18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Some Unstable Injectives (Lecture 16)

Let \mathcal{U} denote the category of unstable modules over the Steenrod algebra \mathcal{A} . Then \mathcal{U} has enough projective objects: that is, for every unstable \mathcal{A} -module M, there exists a surjection $P \to M$, where P is projective. For example, we can take $P = \bigoplus_{x \in M^n} F(n)$, equipped with its evident map to M.

The category \mathcal{U} also has enough injective objects: that is, for every unstable \mathcal{A} -module M, there exists an injection $M \to I$, where I is injective. This is a general property of Grothendieck abelian categories (as demonstrated by Grothendieck). However, in the case of the category \mathcal{U} we can verify this directly, by producing a large class of injective objects:

Proposition 1. Let $n \ge 0$ be a nonnegative integer. Then there exists an unstable \mathcal{A} -module J(n) equipped with a map $\chi : J(n)^n \to \mathbf{F}_2$ with the following universal property: for every unstable \mathcal{A} -module M, composition with χ induces a bijection

$$\operatorname{Hom}_{\mathcal{A}}(M, J(n)) \to \operatorname{Hom}_{\mathbf{F}_2}(M^n, \mathbf{F}_2).$$

Proof. We sketch two different arguments.

First, the existence of J(n) follows by abstract nonsense. If \mathcal{C} is any category, then we say a functor $F : \mathcal{C}^{op} \to \text{Set}$ is representable if there exists an object $X \in \mathcal{C}$ and a collection of bijections

$$F(C) \simeq \operatorname{Hom}_{\mathfrak{C}}(C, X),$$

depending functorially on C. Any representable functor carries colimits in \mathcal{C} to limits in Set (essentially by definition). If \mathcal{C} is a Grothendieck abelian category, then the converse holds (more generally, the converse holds whenever \mathcal{C} is a *presentable* category). We apply this observation to the case $\mathcal{C} = \mathcal{U}$, and $F : \mathcal{U}^{op} \to \text{Set}$ is defined by the formula

$$M \mapsto (M^n)^{\vee}.$$

It is easy to see that F carries colimits to limits, so that F is representable by an unstable A-module J(n).

An alternative approach is to describe J(n) directly. The universal property of J(n) dictates its structure: for each integer k, we have

$$J(n)^k \simeq \operatorname{Hom}_{\mathcal{A}}(F(k), J(n)) \simeq (F(k)^n)^{\vee}.$$

For each $i \ge 0$, the map $\operatorname{Sq}^i : J(n)^k \to J(n)^{k+i}$ is dual to the map $F(k+i)^n \to F(k)^n$ induced by the map of unstable \mathcal{A} -modules $F(k+i) \to F(k)$ classified by the element $\operatorname{Sq}^i \nu_k \in F(k)^{k+i}$. It is not difficult to check that this endows

$$J(n) = \bigoplus_k J(n)^k = \bigoplus_k (F(k)^n)^{\vee}$$

with the structure of an unstable A-module, and that this module has the desired universal property (exercise).

The \mathcal{A} -modules J(n) are called *Brown-Gitler modules*, because they arise as the \mathbf{F}_2 -homology of certain spectra called *Brown-Gitler spectra*. We will not use this description in this course.

For each $n \ge 0$, the Brown-Gitler module J(n) represents the functor $M \mapsto (M^n)^{\vee}$. Since this functor is exact, the object $J(n) \in \mathcal{U}$ is injective.

Corollary 2. The category U has enough injective objects.

Proof. Let M be an unstable \mathcal{A} -module. To every map $f: M^n \to \mathbf{F}_2$, we can associate a map of \mathcal{A} -modules $M \to J(n)$. Taking the product over all pairs (n, f), we obtain a map

$$M \to \prod_{f:M^n \to \mathbf{F}_2} J(n).$$

This map is clearly injective. The right hand side is a product of Brown-Gitler modules, and therefore injective. $\hfill \square$

Our next goal is to describe some other examples of injective objects in \mathcal{U} .

We have already met some other examples of injective objects of \mathcal{U} : namely, the cohomology rings $\mathrm{H}^*(BV)$, where V is a finite dimensional vector space over \mathbf{F}_2 . These are very different from the Brown-Gitler modules J(n). For example, for n > 0, the Brown-Gitler module J(n) is *nilpotent*: that is, for every homogeneous element $x \in J(n)$, the sequence

$$x, \operatorname{Sq}^{\operatorname{deg}(x)} x, \operatorname{Sq}^{2\operatorname{deg}(x)} \operatorname{Sq}^{\operatorname{deg}(x)} x, \dots$$

is eventually zero (since J(n) vanishes in degrees > n). On the other hand, the cohomology ring $H^*(BV)$ is isomorphic to a polynomial ring, and is therefore *reduced*: the map $x \mapsto \operatorname{Sq}^{\operatorname{deg}(x)} x$ is injective.

The injective objects $\mathrm{H}^*(BV)$ have an unusual property: namely, the tensor product of any pair $\mathrm{H}^*(BV) \otimes$ $\mathrm{H}^*(BW)$ isomorphic to $\mathrm{H}^*(B(V \oplus W))$, and is therefore again injective. In fact, the operation $M \mapsto$ $\mathrm{H}^*(BV) \otimes M$ preserves injective objects in general. We wish to prove this in the case where M is a Brown-Gitler module. For this, we need to introduce some auxiliary constructions.

Proposition 3. The inverse limit K of any sequence

$$\dots \to J(n_2) \to J(n_1) \to J(n_0)$$

of Brown-Gitler modules is injective as an unstable A-module.

Proof. By definition, we have

$$\begin{split} \operatorname{Hom}_{\mathcal{A}}(M,K) &\simeq \operatorname{proj} \lim \operatorname{Hom}_{\mathcal{A}}(M,J(n_i)) \\ &\simeq \operatorname{proj} \lim (M^{n_i})^{\vee} \\ &\simeq (\operatorname{inj} \lim M^{n_i})^{\vee}. \end{split}$$

This is an exact functor, since it is dual to the exact functor

$$M \mapsto \operatorname{inj} \lim (M^{n_0} \to M^{n_1} \to \dots).$$

To apply Proposition 3, we need to understand maps between the Brown-Gitler modules J(k). This is easy: by definition, we have

$$\operatorname{Hom}_{\mathcal{A}}(J(m), J(n)) \simeq (J(m)^{n})^{\vee}$$
$$\simeq \operatorname{Hom}_{\mathcal{A}}(F(n), J(m))^{\vee}$$
$$\simeq ((F(n)^{m})^{\vee})^{\vee}$$
$$\simeq F(n)^{m}$$
$$\simeq \operatorname{Hom}_{\mathcal{A}}(F(m), F(n))$$

In particular, $\operatorname{Hom}_{\mathcal{A}}(J(m), J(n))$ has a basis consisting of Steenrod operations $\{\operatorname{Sq}^I\}$, where I is positive, admissible, $\deg(I) = m - n$, and the excess of I is $\leq n$. We will abuse notation and identify the elements $\operatorname{Sq}^I \in \mathcal{A}$ with the corresponding maps between Brown-Gitler modules.

Definition 4. Let n be a nonnegative integer. The Carlsson module K(n) is defined to be the inverse limit of the sequence

$$\dots \to J(4n) \xrightarrow{\operatorname{Sq}^{2n}} J(2n) \xrightarrow{\operatorname{Sq}^n} J(n)$$

From Proposition 3 we immediately deduce:

Corollary 5. For each $n \ge 0$, the Carlsson module K(n) is an injective object of \mathcal{U} .

From this description, we immediately deduce:

Proposition 6. Let M be an unstable A-module, and let n be a nonnegative integer. Then the canonical map $\Phi M \to M$ induces an isomorphism

$$\operatorname{Hom}_{\mathcal{A}}(M, K(n)) \to \operatorname{Hom}_{\mathcal{A}}(\Phi M, K(n)).$$

Corollary 7. Let M be an unstable A-module, and let n be a nonnegative integer. Then $\operatorname{Hom}_{\mathcal{A}}(\Sigma M, K(n)) = 0$.

Proof. This follows from Proposition 6, since the map $\Phi \Sigma M \to \Sigma M$ vanishes (this follows from the instability condition on M).

An unstable \mathcal{A} -module M is reduced if the canonical map $f : \Phi M \to M$. In other words, M is reduced if $\operatorname{Sq}^{\deg x} x = 0$ implies that x = 0, for every homogeneous element $x \in M$. If M is an unstable \mathcal{A} -algebra, then the map $x \mapsto \operatorname{Sq}^{\deg x} x$ coincides with the map $x \mapsto x^2$, so that M is reduced if and only if it contains no nilpotent elements (this is the usual meaning of the term *reduced* in commutative algebra).

Corollary 8. For every nonnegative integer n, the Carlsson module K(n) is reduced.

Proof. Let M denote the submodule of K(n) generated by those homogeneous elements $x \in K(n)^k$ such that $\operatorname{Sq}^k x = 0$. Then the map $\Phi M \to M$ vanishes, so $M \simeq \Sigma \Omega M$. Applying Corollary 7, we conclude that the inclusion $M \subseteq K(n)$ is the zero map, so that M = 0.

Suppose that M is a reduced unstable \mathcal{A} -module. Then any map $M \to J(n)$ factors through K(n). Equivalently, any functional on M^n can be extended to the direct limit

$$M^n \xrightarrow{\operatorname{Sq}^n} M^{2n} \xrightarrow{\operatorname{Sq}^{2n}} M^{4n} \to \dots;$$

this follows from the observation that M^n injects into this direct limit. Consequently, the embedding

$$M \to \prod_{f:M^n \to \mathbf{F}_2} J(n)$$

of Corollary 2 can be lifted to a map

$$M \to \prod_{f:M^n \to \mathbf{F}_2} K(n).$$

It is easy to see that this map is again injective. We have therefore proven:

Proposition 9. Let M be a reduced unstable A-module. Then there exists a monomorphism

$$M \to \prod_{\alpha} K(n_{\alpha})$$

for some collection of nonnegative integers $\{n_{\alpha}\}$.

Corollary 10. Let V be a finite dimensional vector space over \mathbf{F}_2 . Then the unstable \mathcal{A} -module $\mathrm{H}^*(BV)$ is isomorphic to a direct summand of some product $\prod_{\alpha} K(n_{\alpha})$.

Proof. The cohomology ring $H^*(BV)$ is isomorphic to a polynomial ring $\mathbf{F}_2[t_1, \ldots, t_n]$, and therefore contains no nilpotent elements. Consequently, $H^*(BV)$ is reduced as an unstable \mathcal{U} -module. Applying Proposition 9, we deduce the existence of a monomorphism

$$j: \mathrm{H}^*(BV) \to \prod_{\alpha} K(n_{\alpha}).$$

We saw earlier that the unstable \mathcal{A} -module $\mathrm{H}^*(BV)$ is injective. Consequently, the identity map id : $\mathrm{H}^*(BV) \to \mathrm{H}^*(BV)$ can be extended to a map $p : \prod_{\alpha} K(n_{\alpha}) \to \mathrm{H}^*(BV)$, which is a left inverse to j. We therefore obtain a direct sum decomposition

$$\prod_{\alpha} K(n_{\alpha}) \simeq \mathrm{H}^{*}(BV) \oplus \ker(p).$$

Since the Brown-Gitler modules J(k) are finite-dimensional in each degree, the operation $M \mapsto M \otimes J(k)$ preserves products. Consequently, we deduce the following:

Corollary 11. Let V be a finite dimensional vector space over \mathbf{F}_2 , and k a nonnegative integer. Then the tensor product

$$\mathrm{H}^*(BV) \otimes J(k)$$

is a direct summand of some product

$$\prod_{\alpha} K(n_{\alpha}) \otimes J(k).$$

Consequently, to prove that a tensor product $H^*(BV) \otimes J(k)$ is injective, it will suffice to show that each tensor product $K(n) \otimes J(k)$ is injective. We will return to this point next time.