alpha}", "\lim D_{\beta}") = \operatorname{holim}_{\beta} \operatorname{hocolim}_{\alpha} \operatorname{Map}(C_{\alpha}, D_{\beta}).$$

To really make this idea precise requires the machinery of higher category theory; we will be content to work with this construction in an informal way.

We now specialize this construction to the case of interest. Let \mathfrak{S} denote the category of spaces, \mathfrak{S}_p the category of *p*-finite spaces, and \mathfrak{S}_p^{\vee} the category $\operatorname{Pro}(\mathfrak{S}_p)$ of pro-objects in \mathfrak{S}_p . We will refer to \mathfrak{S}_p^{\vee} as the category of *p*-profinite spaces.

There is a canonical functor $G : \mathfrak{S}_p^{\vee} \to \mathfrak{S}$, which carries a formal inverse limit " $\lim_{n \to \infty} C_{\alpha}$ " to the space holim C_{α} . If we restrict to a suitable subcategory of \mathfrak{S}_p^{\vee} by imposing finiteness and connectivity conditions, then the functor G is fully faithful; its essential image being (a suitable subcategory of) the category of p-complete spaces. We will discuss this point in more detail in a future lecture.

The functor G has a left adjoint $X \mapsto X^{\vee}$, which we will refer to as the functor of *p*-profinite completion. The functor $^{\vee}$ carries a topological space X to the formal inverse limit $X^{\vee} = \underset{\alpha}{} \lim X_{\alpha}$, where X_{α} ranges over all *p*-finite spaces equipped with a map to X. If X is itself *p*-finite, then we can identify this inverse limit with X itself.

Definition 6. Let X be a p-profinite space. We let $\operatorname{H}^{n}(X) = \operatorname{H}^{n}(X; \mathbf{F}_{p})$ denote the set of homotopy classes of maps from X into an Eilenberg-MacLane space $K(\mathbf{F}_{p}, n)$ in the p-profinite category \mathfrak{S}_{p}^{\vee} .

Since $K(\mathbf{F}_p, n)$ is *p*-finite, we see that

$$\mathrm{H}^{n}(\operatorname{``}\lim X_{\alpha}\operatorname{'`}) \simeq \lim \mathrm{H}^{n}(X_{\alpha}).$$

It follows that for any *p*-profinite space X, the cohomology $H^*(X) \simeq \bigoplus_n H^n(X)$ is a filtere colimit of the cohomology rings of a collection of *p*-finite spaces, and therefore inherits the structure of an unstable algebra over the Steenrod algebra.

Remark 7. If X is a topological space, then the cohomology $H^*(X; \mathbf{F}_p)$ (in the usual sense) can be identified with the cohomology $H^*(X^{\vee})$ of the *p*-profinite completion of X, defined as in Definition 6.

The process of extracting cohomology does *not* generally commute with the inverse limit functor $G : \mathfrak{S}_p^{\vee} \to \mathfrak{S}$, unless we make suitable finiteness assumptions.

We now discuss the existence of mapping objects in the *p*-profinite category.

Proposition 8. Let X be a p-profinite space, and let V be a finite dimensional vector space over \mathbf{F}_p . Then there exists a p-profinite space X^{BV} equipped with an evaluation map $X^{BV} \times BV \to X$ with the following universal property: for any p-profinite space Y, the induced map

$$\theta : \operatorname{Map}(Y, X^{BV}) \to \operatorname{Map}(Y \times BV, X)$$

is a weak homotopy equivalence.

Proof. If $X = \lim_{\alpha \to \infty} X_{\alpha}^{\alpha}$, then we can take $X^{BV} = \lim_{\alpha \to \infty} X^{BV}_{\alpha}$ (here we are using the fact that each X^{BV}_{α} is again *p*-finite). We claim the X^{BV} has the appropriate universal property. For any *p*-profinite space *Y*, we can identify θ with a map

$$\operatorname{holim}\operatorname{Map}(Y, X_{\alpha}^{BV}) \simeq \operatorname{Map}(Y, X^{BV}) \to \operatorname{Map}(Y \times BV, X) \simeq \operatorname{holim}\operatorname{Map}(Y \times BV, X_{\alpha}).$$

It will therefore suffice to prove the result after replacing X by X_{α} , so we may assume that X is p-finite. Let $Y = \lim Y_{\beta}$. Then the map θ can be identified with

hocolim Map $(Y_{\beta}, X^{BV}) \simeq Map(Y, X^{BV}) \to Map(Y \times BV, X) \simeq hocolim Map(Y_{\beta} \times BV, X),$

where the last equivalence follows from the observation that

$$Y \times BV \simeq$$
"lim $Y_{\beta} \times BV$ "

is a product for Y and BV in the p-profinite category. We may therefore assume that Y is p-finite as well, in which case the result is obvious.

Remark 9. Proposition 9 remains valid if we replace BV by an arbitrary *p*-finite space. However, it is not valid if BV is a general *p*-profinite space; the *p*-profinite category \mathfrak{S}_p^{\vee} does not have internal mapping objects in general.

Remark 10. Let $X = \lim_{\alpha \to \infty} X_{\alpha}$ and $Y = \lim_{\alpha \to \infty} Y_{\beta}$ be *p*-profinite spaces. Then $\lim_{\alpha \to \infty} X_{\alpha} \times Y_{\beta}$ is a product for X and Y in the category of *p*-profinite spaces. Applying the Kunneth theorem to the *p*-finite spaces X_{α} and Y_{β} , we deduce

 $\mathrm{H}^*(X \times Y) \simeq \lim \mathrm{H}^*(X_\alpha \times Y_\beta) \simeq \lim \mathrm{H}^* X_\alpha \otimes \mathrm{H}^* Y_\beta \simeq \mathrm{H}^* X \otimes \mathrm{H}^* Y.$

Let us now assume that p = 2. Let X be a p-profinite space. The evaluation map $X^{BV} \times BV \to X$ induces a map on cohomology

$$\mathrm{H}^* X \to \mathrm{H}^*(X^{BV} \times BV) \simeq \mathrm{H}^*(X^{BV}) \otimes \mathrm{H}^*(BV),$$

which is adjoint to a map $\psi: T_V \operatorname{H}^*(X) \to \operatorname{H}^*(X^{BV})$.

Theorem 11. The map ψ is an isomorphism, for every 2-profinite space X.

Proof. The proof when X is 2-finite was given in the previous lecture. In general, write $X = \underset{\alpha}{:} \varprojlim X_{\alpha}$. Then we have

$$T_V \operatorname{H}^*(X) \simeq T_V \varinjlim \operatorname{H}^*(X_{\alpha})$$

$$\simeq \varinjlim T_V \operatorname{H}^*(X_{\alpha})$$

$$\simeq \varinjlim \operatorname{H}^*(X_{\alpha}^{BV})$$

$$\simeq \operatorname{H}^*(X^{BV}).$$

Using this result, we get a measure of exactly how the ψ might fail to be an isomorphism when we work in the usual category of spaces. For any space X, we have

$$T_V \operatorname{H}^*(X) \simeq T_V \operatorname{H}^*(X^{\vee}) \simeq \operatorname{H}^*(X^{\vee})^{BV} \to \operatorname{H}^*(X^{BV})^{\vee}.$$

In other words, the failure of T_V to compute the cohomology of mapping spaces is measured by the failure of the formation of mapping spaces to commute with profinite completion.