MIT OpenCourseWare
http://ocw.mit.edu

### 18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## T and the Cohomology of Spaces (Lecture 25)

In the last lecture, we showed that if $G$ denotes the forgetful functor from the category of $E_{\infty}$-algebras over $\mathbf{F}_{2}$ to spectra, then $R=\operatorname{Map}(G, G)$ is an $A_{\infty}$-ring spectrum whose homotopy groups $\pi_{*} R$ form a graded ring, isomorphic to a suitable completion of the big Steenrod algebra $\mathcal{A}^{\text {Big }}$.

Remark 1. If $A$ is an $E_{\infty}$-algebra over $\mathbf{F}_{2}$, then $A$ is in particular an $\mathbf{F}_{2}$-module, so that $\mathbf{F}_{2}$ acts on the underlying spectrum of $A$. This construction is functorial in $A$, and so gives rise to a map of $A_{\infty}$-algebras from $\mathbf{F}_{2}$ into $R$. This map is not central. That is, $R$ is an $A_{\infty}$-ring spectrum, but it cannot be regarded as an $A_{\infty}$-algebra over the ring $\mathbf{F}_{2}$.

This result has an analogue for the ordinary Steenrod algebra. More precisely, let $R^{\prime}=\operatorname{Map}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)$ be the $A_{\infty}$-algebra of endomorphisms of the Eilenberg-MacLane spectrum $H \mathbf{F}_{2}$. Then $R^{\prime}$ can be identified with the homotopy inverse limit of reduced cochain complexes

$$
\text { proj } \lim \bar{C}^{*}\left(K\left(\mathbf{F}_{2}, n\right) ; \mathbf{F}_{2}\right)[n],
$$

so we get short exact sequences

$$
0 \rightarrow \lim _{\lim }\left\{\mathrm{H}^{n+k+1} K\left(\mathbf{F}_{2}, n\right)\right\} \rightarrow \pi_{-k} R^{\prime} \rightarrow \lim \left\{\mathrm{H}^{n+k} K\left(\mathbf{F}_{2}, n\right)\right\} \rightarrow 0
$$

Using the same argument as in the previous lecture, we deduce that the lim ${ }^{1}$-term vanishes, and the right hand side can be identified with the inverse limit of vector spaces having basis $\left\{\mathrm{Sq}^{I} \mu_{n}\right\}$, where $I$ ranges over positive admissible monomials of degree $k$ and excess $\leq n$. This sequence of vector spaces stabilizes, since every positive admissible sequence $I=\left(i_{1}, \ldots, i_{m}\right)$ has excess $i_{1}-i_{2}-\ldots-i_{m} \leq i_{1}+i_{2}+\ldots+i_{m}=\operatorname{deg}(I)$. Passing to the inverse limit, we get an isomorphism of graded rings

$$
\pi_{*} R^{\prime} \simeq \mathcal{A}
$$

By construction, $R$ acts on the underlying spectrum of every $E_{\infty}$-algebra over $\mathbf{F}_{2}$. In particular, $R$ acts on $\mathbf{F}_{2}$ itself, via a map $R \rightarrow R^{\prime}$ which induces, on the level of homotopy groups, the canonical surjection $\mathcal{A}^{\text {Big }} \rightarrow \mathcal{A}$.

We now turn to the real goal of this lecture. Let $X$ be a topological space, and $V$ a finite dimensional vector space over $\mathbf{F}_{2}$. We have a canonical evaluation map

$$
X^{B V} \times B V \rightarrow X
$$

which induces on cohomology a map

$$
\mathrm{H}^{*} X \rightarrow \mathrm{H}^{*}\left(X^{B V} \times B V\right) \simeq \mathrm{H}^{*} X^{B V} \otimes \mathrm{H}^{*} B V
$$

This is adjoint to a map

$$
\theta_{X}: T_{V} \mathrm{H}^{*} X \rightarrow \mathrm{H}^{*} X^{B V}
$$

of unstable $\mathcal{A}$-algebras. We will prove:

Theorem 2. Suppose that $X$ is a 2-finite space. Then the map $\theta_{X}$ is an isomorphism.
Remark 3. If $X$ is 2-finite, then any mapping space $X^{B V}$ is again 2-finite. To see this, we first use induction on $V$ to reduce to the case where $V \simeq \mathbf{F}_{2}$. Choose a filtration $X \simeq X_{m} \rightarrow \ldots \rightarrow X_{0} \simeq *$, where each map is a fibration whose fiber is an Eilenberg-MacLane space $K\left(\mathbf{F}_{2}, n\right)$. Then we have an induced filtration

$$
X^{B \mathbf{F}_{2}} \simeq X_{m}^{B \mathbf{F}_{2}} \rightarrow \ldots \rightarrow X_{0}^{B \mathbf{F}_{2}} \simeq *
$$

and each map is a fibration whose fiber is a generalized Eilenberg-MacLane space $K\left(\mathbf{F}_{2}, n\right) \times K\left(\mathbf{F}_{2}, n-1\right) \times$ $\ldots \times K\left(\mathbf{F}_{2}, 0\right)$ (and in particular 2-finite).

We have already proven Theorem 2 in the case where $V=\mathbf{F}_{2}$ and $X$ is an Eilenberg-MacLane space $K\left(\mathbf{F}_{2}, n\right)$. It follows, by induction on the dimension of $V$, that Theorem 2 holds in general when $X=$ $K\left(\mathbf{F}_{2}, n\right)$. (It is also possible to prove this by repeating the original argument.)

If $X$ is a disjoint union of path components $X_{\alpha}$ (necessarily finite in number), then $\theta_{X}$ can be identified with the product of the maps $\theta_{X_{\alpha}}$. Therefore, to prove Theorem 2 it suffices to treat the case where $X$ is path connected. In this case, we have seen that $X$ admits a finite filtration

$$
X \simeq X_{m} \rightarrow X_{m-1} \rightarrow \ldots \rightarrow X_{0} \simeq *
$$

where each $X_{i+1}$ is a principal fibration over $X_{i}$ with fiber $K\left(\mathbf{F}_{2}, n_{i}\right)$. We will prove that each $\theta_{X_{i}}$ is an isomorphism, using induction on $i$ : the case $i=0$ is obvious. To handle, the inductive step, we study the homotopy pullback square


It will suffice to prove the following:
Proposition 4. Suppose given a homotopy pullback diagram

of 2-finite spaces. If $\theta_{X}, \theta_{Y}$, and $\theta_{Y^{\prime}}$ are isomorphisms, then so is $\theta_{X^{\prime}}$.
We begin with a few general remarks. Let $A$ be an $E_{\infty}$-algebra over $\mathbf{F}_{2}$, and let $M$ and $N$ be a pair of $A$-modules. The relative tensor product $M \otimes_{A} N$ is defined to be the geometric realization of a simplicial spectrum $B_{\bullet}^{A}(M, N)$, with

$$
B_{n}^{A}(M, N)=M \otimes A \otimes \ldots \otimes A \otimes N
$$

(here the factor $A$ appears $n$-times, and all tensor products are taken over $\mathbf{F}_{2}$ ).
For any simplicial spectrum $X_{\bullet}$, the homotopy groups of the geometric realization $\left|X_{\bullet}\right|$ can be computed by means of a spectrum sequence with $E_{1}$ term given by

$$
E_{1}^{p, q}=\pi_{p} X_{q}
$$

If $R$ is an $A_{\infty}$-algebra, and $X_{\bullet}$ is a simplicial $R$-module spectrum, then this spectral sequence is a spectral sequence of $\pi_{*} R$-modules: that is, for each $1 \leq r \leq \infty$ we have maps

$$
E_{r}^{p, q} \otimes \pi_{p^{\prime}} R \rightarrow E_{r}^{p+p^{\prime}, q}
$$

which exhibit each $E_{r}^{*, q}$ as a module over $\pi_{*} R$, and the differentials are compatible with this module structure.
In particular, suppose that $A$ is an $E_{\infty}$-algebra over $\mathbf{F}_{2}$, and that $M$ and $N$ are $E_{\infty}$-algebras over $A$. Then the simplicial object $B_{n}^{A}(M, N)$ is a simplicial $E_{\infty}$-algebra over $\mathbf{F}_{2}$, and in particular a simplicial $R$ module, where $R$ is the ring spectrum studied in the previous lecture. It follows that the homotopy groups $\pi_{*}\left(M \otimes_{A} N\right)$ can be computed by a spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ satisfying the following:
(a) Each $E_{r}^{*, q}$ is a module over the big Steenrod algebra $\mathcal{A}^{\mathrm{Big}}$.
(b) Each differential $d_{r}$ is compatible with the action of $\mathcal{A}^{\text {Big }}$.
(c) Each $E_{1}^{*, q}$ is isomorphic (as an $\mathcal{A}^{\mathrm{Big} \text {-module) to the tensor product }}$

$$
\pi_{*} M \otimes \pi_{*} A \otimes \ldots \otimes \pi_{*} A \otimes \pi_{*} N
$$

where the factor $\pi_{*} A$ occurs $q$ times.
We now return to the situation of Proposition 4. The convergence result of the previous lecture guarantees that the natural map

$$
C^{*} Y^{\prime} \otimes_{C^{*} Y} C^{*} X \rightarrow C^{*} X^{\prime}
$$

is an equivalence. It follows that $\mathrm{H}^{*} X^{\prime}$ can be computed by a spectral sequence $\left\{E_{r}^{p, q}, d_{r}\right\}$ satisfying conditions (a) and (b), with

$$
E_{1}^{-*, q}=\mathrm{H}^{*} Y^{\prime} \otimes \mathrm{H}^{*} Y \otimes \ldots \otimes \mathrm{H}^{*} Y \otimes \mathrm{H}^{*} X
$$

It follows that each of the $\mathcal{A}^{\text {Big }}$-modules $E_{1}^{-*, q}$ is actually an unstable $\mathcal{A}$-module. Since this condition is stable under passage to subquotients, we obtain the following stronger version of condition $(a)$ :
$\left(a^{\prime}\right)$ Each $E_{r}^{*, q}$ is an unstable $\mathcal{A}$-module.
We have another homotopy pullback diagram

which consists of 2-finite spaces in virtue of Remark 3. Applying the same reasoning, we get another spectral sequence $\left\{E_{r}^{\prime p, q}, d_{r}^{\prime}\right\}$ satisfying $\left(a^{\prime}\right)$ and (b), with

$$
E_{1}^{\prime-*, q} \simeq \mathrm{H}^{*} Y^{\prime B V} \otimes \mathrm{H}^{*} Y^{B V} \otimes \ldots \otimes \mathrm{H}^{*} Y^{B V} \otimes \mathrm{H}^{*} X^{B V}
$$

The evaluation maps $Z^{B V} \times B V \rightarrow Z$ give rise to a collection of maps

$$
E_{r}^{*, q} \rightarrow E_{r}^{\prime *, q} \otimes \mathrm{H}^{*} B V
$$

Passing to adjoints and using the exactness of $T_{V}$, we get a map of spectral sequences

$$
T_{V} E_{r}^{*, q} \rightarrow E_{r}^{\prime *, q}
$$

Since $T_{V}$ is compatible with tensor products, our hypothesis on $Y^{\prime}, Y$ and $X$ guarantees that these maps are isomorphisms when $r=1$. It then follows by induction on $r$ that these maps are isomorphisms for all $r<\infty$. For $r>q$, we have a sequence of surjections

$$
E_{r}^{*, q} \rightarrow E_{r+1}^{*, q} \rightarrow \ldots
$$

$$
E_{r}^{\prime *, q} \rightarrow E_{r+1}^{\prime *, q} \rightarrow \ldots
$$

Since $T_{V}$ commutes with colimits (being a left adjoint, we conclude by passing to the limit that the map $T_{V} E_{\infty}^{*, q} \rightarrow E_{\infty}^{\prime *, q}$ is an isomorphism.

We now consider the canonical map

$$
T_{V} \mathrm{H}^{*} X^{\prime} \rightarrow \mathrm{H}^{*} X^{\prime B V}
$$

The preceding spectral sequences give increasing filtrations

$$
\begin{gathered}
0 \subseteq F_{0} \mathrm{H}^{*} X^{\prime} \subseteq F_{1} \mathrm{H}^{*} X^{\prime} \subseteq \ldots \subseteq \mathrm{H}^{*} X^{\prime} \\
0 \subseteq F_{0} \mathrm{H}^{*}{X^{\prime}}^{B V} \subseteq F_{1} \mathrm{H}^{*} X^{\prime B V} \subseteq \ldots \subseteq \mathrm{H}^{*} X^{\prime B V}
\end{gathered}
$$

by $\mathcal{A}$-submodules. Using the exactness of $T_{V}$, we get a map of exact sequences


Using induction on $i$ and the snake Lemma, we deduce that each of the maps

$$
T_{V} F_{i} \mathrm{H}^{*} X^{\prime} \rightarrow F_{i} \mathrm{H}^{*} X^{\prime B V}
$$

is an isomorphism. Passing to the limit over $i$ (and using the fact that $T_{V}$ commutes with direct limits), we deduce that $\theta_{X^{\prime}}: T_{V} \mathrm{H}^{*} X^{\prime} \rightarrow \mathrm{H}^{*} X^{\prime B V}$ is an isomorphism, as desired.

