
MIT OpenCourseWare 
http://ocw.mit.edu 

18.917 Topics in Algebraic Topology: The Sullivan Conjecture 
Fall 2007 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


T and the Cohomology of Spaces (Lecture 25)


In the last lecture, we showed that if G denotes the forgetful functor from the category of E -algebras ∞
over F2 to spectra, then R = Map(G, G) is an A -ring spectrum whose homotopy groups π∗R form a graded ∞
ring, isomorphic to a suitable completion of the big Steenrod algebra ABig. 

Remark 1. If A is an E -algebra over F2, then A is in particular an F2-module, so that F2 acts on the ∞
underlying spectrum of A. This construction is functorial in A, and so gives rise to a map of A -algebras ∞
from F2 into R. This map is not central. That is, R is an A -ring spectrum, but it cannot be regarded as ∞
an A -algebra over the ring F2.∞

This result has an analogue for the ordinary Steenrod algebra. More precisely, let R� = Map(F2, F2) 
be the A -algebra of endomorphisms of the Eilenberg-MacLane spectrum HF2. Then R� can be identified ∞
with the homotopy inverse limit of reduced cochain complexes 

proj lim C
∗
(K(F2, n); F2)[n], 

so we get short exact sequences 

1 
0 lim{Hn+k+1 K(F2, n)} → π−kR� lim{Hn+k K(F2, n)} → 0.→ → 

Using the same argument as in the previous lecture, we deduce that the lim1-term vanishes, and the right 
hand side can be identified with the inverse limit of vector spaces having basis {SqI µn}, where I ranges over 
positive admissible monomials of degree k and excess ≤ n. This sequence of vector spaces stabilizes, since 
every positive admissible sequence I = (i1, . . . , im) has excess i1 − i2 − . . . − im ≤ i1 + i2 + . . . + im = deg(I). 
Passing to the inverse limit, we get an isomorphism of graded rings 

π∗R
� � A . 

By construction, R acts on the underlying spectrum of every E -algebra over F2. In particular, R acts∞
on F2 itself, via a map R R� which induces, on the level of homotopy groups, the canonical surjection 
ABig A. 

→ 
→

We now turn to the real goal of this lecture. Let X be a topological space, and V a finite dimensional 
vector space over F2. We have a canonical evaluation map 

XBV × BV X→ 

which induces on cohomology a map 

H∗ X → H∗(XBV × BV ) � H∗ XBV ⊗ H∗ BV. 

This is adjoint to a map 
θX : TV H∗ X H∗ XBV → 

of unstable A-algebras. We will prove: 
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Theorem 2. Suppose that X is a 2-finite space. Then the map θX is an isomorphism. 

Remark 3. If X is 2-finite, then any mapping space XBV is again 2-finite. To see this, we first use induction 
on V to reduce to the case where V � F2. Choose a filtration X � Xm → . . . → X0 � ∗, where each map is 
a fibration whose fiber is an Eilenberg-MacLane space K(F2, n). Then we have an induced filtration 

XBF2 � XBF2 XBF2 
m → . . . 0→ � ∗, 

and each map is a fibration whose fiber is a generalized Eilenberg-MacLane space K(F2, n) × K(F2, n − 1) × 
. . . × K(F2, 0) (and in particular 2-finite). 

We have already proven Theorem 2 in the case where V = F2 and X is an Eilenberg-MacLane space 
K(F2, n). It follows, by induction on the dimension of V , that Theorem 2 holds in general when X = 
K(F2, n). (It is also possible to prove this by repeating the original argument.) 

If X is a disjoint union of path components Xα (necessarily finite in number), then θX can be identified 
with the product of the maps θXα . Therefore, to prove Theorem 2 it suffices to treat the case where X is 
path connected. In this case, we have seen that X admits a finite filtration 

X � Xm → Xm−1 → . . . → X0 � ∗ 

where each Xi+1 is a principal fibration over Xi with fiber K(F2, ni). We will prove that each θXi is an 
isomorphism, using induction on i: the case i = 0 is obvious. To handle, the inductive step, we study the 
homotopy pullback square 

Xi+1 �� ∗ 

Xi 
�� K(F2, ni + 1). 

It will suffice to prove the following: 

Proposition 4. Suppose given a homotopy pullback diagram 

X � �� X 

Y � �� Y 

of 2-finite spaces. If θX , θY , and θY � are isomorphisms, then so is θX� . 

We begin with a few general remarks. Let A be an E -algebra over F2, and let M and N be a pair of∞
A-modules. The relative tensor product M ⊗A N is defined to be the geometric realization of a simplicial 
spectrum BA(M,N), with • 

BA(M,N) = M ⊗ A ⊗ . . . ⊗ A ⊗ Nn 

(here the factor A appears n-times, and all tensor products are taken over F2). 
For any simplicial spectrum X •, the homotopy groups of the geometric realization |X •| can be computed 

by means of a spectrum sequence with E1 term given by 

Ep,q = πpXq.1 

If R is an A -algebra, and X is a simplicial R-module spectrum, then this spectral sequence is a spectral∞ • 

sequence of π∗R-modules: that is, for each 1 ≤ r ≤ ∞ we have maps 

Er
p,q ⊗ πp� R → Er

p+p�,q 
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which exhibit each Er 
∗,q as a module over π∗R, and the differentials are compatible with this module structure. 

In particular, suppose that A is an E -algebra over F2, and that M and N are E -algebras over A.∞ ∞
Then the simplicial object Bn

A(M,N) is a simplicial E -algebra over F2, and in particular a simplicial R∞
module, where R is the ring spectrum studied in the previous lecture. It follows that the homotopy groups 
π (M ⊗A N) can be computed by a spectral sequence {Ep,q, dr} satisfying the following:r∗

(a) Each Er 
∗,q is a module over the big Steenrod algebra ABig. 

(b) Each differential dr is compatible with the action of ABig. 

(c) Each E1 
∗,q is isomorphic (as an ABig-module) to the tensor product


π∗M ⊗ π∗A ⊗ . . . ⊗ π∗A ⊗ π∗N,


where the factor π∗A occurs q times.


We now return to the situation of Proposition 4. The convergence result of the previous lecture guarantees 
that the natural map 

C∗Y � ⊗C∗Y C
∗X → C∗X � 

is an equivalence. It follows that H∗ X � can be computed by a spectral sequence {Ep,q, dr} satisfyingr 
conditions (a) and (b), with 

E−∗,q = H∗ Y � ⊗ H∗ Y ⊗ . . . ⊗ H∗ Y ⊗ H∗ X.1 

It follows that each of the ABig-modules E1
−∗,q is actually an unstable A-module. Since this condition is 

stable under passage to subquotients, we obtain the following stronger version of condition (a): 

(a�) Each Er 
∗,q is an unstable A-module. 

We have another homotopy pullback diagram 

X �BV �� XBV 

Y �BV �� Y BV , 

which consists of 2-finite spaces in virtue of Remark 3. Applying the same reasoning, we get another spectral 
sequence {E�p,q 

, d�r} satisfying (a�) and (b), withr 

E�−∗,q � H∗ Y �BV ⊗ H∗ Y BV ⊗ . . . ⊗ H∗ Y BV ⊗ H∗ XBV .1 

The evaluation maps ZBV × BV → Z give rise to a collection of maps 

Er 
∗,q → E�∗

r
,q ⊗ H∗ BV. 

Passing to adjoints and using the exactness of TV , we get a map of spectral sequences 

TV E
∗,q E�∗,q 
r → r . 

Since TV is compatible with tensor products, our hypothesis on Y �, Y and X guarantees that these maps 
are isomorphisms when r = 1. It then follows by induction on r that these maps are isomorphisms for all 
r < ∞. For r > q, we have a sequence of surjections 

E∗,q E∗,q 
r r+1 → . . .→ 
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E�∗,q 
E�∗,q


r → r+1 → . . .


Since TV commutes with colimits (being a left adjoint, we conclude by passing to the limit that the map 
TV E

∗,q E�∗,q is an isomorphism.∞ → ∞
We now consider the canonical map 

TV H∗ X � H∗ X �BV 
.→ 

The preceding spectral sequences give increasing filtrations 

0 ⊆ F0 H∗ X � ⊆ F1 H∗ X � ⊆ . . . ⊆ H∗ X � 

0 ⊆ F0 H∗ X �BV ⊆ F1 H∗ X �BV ⊆ . . . ⊆ H∗ X �BV 

by A-submodules. Using the exactness of TV , we get a map of exact sequences 

0 �� TV Fi−1 H∗ X � �� TV Fi H∗ X � �� TV E
∗,i 
∞ 

�� 0 

�� �� ��
0 �� Fi−1 H∗ X �BV �� Fi H∗ X �BV �� E�∗,i �� 0.∞ 

Using induction on i and the snake Lemma, we deduce that each of the maps 

TV Fi H∗ X � Fi H∗ X �BV → 

is an isomorphism. Passing to the limit over i (and using the fact that TV commutes with direct limits), we 
deduce that θX� : TV H∗ X � → H∗ X �BV is an isomorphism, as desired. 
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