MIT OpenCourseWare
http://ocw.mit.edu

### 18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Steenrod Operations (Lecture 2)

The objective of today's lecture is to introduce the Steenrod operations and establish some of their basic properties. We will work over the finite field $\mathbf{F}_{2} \simeq \mathbf{Z} / 2 \mathbf{Z}$ with two elements.

To this end, we will study the homotopy theory of cochain complexes

$$
\ldots \rightarrow V^{n-1} \xrightarrow{d_{n-1}} V^{n} \xrightarrow{d_{n}} V^{n+1} \rightarrow \ldots
$$

in the category of $\mathbf{F}_{2}$-vector spaces. We will refer to these objects simply as complexes. To each complex $V$ we can associate cohomology groups

$$
\mathrm{H}^{n} V=\operatorname{ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n-1}\right)
$$

Remark 1. It is possible to take a more sophisticated point of view: we can identify cochain complexes $V$ over the field $\mathbf{F}_{2}$ with module spectra over $\mathbf{F}_{2}$. The cohomology groups $\mathrm{H}^{n}(V)$ should then be viewed as the homotopy groups $\pi_{-n}$ of the corresponding spectra.

Given a pair of $\mathbf{F}_{2}$-module spectra $V$ and $W$, we can form their tensor product $V \otimes W$. This is given by the usual tensor product of complexes of vector spaces:

$$
(V \otimes W)^{n}=\oplus_{n=n^{\prime}+n^{\prime \prime}} V^{n^{\prime}} \otimes W^{n^{\prime \prime}}
$$

with the usual differential (note that, since we are working over the field $\mathbf{F}_{2}$, we do not even have to worry about signs). In particular, we can form the tensor powers

$$
V^{\otimes n}=V \otimes V \otimes \ldots \otimes V
$$

of a fixed $\mathbf{F}_{2}$-module spectrum. The tensor power $V^{\otimes n}$ inherits a natural action of the symmetric group $\Sigma_{n}$, by permuting the tensor factors.

One of the most important examples of an $\mathbf{F}_{2}$-module spectrum is the cochain complex

$$
C^{*}\left(X ; \mathbf{F}_{2}\right)
$$

of a topological space $X$. The cohomology groups of this $\mathbf{F}_{2}$-module spectrum are simply the cohomology groups of $X$. The cohomology $\mathrm{H}^{*}\left(X ; \mathbf{F}_{2}\right)$ has the structure of a graded commutative ring. The multiplication on $\mathrm{H}^{*}\left(X ; \mathbf{F}_{2}\right)$ arises from a multiplication which exists on the cochain complex $C^{*}\left(X ; \mathbf{F}_{2}\right)$. Namely, we can consider the composition

$$
C^{*}\left(X ; \mathbf{F}_{2}\right) \otimes C^{*}\left(X ; \mathbf{F}_{2}\right) \rightarrow C^{*}\left(X \times X ; \mathbf{F}_{2}\right) \rightarrow C^{*}\left(X ; \mathbf{F}_{2}\right)
$$

Here the first map is the classical Alexander-Whitney morphism, and the second is given by pullback along the diagonal inclusion $X \rightarrow X \times X$. The Alexander-Whitney map is not compatible with the action of the symmetric group $\Sigma_{2}$ on the two sides. Consequently, the resulting multiplication

$$
m: C^{*}\left(X ; \mathbf{F}_{2}\right) \otimes C^{*}\left(X ; \mathbf{F}_{2}\right) \rightarrow C^{*}\left(X ; \mathbf{F}_{2}\right)
$$

is not commutative until passing to homotopy. The failure of $m$ to be strictly commutative turns out to be a very interesting phenomenon, which is responsible for the existence of Steenrod operations.

In the above situation, the multiplication $m$ is not commutative. However, it does induce a commutative multiplication after passing to cohomology. In fact, more is true: the map $m$ satisfies a symmetry condition up to coherent homotopy. The following definitions allow us to make this idea precise:

Definition 2. Let $V$ be an $\mathbf{F}_{2}$-module spectrum and $n \geq 0$ a nonnegative integer. The $n$th extended power of $V$ is given by the homotopy coinvariants

$$
V_{h \Sigma_{n}}^{\otimes n}
$$

This is a complex which we will denote by $D_{n}(V)$.
Remark 3. In concrete terms, $D_{n}(V)$ may be computed in the following way. Let $M$ denote the vector space $\mathbf{F}_{2}$, with the trivial action of $\Sigma_{n}$. Choose a resolution

$$
\ldots \rightarrow P^{-1} \rightarrow P^{0} \rightarrow M
$$

by free $\mathbf{F}_{2}\left[\Sigma_{n}\right]$-modules. We let $E \Sigma_{n}$ denote the complex $P^{\bullet}$. (We can think of $E \Sigma_{n}$ as a contractible complex with a free action of $\Sigma_{n}$.) The extended power $D_{n}(V)$ of a complex $V$ can then be identified with the ordinary coinvariants

$$
\left(V^{\otimes n} \otimes E \Sigma_{n}\right)_{\Sigma_{n}}
$$

Definition 4. Let $V$ be a complex. A symmetric multiplication on $V$ is a map

$$
D_{2}(V) \rightarrow V .
$$

Example 5. If $X$ is any topological space, then the cochain complex $C^{*}\left(X ; \mathbf{F}_{2}\right)$ can be endowed with a symmetric multiplication. If $X$ is equipped with a base point $*$, then the reduced cochain complex $C^{*}\left(X, * ; \mathbf{F}_{2}\right)$ also inherits a symmetric multiplication.

Example 6. Let $X$ be an infinite loop space. Then the chain complex $C_{*}\left(X ; \mathbf{F}_{2}\right)$ can be endowed with a symmetric multiplication.

Examples 5 and 6 are really special cases of the following:
Example 7. Let $A$ be an $E_{\infty}$-algebra over the field $\mathbf{F}_{2}$. Then $A$ has an underlying $\mathbf{F}_{2}$-module spectrum, which is equipped with a symmetric multiplication.

Our goal in this lecture is to study the consequences of the existence of a symmetric multiplication on a complex $V$.

Notation 8. Let $n$ be an integer. We let $\mathbf{F}_{2}[-n]$ denote the complex which consists of a 1-dimensional vector space in cohomological degree $n$, and zero elsewhere. Let $e_{n}$ denote a generator for the $\mathbf{F}_{2}$-vector space $\mathrm{H}^{n} \mathbf{F}_{2}[-n]$, so we have isomorphisms

$$
\mathrm{H}^{k} \mathbf{F}_{2}[-n] \simeq \begin{cases}\mathbf{F}_{2} e_{n} & \text { if } k=n \\ 0 & \text { otherwise }\end{cases}
$$

Our first goal is to describe the extended squares of complexes of the form $\mathbf{F}_{2}[-n]$. This is easy: we observe that $\mathbf{F}_{2}[-n]^{\otimes 2}$ is isomorphic to $\mathbf{F}_{2}[-2 n]$, with the symmetric group $\Sigma_{2}$ acting trivially (since we are working in characteristic 2 , there are no signs to worry about). Consequently, we can identify $D_{2}\left(\mathbf{F}_{2}[-n]\right)$ with the tensor product

$$
\mathbf{F}_{2}[-2 n] \otimes\left(E \Sigma_{2}\right)_{\Sigma_{2}} .
$$

The second tensor factor can be identified with the chain complex of the space $B \Sigma_{2} \simeq \mathbf{R} P^{\infty}$. Consequently, we get canonical isomorphisms

$$
\mathrm{H}^{k}\left(D_{2}\left(\mathbf{F}_{2}[-n]\right) \simeq \mathrm{H}_{2 n-k}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) e_{2 n}\right.
$$

We now recall the structure of the homology and cohomology of the space $B \Sigma_{2} \simeq \mathbf{R} P^{\infty}$. There is a (unique) isomorphism

$$
\mathrm{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right) \simeq \mathbf{F}_{2}[t]
$$

where the polynomial generator $t$ lies in $\mathrm{H}^{1}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right)$. We have a dual description of the homology $\mathrm{H}_{*}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right)$ : this is just a one-dimensional vector space in each degree $m$, with a unique generator which we will denote by $x_{m}$.

Definition 9. Let $V$ be a complex, and let $v \in \mathrm{H}^{n} V$, so that $v$ determines a homotopy class of maps

$$
\eta: \mathbf{F}_{2}[-n] \rightarrow V
$$

For $i \leq n$, we let

$$
\overline{\mathrm{Sq}}^{i}(v) \in \mathrm{H}^{n+i} D_{2}(V)
$$

denote the image of

$$
x_{n-i} \otimes e_{2 n} \in \mathrm{H}_{n-i}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right) e_{2 n} \simeq \mathrm{H}^{n+i} D_{2}\left(\mathbf{F}_{2}[n]\right)
$$

under the induced map

$$
D_{2}\left(\mathbf{F}_{2}[-n]\right) \xrightarrow{D_{2}(\eta)} D_{2}(V) .
$$

By convention, we will agree that $\overline{\mathrm{Sq}}^{i}(v)=0$ for $i>n$.
If $V$ is equipped with a symmetric multiplication $D_{2}(V) \rightarrow V$, we let $\mathrm{Sq}^{i}(v)$ denote the image of $\overline{\mathrm{Sq}}^{i}(v)$ under the induced map

$$
\mathrm{H}^{n+i} D_{2}(V) \rightarrow \mathrm{H}^{n+i} V .
$$

The operations $\mathrm{Sq}^{i}: \mathrm{H}^{*} V \rightarrow \mathrm{H}^{*+i} V$ are called the Steenrod operations, or Steenrod squares.
Example 10. Let $V$ be an $\mathbf{F}_{2}$-module spectrum equipped with a symmetric multiplication, and let $v \in \mathrm{H}^{n} V$. Then $\mathrm{Sq}^{n}(v) \in \mathrm{H}^{2 n} V$ is simply the image of $v \otimes v$ under the composite map

$$
V \otimes V \rightarrow D_{2}(V) \rightarrow V
$$

In other words, $\mathrm{Sq}^{n}$ acts on $\mathrm{H}^{n} V$ by simply "squaring" the elements with respect to the multiplication on $V$. This is why the operations $\mathrm{Sq}^{i}$ are called "Steenrod squares".

Example 11. Let $X$ be a topological space, and let $V=C^{*}\left(X ; \mathbf{F}_{2}\right)$ be the cochain complex of $X$, equipped with its usual symmetric multiplication. Then Definition 9 yields operations

$$
\mathrm{Sq}^{i}: \mathrm{H}^{n}\left(X ; \mathbf{F}_{2}\right) \rightarrow \mathrm{H}^{n+i}\left(X ; \mathbf{F}_{2}\right)
$$

These are the usual Steenrod operations.
Remark 12. The operations $v \mapsto \overline{\mathrm{Sq}}^{i} v$ completely account for the cohomology groups of any extended square $D_{2}(V)$. More precisely, let us suppose that $V$ is an $\mathbf{F}_{2}$-module spectrum, and that $\left\{v_{i}\right\}_{i \in I}$ is an ordered basis for $\pi_{*} V$, where $v_{i} \in \mathrm{H}^{n_{i}} V$. Then the collection

$$
\left\{v_{i} v_{j}\right\}_{i<j} \cup\left\{\mathrm{Sq}^{n} v_{i}\right\}_{n \leq n_{i}}
$$

is a basis for $\pi_{*} D_{2}(V)$. The proof of this is easy. Using the fact that $D_{2}$ commutes with filtered colimits, we can reduce to the case where only finitely many generators are involved. We then work by induction, using the formula

$$
D_{2}(V \oplus W) \simeq(V \oplus W)_{h \Sigma_{2}}^{\otimes 2} \simeq V_{h \Sigma_{2}}^{\otimes 2} \oplus(V \otimes W) \oplus W_{h \Sigma_{2}}^{\otimes 2}
$$

to reduce to the case of a single basis vector. The result is then obvious.

Proposition 13. The Steenrod squares are additive operations. Let $V$ be a complex, and let $v, v^{\prime} \in \mathrm{H}^{n} V$. Then, for each integer $k$, we have

$$
\overline{\mathrm{Sq}}^{k}\left(v+v^{\prime}\right)=\overline{\mathrm{Sq}}^{k}(v)+\overline{\mathrm{Sq}}^{k}\left(v^{\prime}\right) \in \mathrm{H}^{n+k} D_{2}(V)
$$

In particular, if $V$ is equipped with a symmetric multiplication, we have

$$
\mathrm{Sq}^{k}\left(v+v^{\prime}\right)=\mathrm{Sq}^{k}(v)+\mathrm{Sq}^{k}\left(v^{\prime}\right) \in \mathrm{H}^{n+k} V
$$

Proof. If $k>n$, then both sides are zero and there is nothing to prove. If $k=n$, then

$$
\overline{\mathrm{Sq}}^{k}\left(v+v^{\prime}\right)=\left(v+v^{\prime}\right)^{2}=\overline{\mathrm{Sq}}^{k}(v)+\overline{\mathrm{Sq}}^{k}\left(v^{\prime}\right)+\left(v v^{\prime}+v^{\prime} v\right) .
$$

Since the multiplication map

$$
V \otimes V \rightarrow D_{2}(V)
$$

is commutative on the level of homotopy, we have $v v^{\prime}+v^{\prime} v=2 v v^{\prime}=0$.
Now suppose that $k<n$. By functoriality, it will suffice to treat the universal case where $V \simeq \mathbf{F}[-n] \oplus$ $\mathbf{F}[-n]$. Using Remark 12, we observe that the canonical map

$$
\mathrm{H}^{m} D_{2}(V) \rightarrow \mathrm{H}^{m} D_{2}\left(\mathbf{F}_{2}[-n]\right) \times \mathrm{H}^{m} D_{2}\left(\mathbf{F}_{2}[-n]\right)
$$

is injective for $m<2 n$. We may therefore reduce to the case where either $v$ or $v^{\prime}$ vanishes, in which case the result is obvious.

