18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

The Krull Filtration (Lecture 37)

Let A be a commutative Noetherian ring. Recall that the *Zariski spectrum* Spec A is defined to be the set of all prime ideals $\{\mathfrak{p} \subseteq A\}$. Let Mod_A denote the category of A-modules. It is possible to recover Spec A directly from the category Mod_A . For this, we need to recall a few definitions and facts:

Definition 1. Let \mathcal{C} be a Grothendieck abelian category. An object $X \in \mathcal{C}$ is *Noetherian* if every ascending chain of subobjects of X eventually stabilizes. We say that \mathcal{C} is *locally Noetherian* if every object of \mathcal{C} is the direct limit of its Noetherian subobjects.

An object $I \in \mathcal{C}$ is *injective* if the functor $M \mapsto \operatorname{Hom}_{\mathcal{C}}(M, I)$ is exact. We say that an injective object I is *indecomposable* if, whenever I is written as a direct sum $I \simeq I' \oplus I''$, either I' or I'' is zero.

Let $X \in \mathcal{C}$ be an object. An *injective hull* of X is a monomorphism $X \to I$ such that I is injective, and every nonzero subobject $I' \subseteq I$ satisfies $I' \times_I X \neq 0$.

Proposition 2. Let C be a locally Noetherian abelian category. Then:

- (1) Every object $M \in \mathcal{C}$ admits an injective hull $M \to I$. Moreover, I is uniquely determined up to (noncanonical) isomorphism. If M is simple, then I is indecomposable.
- (2) Every direct sum $\oplus_{\alpha} I_{\alpha}$ of injective objects is injective.
- (3) Every injective object $I \in \mathbb{C}$ can be obtained as a direct sum $\bigoplus_{\alpha} I_{\alpha}$, where each summand I_{α} is an indecomposable injective.

This motivates the following definition:

Definition 3. Let \mathcal{C} be a locally Noetherian abelian category. Then we let Spec \mathcal{C} denote the collection of all isomorphism classes of indecomposable injective objects of \mathcal{C} .

Remark 4. A priori, the collection Spec \mathcal{C} might be very large, since \mathcal{C} has a proper class of injective objects. However, if I is an indecomposable injective object of \mathcal{C} , then I can be regarded as the injective hull of any nonzero submodule $I_0 \subseteq I$. In particular, I can be regarded as the injective hull of a Noetherian object of \mathcal{C} . It follows that Spec \mathcal{C} is actually a set.

Example 5. Let A be a Noetherian ring. Then there is a canonical bijection

$$\operatorname{Spec} A \to \operatorname{Spec} \operatorname{Mod}_A$$

which carries a prime ideal $\mathfrak{p} \subseteq A$ to the injective hull of the A-module A/\mathfrak{p} .

For example, if $A = \mathbf{Z}$, then the indecomposable injective objects of Mod_A are precisely the abelian groups \mathbf{Q} and $\mathbf{Z}[\frac{1}{n}]/\mathbf{Z}$, where p is a prime number.

Example 6. Let \mathcal{U} denote the category of unstable Steenrod modules. The simple objects of \mathcal{U} are precisely the modules $\Sigma^k \mathbf{F}_2$, where $k \ge 0$. The injective hull of $\Sigma^k \mathbf{F}_2$ can be identified with the Brown-Gitler module J(k).

If A is a Noetherian ring, then Spec A has a good deal more structure than just that of a set. For example, we can (at least in good cases) assign a *Krull dimension* to every point of Spec A. The points of Krull dimension zero correspond to the maximal ideals of A. Note that the collection of maximal ideals of A can be described very simply in terms of Mod_A : they are isomorphism classes of simple objects of Mod_A (more precisely, an A-module M is simple if and only if it is isomorphic to a quotient A/\mathfrak{m} , where \mathfrak{m} is a maximal ideal of A). Therefore, the corresponding points of Spec Mod_A are precisely the injective hulls of the simple objects of A. We now wish to generalize this picture to more general categories.

Definition 7. Let \mathcal{C} be a locally Noetherian abelian category. Then $\operatorname{Krull}^{0}(\mathcal{C})$ is the smallest Serre class in \mathcal{C} which contains every simple object in \mathcal{C} .

Remark 8. If $\mathcal{C} \neq 0$, then Krull⁰(\mathcal{C}) $\neq 0$. In other words, \mathcal{C} contains a simple object. To prove this, choose a nonzero object $M \in \mathcal{C}$. Since \mathcal{C} is locally Noetherian, M is the union of its Noetherian subobjects. We may therefore assume that M is Noetherian. Let M_0 be a maximal proper submodule of M. Then M/M_0 is a simple object of \mathcal{C} .

Proposition 9. Let C be a locally Noetherian abelian category, and let I be an injective object of C. Then exactly one of the following statements holds:

- (1) The object I is the injective hull of a simple object $C \in \mathfrak{C}$ (which is then determined up to isomorphism).
- (2) The object I belongs to $\mathcal{C} / \operatorname{Krull}^{0}(\mathcal{C})$ (and is injective as an object of $\mathcal{C} / \operatorname{Krull}^{0}(\mathcal{C})$).

Proof. Let $\mathcal{C}_0 = \{C \in \mathcal{C} : \operatorname{Hom}_{\mathcal{C}}(C, I) = 0\}$. Since I is injective, \mathcal{C}_0 is a Serre class in \mathcal{C} .

By definition, I belongs to $\mathbb{C} / \operatorname{Krull}^{0}(\mathbb{C})$ if and only if, for every object $C \in \operatorname{Krull}^{0}(\mathbb{C})$, we have $\operatorname{Hom}_{\mathbb{C}}(C, I) = \operatorname{Ext}_{\mathbb{C}}(C, I) = 0$. The second equality is automatic, since I is injective, and the first is equivalent to the assertion that $C \in \mathbb{C}_{0}$. In other words, $I \in \mathbb{C} / \operatorname{Krull}^{0}(\mathbb{C})$ if and only if $\operatorname{Krull}^{0}(\mathbb{C}) \subseteq \mathbb{C}_{0}$. Consequently, (2) holds if and only if $\operatorname{Hom}_{\mathbb{C}}(C, I) = 0$ for every simple object $C \in \mathbb{C}$.

Suppose that (2) does not hold, and choose a nonzero map $f: C \to I$ where C is simple. Then f must be a monomorphism. Choose an injective hull $C \subseteq I'$. Since I is injective, we can extend f to a map $\overline{f}: I' \to I$. Since $\ker(\overline{f}) \cap C \simeq \ker(f) \simeq 0$, we deduce that \overline{f} is injective. Since I' is injective, the injective map \overline{f} splits and we get an isomorphism $I \simeq I' \oplus I''$. Since I is indecomposable, $I'' \simeq 0$ so that \overline{f} is an isomorphism. This proves (1), except for the uniqueness of C. To establish the uniqueness, we note that given injective maps

$$C \hookrightarrow I \hookleftarrow D$$
,

the intersection $C \times_I D$ can be regarded as a nonzero submodule of both C and D. If C and D are simple, this gives isomorphisms

$$C \leftarrow C \times_I D \hookrightarrow D.$$

This motivates the following definition:

Definition 10. Let \mathcal{C} be a Grothendieck abelian category. For each n > 0, we let $\operatorname{Krull}^{n}(\mathcal{C})$ denote the inverse image of $\operatorname{Krull}^{0}(\mathcal{C} / \operatorname{Krull}^{n-1}(\mathcal{C}))$ under the localization functor

$$L: \mathcal{C} \to \mathcal{C} / \operatorname{Krull}^{n-1}(\mathcal{C}).$$

We will say that an indecomposable injective $I \in \text{Spec } \mathcal{C}$ has *Krull dimension* > n if I belongs to $\mathcal{C} / \text{Krull}^n \mathcal{C}$.

We have a filtration of \mathcal{C} by Serre classes

$$\operatorname{Krull}^0(\mathfrak{C}) \subseteq \operatorname{Krull}^1(\mathfrak{C}) \subseteq \operatorname{Krull}^2(\mathfrak{C}) \subseteq \dots$$

By construction, each of the successive quotients $\operatorname{Krull}^{n+1}(\mathcal{C})/\operatorname{Krull}^n(\mathcal{C})$ is generated by simple objects.

Remark 11. If A is a well-behaved commutative ring (such as a finitely generated algebra over a field), then the Krull filtration above is *finite*: we have $\operatorname{Krull}^n(\operatorname{Mod}_A) = \operatorname{Mod}_A$ as soon as $n \ge \dim(A)$. In general, the filtration need not terminate nor exhaust \mathcal{C} (to obtain the whole of \mathcal{C} , one needs to define an analogous filtration indexed by the ordinals).

We wish to study the Krull filtration on the abelian category \mathcal{U} of unstable \mathcal{A} -modules. We begin by determining Krull⁰(\mathcal{A}).

Definition 12. An unstable \mathcal{A} -module M is *locally finite* if, for each $x \in M$, the cyclic submodule $\mathcal{A} x \subseteq M$ has finite dimension over \mathbf{F}_2 .

Proposition 13. An unstable \mathcal{A} -module M belongs to $\operatorname{Krull}^{0}(\mathcal{U})$ if and only if M is locally finite.

Proof. We first observe that the collection of locally finite A-modules forms a Serre class in \mathcal{U} . Consequently, to prove the "only if" direction it will suffice to show that every simple A-module is locally finite. This follows from the characterization of simple objects given in Remark ??.

For the converse, let us suppose that M is locally finite. We wish to prove that $M \in \text{Krull}^0(\mathcal{U})$. Write M as the union of its finitely generated submodules M_{α} . Since $\text{Krull}^0(\mathcal{U})$ is a Serre class, it will suffice to show that each M_{α} belongs to $\text{Krull}^0(\mathcal{U})$. Since M is locally finite, each M_{α} is finite dimensional over \mathbf{F}_2 . We may therefore assume that M has finite dimension over \mathbf{F}_2 . We now work by induction on the dimension of M. Let x be a nonzero element of M of maximal degree k. Then x determines an exact sequence

$$0 \to \Sigma^k \mathbf{F}_2 \to M \to M' \to 0.$$

By construction, we have $\Sigma^k \mathbf{F}_2 \in \mathrm{Krull}^0(\mathcal{U})$, and $M' \in \mathrm{Krull}^0(\mathcal{U})$ by the inductive hypothesis. It follows that $M \in \mathrm{Krull}^0(\mathcal{U})$, as desired.

We now wish to give another characterization of $\operatorname{Krull}^{0}(\mathcal{U})$, this time using Lannes' *T*-functor. We first observe that $\operatorname{H}^{*}(B\mathbf{F}_{2})$ canonically decomposes as a direct sum $\mathbf{F}_{2} \oplus \operatorname{H}^{*}_{\operatorname{red}}(B\mathbf{F}_{2})$. Consequently, we get a canonical isomorphism of functors

$$(\bullet \otimes \mathrm{H}^*(B\mathbf{F}_2)) \simeq \bullet \oplus (\bullet \otimes \mathrm{H}^*_{\mathrm{red}}(B\mathbf{F}_2)).$$

Passing to adjoints, we get a decomposition of functors

$$T \simeq \mathrm{id} \oplus \overline{T}$$

from the category \mathcal{U} to itself. Moreover, formal properties of T are inherited by \overline{T} : for example, since T is exact and commutes with suspension and Φ , we deduce that \overline{T} is exact and commutes with suspension and Φ .

Proposition 14. Let M be an unstable A-module. Then $M \in \operatorname{Krull}^0(\mathfrak{U})$ if and only if $\overline{T}M = 0$.

Proof. The "only if" direction is easy: let $\mathbb{C} = \{M \in \mathcal{U} : \overline{T}M = 0\}$. Then \mathbb{C} is a Serre class in \mathcal{U} . To show that $\mathrm{Krull}^0(\mathcal{U}) \subseteq \mathbb{C}$, it suffices to show that every simple object $\Sigma^k \mathbf{F}_2$ belongs to \mathbb{C} . Since \overline{T} commutes with suspensions, it suffices to show that $\overline{T}\mathbf{F}_2$ vanishes. This is equivalent to the assertion that $T\mathbf{F}_2 \simeq \mathbf{F}_2$, which was established in an earlier lecture.

The converse is much more difficult to prove. It relies on the following classification of the injective objects of \mathcal{U} :

Theorem 15. Every indecomposable injective object of U appears as a summand of $J(m) \otimes (\operatorname{H}^*_{red}(B\mathbf{F}_2))^{\otimes n}$ for some integers m and n.

Let us assume Theorem 15 and complete the proof. Let $M \in \mathcal{U}$ be such that $\overline{T}M = 0$. We wish to show that $M \in \mathrm{Krull}^0(\mathcal{U})$. Equivalently, we wish to show that the localization functor $L : \mathcal{U} \to \mathcal{U} / \mathrm{Krull}^0(\mathcal{U})$ annihilates M. If not, there exists a nonzero map $\eta \in \mathrm{Hom}(LM, I) \simeq \mathrm{Hom}(M, I)$, where I is an indecomposable injective of $\mathcal{U} / \text{Krull}^0(\mathcal{U})$. According to Proposition 9, we can identify I with an indecomposable injective of \mathcal{U} which is *not* the injective hull of a simple object (in other words, I is not isomorphic to a Brown-Gitler module J(m)). Invoking Theorem 15, we get a nonzero map

$$M \to J(m) \otimes \mathrm{H}^*_{\mathrm{red}}(B\mathbf{F}_2)^{\otimes r}$$

for some n > 0. This is adjoint to a nonzero map $\overline{T}^n M \to J(m)$, so that $\overline{T}M \neq 0$.

We now extend the previous result to describe each step of the Krull filtration.

Proposition 16. Let M be an unstable A-module. Then $M \in \text{Krull}^n(\mathfrak{U})$ if and only if $\overline{T}^{n+1}M \simeq 0$.

Proof. The proof goes by induction on n, the case n = 0 being Proposition 14. Suppose first that $\overline{T}^{n+1}M \simeq 0$. We wish to prove that $M \in \operatorname{Krull}^n(\mathcal{U})$. Writing M as the union of its finitely generated submodules, we may reduce to the case where M is finitely generated. Let $L : \mathcal{U} \to \mathcal{U} / \operatorname{Krull}^{n-1}(\mathcal{U})$ be the localization functor. We wish to show that LM belongs to $\operatorname{Krull}^0(\mathcal{U} / \operatorname{Krull}^{n-1}(\mathcal{U}))$. For this, we will show that LM has finite length in $\mathcal{U} / \operatorname{Krull}^{n-1} \mathcal{U}$.

By the inductive hypothesis, the functor \overline{T}^n factors as a composition

$$\mathfrak{U} \xrightarrow{L} \mathfrak{U} / \operatorname{Krull}^{n-1} \mathfrak{U} \xrightarrow{F} \mathfrak{U}.$$

Consequently, for any subobject $N \subseteq LM$, we can identify FN with a subobject of $\overline{T}^n M$. Note that $\overline{T}^n M$ is locally finite (by Proposition 14) and finitely generated (since \overline{T} preserves finitely generated objects), and therefore finite dimensional. Thus there are only finitely many possibilities for the subobject $FN \subseteq \overline{T}^n M$. But if $FN = FN' \subseteq \overline{T}^n M$, then the inclusions

$$N \hookleftarrow N \cap N' \hookrightarrow N'$$

induce isomorphisms

$$FN \longleftrightarrow F(N \cap N') \hookrightarrow FN'.$$

Using the inductive hypothesis, we deduce that $N = N \cap N' = N'$. Thus, there are only finitely many subobjects of $LM \in \mathcal{U}/\operatorname{Krull}^{n-1}\mathcal{U}$, so that LM has finite length.

We now prove the reverse inclusion: $\operatorname{Krull}^{n}(\mathcal{U}) \subseteq \{M : \overline{T}^{n+1}M \simeq 0\}$. As before, the right side is a Serre class, to it will suffice to show that $\overline{T}^{n+1}M = 0$ whenever LM is a simple object of $\mathcal{U}/\operatorname{Krull}^{n-1}(\mathcal{U})$. We have a sequence of surjective maps

$$M \to \Sigma \Omega M \to \Sigma^2 \Omega^2 M \to \dots$$

whose colimit is zero. Since LM is simple, we conclude that there exists an integer k such that the map

$$LM \to L\Sigma^k \Omega^k M$$

is an isomorphism and $L\Sigma^{k+1}\Omega^{k+1}M = 0$. We then have isomorphisms

$$\overline{T}^n M \to \overline{T}^n \Sigma^k \Omega^k M \simeq \Sigma^k \overline{T}^n \Omega^k M$$

Moreover, the inductive hypothesis implies that Σ and Ω induce adjoint functors on the localized category $\mathcal{U}/\mathrm{Krull}^{n-1}(\mathcal{U})$; it is not difficult to deduce from this that $L\Omega^k M$ is again simple. We may therefore replace M by $\Omega^k M$, and thereby assume that $L\Sigma\Omega M \simeq 0$.

Consider the exact sequence

$$\Phi M \to M \to \Sigma \Omega M \to 0.$$

This gives rise to an exact sequence of localizations

$$L\Phi M \xrightarrow{\alpha} LM \rightarrow L\Sigma \Omega M \rightarrow 0$$

in the category $\mathcal{U}/\mathrm{Krull}^{n-1}(\mathcal{U})$. Since LM is simple and the last term vanishes, we conclude that α is an epimorphism.

Applying the functor F, we get an epimorphism $\overline{T}^n \Phi M \to \overline{T}^n M$. Let $N = \overline{T}^n M$. Since Φ commutes with \overline{T} , we deduce that the canonical map $\Phi N \to N$ is *surjective*. It then follows by induction on m that $N^m \simeq 0$ for m > 0. In other words, N is concentrated in degree zero, and is a direct sum of copies of \mathbf{F}_2 . It follows that $0 \simeq \overline{T}N \simeq \overline{T}^{n+1}M$, as desired. \Box