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The Adem Relations (Continued) (Lecture 5)


We continue to work with complexes over the finite field F2 with two elements. All homology and 
cohomology will be taken with coefficients in F2. 

In the last lecture, we showed how to reduce the proof of the Adem relations to a calculation in group 
homology. Our goal in this lecture is to carry out that calculation. We begin with some generalities. 

Let V be a complex with an action of the group Σ2. In previous lectures, we have made extensive use of 
the homotopy coinvariants construction 

V �→ VhΣ2 � (V ⊗ EΣ2)Σ2 . 

There is also a dual homotopy invariants construction, given by 

V �→ V hΣ2 � Hom(EΣ2, V )Σ2 . 

These constructions are related by a norm map N : VhΣ2 V hΣ2 , which has the property that the compo→
sition 

V VhΣ2 

N 
V hΣ2 V→ → → 

coincides with the usual norm map v �→ g∈Σ2 
g(v). The Tate construction on V is defined to be the cofiber 

of the norm map, and will be denoted by V T Σ2 . By construction, we have a fiber sequence 

VhΣ2 V hΣ2 V T Σ2 ,→ → 

which induces a long exact sequence on cohomology. 
To get a feel for how everything works, let’s consider the case where V = F2 is a complex concentrated 

in degree 0. In this case, we can identify VhΣ2 with the chain complex C (BΣ2), and we can identify V hΣ2 ∗
with the cochain complex C∗(BΣ2). The norm map induces a map 

Hn(BΣ2) H−n(BΣ2).→ 

This is just the usual norm map in the theory of group cohomology. It vanishes for n = 0 simply for degree �
reasons. For n = 0, it is given by multiplication by the order of the group BΣ2, and therefore vanishes because 
we are taking coefficients in the field F2. Because the norm map vanishes in this case, it is convenient to 
rewrite the above fiber sequence as 

V hΣ2 V T Σ2 VhΣ2 [1].→ → 

The cohomology of V T Σ2 is the Tate cohomology of the group Σ2. The long exact sequence above gives 
isomorphisms 

Hn(V T Σ2 ) � Hn(BΣ2) 

H−n−1(V T Σ2 ) � Hn(BΣ2) 

for n ≥ 0. In particular, we see that the Tate cohomology of Σ2 is 1-dimensional in every degree. 
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Recall that the cohomology ring H∗(BΣ2) is isomorphic to the polynomial ring F2[t]. The multiplication 
on H∗(BΣ2) extends to a multiplication defined on the Tate cohomology H∗(V T Σ2 ), which can be identified 
with the ring of Laurent polynomials F2[t, t−1]. This induces an isomorphism 

H (BΣ2) � F2[t, t−1]/F2[t].∗

Using this isomorphism, H (BΣ2) has a basis consisting of {tn}n<0. In previous lectures, we used a basis∗
{xi}i≥0 for H (BΣ2) which was dual to the basis {ti}i≥0 for H∗(BΣ2). By comparing degrees, we see that∗
these bases are related by the following transformation 

.xi �→ t−i−1 

It follows that the duality pairing between homology and cohomology can be written in the following sug
gestive form: 

(f, g) �→ Res(fg). 

Here Res : F2[t, t−1] F2 denotes the residue map, which simply extracts the coefficient of t−1 .→
Let us now consider some more interesting Σ2-actions. For every complex V , there is a canonical action 

of Σ2 on the tensor square V ⊗ V . We have defined the symmetric square D2(V ) to be the homotopy 
coinvariants (V ⊗ V )hΣ2 . This construction has the following counterparts for homotopy invariants and the 
Tate construction: 

D2(V ) = (V ⊗ V )hΣ2 

DT (V ) = (V ⊗ V )T Σ2 . 

We now wish to describe the effects that these constructions have on cohomology. We can produce 
operations by repeating some of our earlier constructions. 

Definition 1. Let V be a complex, and let v ∈ Hn(V ), so that v classifies a map F2[−n] V . We obtain 
induced maps 

→ 

f : D2(F2)[−2n] � D2(F2[−n]) → D2(V ) 

f � : DT (F2)[−2n] � D2(F2[−n]) → DT (V ). 

For every integer k, we let Sk(v) ∈ Hn+k(DT (V )) denote the image of tk−n ∈ Hk−n(DT (F2)) under the map 
f �. If k ≥ n, then 

tk−n ∈ Hk−n(D2(F2)) ⊆ Hk−n(DT (F2)). 

In this case, we will denote the image of tk−n under f by Sk(v) ∈ Hn+k(D2(V )). 

Remark 2. Our notation is potentially ambiguous, but will hopefully not result in any confusion since for 
k ≥ n, the diagram 

Hn(V ) Sk 
�� Hn+k(D2(V )) 

= 

Hn(V ) Sk 
�� Hn+k(DT (V )) 

is commutative. 

Now suppose that V is equipped with a symmetric multiplication m : D2(V ) V . We can regard m as→ 
a homotopy fixed point for the action of Σ2 on the space Hom(V ⊗ V, V ). Consequently, m gives rise to a 
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commutative diagram 
f � 

D2(V ) �� V hΣ2 

f �� 

DT (V ) �� V T Σ2 

D2(V )[1] �� VhΣ2 [1]. 

Here we regard Σ2 as acting trivially on V . 
We wish to describe the induced maps on cohomology in terms the Steenrod operations on H∗(V ). For 

this, we need to introduce a mild finiteness restriction on V : 

(∗) The cohomology groups Hn(V ) are finite dimensional for every n ∈ Z, and vanish for n sufficiently 
small. 

Assuming condition (∗), we have equivalences 

V hΣ2 � V ⊗ (F2)hΣ2 

V T Σ2 � V ⊗ (F2)T Σ2 

VhΣ2 � V ⊗ (F2)hΣ2 . 

Passing to cohomology, we obtain isomorphisms 

H∗(V hΣ2 ) � H∗(V )[t]


H∗(V T Σ2 ) � H∗(V )[t, t−1]


H∗(VhΣ2 ) � H∗+1(V )[t, t−1]/ H∗(V )[t].


We now have the following result: 

Proposition 3. Let V be a complex equipped with a symmetric multiplication, and let v ∈ Hn(V ). Then: 

(1) If k ≥ n, then Sk(v) ∈ Hn+k(D2(V )) has image 

Sql(v)tk−l ∈ H∗(V )[t]. 
l 

(2) For all integers k, the element Sk(v) ∈ Hn+k(DT (V )) has image 

Sql(v)tk−l ∈ H∗(V )[t, t−1]. 
l 

Proof. The implication (2) (1) is clear. To prove (2), we consider the map φ : H∗(DT (V )) H∗(V )[t, t−1].⇒ →
We observe that φ is a map of modules over the Tate cohomology ring H∗(FT Σ2 ) � F2[t, t−1], and that the2 
action of this ring on H∗(DT (V )) satisfies tmSk(v) = Sm+k(v). 

The coefficient of tk−l in φ(Sk(v)) is given by 

Res(tl−k−1φ(Sk(v))) = Res(φ(Sl−1(v))). 
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We have a commutative diagram 

H∗(V ) Sl−1 

H∗(DT (V )) H∗(V )[t, t−1] 
Res 

id 

H∗(
��
V ) 

Sql 

�� H∗(D
��
2(V )) �� H∗(V )[t, t−1

��
]/ H∗(V )[t] Res 

��
�� H∗(V ). 

We now observe that the composition of the bottom arrows is the definition of the map Sql . 

We now wish to restrict further to the case where V � C∗(RP ∞) is the cochain complex which computes 
the cohomology of BΣ2 � RP ∞. To avoid confusion, let us identify this cohomology ring with the polynomial 
algebra F2[u]. We saw in a previous lecture that the action of the Steenrod algebra on F2[u] was given by 

Sqk(u n) = (n − k, k)u n+k . 

Let G denote the wreath product (Σ2×Σ2)�Σ2, so the cochain complex C∗(BG) is equivalent to D2(C∗(Σ2)). 
We may view f as a map 

C∗(BG) → C∗(Σ2)hΣ2 � C∗(Σ2 × Σ2). 

At the level of cohomology, this is simply the map induced by the inclusion of groups 

Σ2 × Σ2 � Σ2 � Σ2 
j 

(Σ2 × Σ2) � Σ2 = G.→ 

Applying Proposition 3 in this case, we obtain the following: 

Corollary 4. The inclusion j : Σ2 × Σ2 → G induces a restriction map on cohomology H∗(BG) H∗(Σ2 ×
Σ2) � F2[t, u]. For k ≥ n, this map carries Sk(un) ∈ Hm+k(BG) to 

→ 

(n − l, l)u n+ltk−l . 
p 

We observe that H (BG) � H−∗(D2(C (BΣ2))) has a basis consisting of products {xixj }0≤i<j and∗ ∗

Steenrod operations {Sq
−n 

xi}0≤i≤n. We obtain a dual basis for H∗(BG) consisting of vectors {vij }0≤i<j 

and Steenrod operations {Snui}0≤i≤n. The basis vectors vij span the image of the norm map 

H∗(D2(C∗(Σ2))) H∗(D2(C∗(Σ2))),→ 

so the restriction map H∗(BG) → H∗(Σ2 × Σ2) vanishes on them. Thus Corollary 4 really gives a complete 
description of the restriction map H∗(BG) H∗(Σ2 × Σ2). Rewriting this information in terms of the dual 
bases, we obtain the following result: 

→ 

Corollary 5. The inclusion j : Σ2 × Σ2 → G induces a map on homology 

H∗(Σ2 × Σ2) → H∗(G) 

which is described by the formula 

xp ⊗ xq �→ (p − 2l, l) Sq
−q−l 

xp−l. 
l 

We are now ready to complete the calculation of the last lecture. Recall that we need to show that for 
p, q > 0, the homology classes � 

(p − 2l, l) Sq
−q−l 

xp−l ∈ Hp+q(BG) 
l 
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(q − 2l�, l�) Sq

−p−l� 

xq−l� ∈ Hp+q(BG) 
l� 

have the same image in H (BΣ4). Invoking Corollary 5, we see that it suffices to show that under the induced ∗
inclusion 

Σ2 × Σ2 → Σ4, 

the homology classes xp ⊗ xq, xq ⊗ xp ∈ Hp+q(B(Σ2 × Σ2)) have the same image in Hp+q (BΣ4). These two 
homology classes conjugate by the involution which permutes the two factors in the product Σ2 ×Σ2. We now 
observe that this involution is the restriction of an inner automorphism of Σ4, and that inner automorphisms 
of a group H act trivially on the homology H (BH).∗
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