MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

The Adem Relations (Continued) (Lecture 5)

We continue to work with complexes over the finite field \mathbf{F}_{2} with two elements. All homology and cohomology will be taken with coefficients in \mathbf{F}_{2}.

In the last lecture, we showed how to reduce the proof of the Adem relations to a calculation in group homology. Our goal in this lecture is to carry out that calculation. We begin with some generalities.

Let V be a complex with an action of the group Σ_{2}. In previous lectures, we have made extensive use of the homotopy coinvariants construction

$$
V \mapsto V_{h \Sigma_{2}} \simeq\left(V \otimes E \Sigma_{2}\right)_{\Sigma_{2}}
$$

There is also a dual homotopy invariants construction, given by

$$
V \mapsto V^{h \Sigma_{2}} \simeq \operatorname{Hom}\left(E \Sigma_{2}, V\right)^{\Sigma_{2}}
$$

These constructions are related by a norm map $N: V_{h \Sigma_{2}} \rightarrow V^{h \Sigma_{2}}$, which has the property that the composition

$$
V \rightarrow V_{h \Sigma_{2}} \xrightarrow{N} V^{h \Sigma_{2}} \rightarrow V
$$

coincides with the usual norm map $v \mapsto \sum_{g \in \Sigma_{2}} g(v)$. The Tate construction on V is defined to be the cofiber of the norm map, and will be denoted by $V^{T \Sigma_{2}}$. By construction, we have a fiber sequence

$$
V_{h \Sigma_{2}} \rightarrow V^{h \Sigma_{2}} \rightarrow V^{T \Sigma_{2}}
$$

which induces a long exact sequence on cohomology.
To get a feel for how everything works, let's consider the case where $V=\mathbf{F}_{2}$ is a complex concentrated in degree 0 . In this case, we can identify $V_{h \Sigma_{2}}$ with the chain complex $C_{*}\left(B \Sigma_{2}\right)$, and we can identify $V^{h \Sigma_{2}}$ with the cochain complex $C^{*}\left(B \Sigma_{2}\right)$. The norm map induces a map

$$
\mathrm{H}_{n}\left(B \Sigma_{2}\right) \rightarrow \mathrm{H}^{-n}\left(B \Sigma_{2}\right)
$$

This is just the usual norm map in the theory of group cohomology. It vanishes for $n \neq 0$ simply for degree reasons. For $n=0$, it is given by multiplication by the order of the group $B \Sigma_{2}$, and therefore vanishes because we are taking coefficients in the field \mathbf{F}_{2}. Because the norm map vanishes in this case, it is convenient to rewrite the above fiber sequence as

$$
V^{h \Sigma_{2}} \rightarrow V^{T \Sigma_{2}} \rightarrow V_{h \Sigma_{2}}[1]
$$

The cohomology of $V^{T \Sigma_{2}}$ is the Tate cohomology of the group Σ_{2}. The long exact sequence above gives isomorphisms

$$
\begin{gathered}
\mathrm{H}^{n}\left(V^{T \Sigma_{2}}\right) \simeq \mathrm{H}^{n}\left(B \Sigma_{2}\right) \\
\mathrm{H}^{-n-1}\left(V^{T \Sigma_{2}}\right) \simeq \mathrm{H}_{n}\left(B \Sigma_{2}\right)
\end{gathered}
$$

for $n \geq 0$. In particular, we see that the Tate cohomology of Σ_{2} is 1-dimensional in every degree.

Recall that the cohomology ring $\mathrm{H}^{*}\left(B \Sigma_{2}\right)$ is isomorphic to the polynomial ring $\mathbf{F}_{2}[t]$. The multiplication on $\mathrm{H}^{*}\left(B \Sigma_{2}\right)$ extends to a multiplication defined on the Tate cohomology $\mathrm{H}^{*}\left(V^{T \Sigma_{2}}\right)$, which can be identified with the ring of Laurent polynomials $\mathbf{F}_{2}\left[t, t^{-1}\right]$. This induces an isomorphism

$$
\mathrm{H}_{*}\left(B \Sigma_{2}\right) \simeq \mathbf{F}_{2}\left[t, t^{-1}\right] / \mathbf{F}_{2}[t] .
$$

Using this isomorphism, $\mathrm{H}_{*}\left(B \Sigma_{2}\right)$ has a basis consisting of $\left\{t^{n}\right\}_{n<0}$. In previous lectures, we used a basis $\left\{x_{i}\right\}_{i \geq 0}$ for $\mathrm{H}_{*}\left(B \Sigma_{2}\right)$ which was dual to the basis $\left\{t^{i}\right\}_{i \geq 0}$ for $\mathrm{H}^{*}\left(B \Sigma_{2}\right)$. By comparing degrees, we see that these bases are related by the following transformation

$$
x_{i} \mapsto t^{-i-1}
$$

It follows that the duality pairing between homology and cohomology can be written in the following suggestive form:

$$
(f, g) \mapsto \operatorname{Res}(f g)
$$

Here Res : $\mathbf{F}_{2}\left[t, t^{-1}\right] \rightarrow \mathbf{F}_{2}$ denotes the residue map, which simply extracts the coefficient of t^{-1}.
Let us now consider some more interesting Σ_{2}-actions. For every complex V, there is a canonical action of Σ_{2} on the tensor square $V \otimes V$. We have defined the symmetric square $D_{2}(V)$ to be the homotopy coinvariants $(V \otimes V)_{h \Sigma_{2}}$. This construction has the following counterparts for homotopy invariants and the Tate construction:

$$
\begin{aligned}
D^{2}(V) & =(V \otimes V)^{h \Sigma_{2}} \\
D^{T}(V) & =(V \otimes V)^{T \Sigma_{2}}
\end{aligned}
$$

We now wish to describe the effects that these constructions have on cohomology. We can produce operations by repeating some of our earlier constructions.

Definition 1. Let V be a complex, and let $v \in \mathrm{H}^{n}(V)$, so that v classifies a map $\mathbf{F}_{2}[-n] \rightarrow V$. We obtain induced maps

$$
\begin{aligned}
f: D^{2}\left(\mathbf{F}_{2}\right)[-2 n] & \simeq D^{2}\left(\mathbf{F}_{2}[-n]\right) \rightarrow D^{2}(V) \\
f^{\prime}: D^{T}\left(\mathbf{F}_{2}\right)[-2 n] & \simeq D^{2}\left(\mathbf{F}_{2}[-n]\right) \rightarrow D^{T}(V)
\end{aligned}
$$

For every integer k, we let $S^{k}(v) \in \mathrm{H}^{n+k}\left(D^{T}(V)\right)$ denote the image of $t^{k-n} \in \mathrm{H}^{k-n}\left(D^{T}\left(\mathbf{F}_{2}\right)\right)$ under the map f^{\prime}. If $k \geq n$, then

$$
t^{k-n} \in \mathrm{H}^{k-n}\left(D^{2}\left(\mathbf{F}_{2}\right)\right) \subseteq \mathrm{H}^{k-n}\left(D^{T}\left(\mathbf{F}_{2}\right)\right)
$$

In this case, we will denote the image of t^{k-n} under f by $S^{k}(v) \in \mathrm{H}^{n+k}\left(D^{2}(V)\right)$.
Remark 2. Our notation is potentially ambiguous, but will hopefully not result in any confusion since for $k \geq n$, the diagram

is commutative.
Now suppose that V is equipped with a symmetric multiplication $m: D_{2}(V) \rightarrow V$. We can regard m as a homotopy fixed point for the action of Σ_{2} on the space $\operatorname{Hom}(V \otimes V, V)$. Consequently, m gives rise to a
commutative diagram

Here we regard Σ_{2} as acting trivially on V.
We wish to describe the induced maps on cohomology in terms the Steenrod operations on $\mathrm{H}^{*}(V)$. For this, we need to introduce a mild finiteness restriction on V :
(*) The cohomology groups $\mathrm{H}^{n}(V)$ are finite dimensional for every $n \in \mathbf{Z}$, and vanish for n sufficiently small.

Assuming condition $(*)$, we have equivalences

$$
\begin{aligned}
& V^{h \Sigma_{2}} \simeq V \otimes\left(\mathbf{F}_{2}\right)^{h \Sigma_{2}} \\
& V^{T \Sigma_{2}} \simeq V \otimes\left(\mathbf{F}_{2}\right)^{T \Sigma_{2}} \\
& V_{h \Sigma_{2}} \simeq V \otimes\left(\mathbf{F}_{2}\right)_{h \Sigma_{2}}
\end{aligned}
$$

Passing to cohomology, we obtain isomorphisms

$$
\begin{gathered}
\mathrm{H}^{*}\left(V^{h \Sigma_{2}}\right) \simeq \mathrm{H}^{*}(V)[t] \\
\mathrm{H}^{*}\left(V^{T \Sigma_{2}}\right) \simeq \mathrm{H}^{*}(V)\left[t, t^{-1}\right] \\
\mathrm{H}^{*}\left(V_{h \Sigma_{2}}\right) \simeq \mathrm{H}^{*+1}(V)\left[t, t^{-1}\right] / \mathrm{H}^{*}(V)[t] .
\end{gathered}
$$

We now have the following result:
Proposition 3. Let V be a complex equipped with a symmetric multiplication, and let $v \in \mathrm{H}^{n}(V)$. Then:
(1) If $k \geq n$, then $S^{k}(v) \in \mathrm{H}^{n+k}\left(D^{2}(V)\right)$ has image

$$
\sum_{l} \mathrm{Sq}^{l}(v) t^{k-l} \in \mathrm{H}^{*}(V)[t]
$$

(2) For all integers k, the element $S^{k}(v) \in \mathrm{H}^{n+k}\left(D^{T}(V)\right)$ has image

$$
\sum_{l} \mathrm{Sq}^{l}(v) t^{k-l} \in \mathrm{H}^{*}(V)\left[t, t^{-1}\right]
$$

Proof. The implication $(2) \Rightarrow(1)$ is clear. To prove (2), we consider the map $\phi: \mathrm{H}^{*}\left(D^{T}(V)\right) \rightarrow \mathrm{H}^{*}(V)\left[t, t^{-1}\right]$. We observe that ϕ is a map of modules over the Tate cohomology ring $\mathrm{H}^{*}\left(\mathbf{F}_{2}^{T \Sigma_{2}}\right) \simeq \mathbf{F}_{2}\left[t, t^{-1}\right]$, and that the action of this ring on $\mathrm{H}^{*}\left(D^{T}(V)\right)$ satisfies $t^{m} S^{k}(v)=S^{m+k}(v)$.

The coefficient of t^{k-l} in $\phi\left(S^{k}(v)\right)$ is given by

$$
\operatorname{Res}\left(t^{l-k-1} \phi\left(S^{k}(v)\right)\right)=\operatorname{Res}\left(\phi\left(S^{l-1}(v)\right)\right)
$$

We have a commutative diagram

We now observe that the composition of the bottom arrows is the definition of the map Sq^{l}.
We now wish to restrict further to the case where $V \simeq C^{*}\left(\mathbf{R} P^{\infty}\right)$ is the cochain complex which computes the cohomology of $B \Sigma_{2} \simeq \mathbf{R} P^{\infty}$. To avoid confusion, let us identify this cohomology ring with the polynomial algebra $\mathbf{F}_{2}[u]$. We saw in a previous lecture that the action of the Steenrod algebra on $\mathbf{F}_{2}[u]$ was given by

$$
\mathrm{Sq}^{k}\left(u^{n}\right)=(n-k, k) u^{n+k} .
$$

Let G denote the wreath product $\left(\Sigma_{2} \times \Sigma_{2}\right) \rtimes \Sigma_{2}$, so the cochain complex $C^{*}(B G)$ is equivalent to $D^{2}\left(C^{*}\left(\Sigma_{2}\right)\right)$. We may view f as a map

$$
C^{*}(B G) \rightarrow C^{*}\left(\Sigma_{2}\right)^{h \Sigma_{2}} \simeq C^{*}\left(\Sigma_{2} \times \Sigma_{2}\right) .
$$

At the level of cohomology, this is simply the map induced by the inclusion of groups

$$
\Sigma_{2} \times \Sigma_{2} \simeq \Sigma_{2} \rtimes \Sigma_{2} \xrightarrow{j}\left(\Sigma_{2} \times \Sigma_{2}\right) \rtimes \Sigma_{2}=G .
$$

Applying Proposition 3 in this case, we obtain the following:
Corollary 4. The inclusion j : $\Sigma_{2} \times \Sigma_{2} \rightarrow G$ induces a restriction map on cohomology $\mathrm{H}^{*}(B G) \rightarrow \mathrm{H}^{*}\left(\Sigma_{2} \times\right.$ $\left.\Sigma_{2}\right) \simeq \mathbf{F}_{2}[t, u]$. For $k \geq n$, this map carries $S^{k}\left(u^{n}\right) \in \mathrm{H}^{m+k}(B G)$ to

$$
\sum_{p}(n-l, l) u^{n+l} t^{k-l} .
$$

We observe that $\mathrm{H}_{*}(B G) \simeq \mathrm{H}^{-*}\left(D_{2}\left(C_{*}\left(B \Sigma_{2}\right)\right)\right)$ has a basis consisting of products $\left\{x_{i} x_{j}\right\}_{0 \leq i<j}$ and Steenrod operations $\left\{\overline{\mathrm{Sq}}^{-n} x_{i}\right\}_{0 \leq i \leq n}$. We obtain a dual basis for $\mathrm{H}^{*}(B G)$ consisting of vectors $\left\{v_{i j}\right\}_{0 \leq i<j}$ and Steenrod operations $\left\{S^{n} u^{i}\right\}_{0 \leq i \leq n}$. The basis vectors $v_{i j}$ span the image of the norm map

$$
\mathrm{H}^{*}\left(D_{2}\left(C^{*}\left(\Sigma_{2}\right)\right)\right) \rightarrow \mathrm{H}^{*}\left(D^{2}\left(C^{*}\left(\Sigma_{2}\right)\right)\right),
$$

so the restriction map $\mathrm{H}^{*}(B G) \rightarrow \mathrm{H}^{*}\left(\Sigma_{2} \times \Sigma_{2}\right)$ vanishes on them. Thus Corollary 4 really gives a complete description of the restriction map $\mathrm{H}^{*}(B G) \rightarrow \mathrm{H}^{*}\left(\Sigma_{2} \times \Sigma_{2}\right)$. Rewriting this information in terms of the dual bases, we obtain the following result:

Corollary 5. The inclusion $j: \Sigma_{2} \times \Sigma_{2} \rightarrow G$ induces a map on homology

$$
\mathrm{H}_{*}\left(\Sigma_{2} \times \Sigma_{2}\right) \rightarrow \mathrm{H}_{*}(G)
$$

which is described by the formula

$$
x_{p} \otimes x_{q} \mapsto \sum_{l}(p-2 l, l) \overline{\mathrm{Sq}}^{-q-l} x_{p-l} .
$$

We are now ready to complete the calculation of the last lecture. Recall that we need to show that for $p, q>0$, the homology classes

$$
\sum_{l}(p-2 l, l) \overline{\mathrm{Sq}}^{-q-l} x_{p-l} \in \mathrm{H}_{p+q}(B G)
$$

$$
\sum_{l^{\prime}}\left(q-2 l^{\prime}, l^{\prime}\right) \overline{\mathrm{Sq}}^{-p-l^{\prime}} x_{q-l^{\prime}} \in \mathrm{H}_{p+q}(B G)
$$

have the same image in $\mathrm{H}_{*}\left(B \Sigma_{4}\right)$. Invoking Corollary 5 , we see that it suffices to show that under the induced inclusion

$$
\Sigma_{2} \times \Sigma_{2} \rightarrow \Sigma_{4}
$$

the homology classes $x_{p} \otimes x_{q}, x_{q} \otimes x_{p} \in \mathrm{H}_{p+q}\left(B\left(\Sigma_{2} \times \Sigma_{2}\right)\right)$ have the same image in $\mathrm{H}_{p+q}\left(B \Sigma_{4}\right)$. These two homology classes conjugate by the involution which permutes the two factors in the product $\Sigma_{2} \times \Sigma_{2}$. We now observe that this involution is the restriction of an inner automorphism of Σ_{4}, and that inner automorphisms of a group H act trivially on the homology $\mathrm{H}_{*}(B H)$.

