MIT OpenCourseWare
http://ocw.mit.edu

### 18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Topics in Algebraic Topology (18.917): Lecture 3

In this lecture we will establish some more of the basic properties of Steenrod operations. More precisely, we will show that the Steenrod squares are stable operations, and prove the Cartan formula which describes the interaction between Steenrod operations and multiplication in the cohomology of a space $X$. As before, we work in the setting of cochain complexes over the finite field $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$ with two elements.

Let $\Omega$ denote the loop functor on complexes, so that we have canonical isomorphisms

$$
\begin{gathered}
(\Omega V)^{n} \simeq V^{n-1} \\
\mathrm{H}^{n}(\Omega V) \simeq \mathrm{H}^{n-1}(V)
\end{gathered}
$$

Since the extended square functor $V \mapsto D_{2}(V)$ preserves acyclic objects, there is a canonical map

$$
D_{2}(\Omega V) \xrightarrow{\phi} \Omega D_{2}(V)
$$

for any complex $V$ (see below for an explicit construction of this map).
The stability of the Steenrod operations is a consequence of the following result:
Proposition 1. Let $W$ be a complex and $k$ an integer. Then the diagram

is commutative.
Proof. Let $V=\Omega W$. Fix a class $v$ in $\mathrm{H}^{n}(V)$, and let $w$ denote the image of $v$ in $\mathrm{H}^{n-1}(W)$. Without loss of generality, we may suppose that $V \simeq \mathbf{F}_{2}[-n]$ is generated by $v$, so that $W \simeq \mathbf{F}_{2}[1-n]$ is generated by $w$. We observe that $\mathrm{H}^{n+k-1} D_{2}(W)$ vanishes for $k \geq n$, so that the result is automatic. Let us therefore assume that $k<n$. In this case, $\mathrm{H}^{n+k-1} D_{2} W$ and $\mathrm{H}^{n+k} D_{2} V$ are 1-dimensional vector spaces, generated by $\overline{\mathrm{Sq}}^{k}(w)$ and $\overline{\mathrm{Sq}}^{k}(v)$, respectively. It will suffice to show that the map

$$
\mathrm{H}^{m} D_{2}(V) \rightarrow \mathrm{H}^{m-1} D_{2}(W)
$$

is an isomorphism for $m<2 n$.
Let $U$ denote the complex

$$
\ldots \rightarrow 0 \rightarrow \mathbf{F}_{2} w \xrightarrow{\sim} \mathbf{F}_{2} v \rightarrow 0 \rightarrow \ldots
$$

so we have a homotopy pullback diagram


We obtain an associated diagram


The complex $\Omega W^{\otimes 2}$ can be identified with the kernel of the map $f$, which is given by the two term complex

$$
\ldots \rightarrow 0 \rightarrow \mathbf{F}_{2} v^{2} \rightarrow \mathbf{F}_{2} v w \oplus \mathbf{F}_{2} w v \rightarrow 0 \rightarrow \ldots
$$

We therefore obtain a fiber sequence

$$
V^{\otimes 2} \rightarrow \Omega W^{\otimes 2} \rightarrow \mathbf{F}_{2}^{2}[-2 n+1]
$$

of complexes with an action of the group $\Sigma_{2}$. The operation of taking homotopy coinvariants is exact, so we obtain a fiber sequence

$$
D_{2}(V) \rightarrow \Omega D_{2}(W) \rightarrow \mathbf{F}_{2}[-2 n+1] .
$$

The associated long exact sequence implies that $\mathrm{H}^{m} D_{2}(V) \simeq \mathrm{H}^{m-1} D_{2}(W)$ for $m<2 n$, as desired.
To apply Proposition 1, we wish to study the relationship between symmetric multiplications and suspension. If $V$ is a complex equipped with a symmetric multiplication $m: D_{2}(V) \rightarrow V$, then $\Omega V$ inherits a symmetric multiplication, given by the composition

$$
D_{2}(\Omega V) \rightarrow \Omega D_{2}(V) \rightarrow \Omega V
$$

By construction, we have a commutative diagram

where $\phi$ is the map appearing in Proposition 1. We immediately deduce the following:
Corollary 2. Let $V$ be a complex equipped with a symmetric multiplication. Then $\Omega V$ inherits a symmetric multiplication. Moreover, the canonical isomorphism

$$
\mathrm{H}^{*} V \simeq \mathrm{H}^{*+1}(\Omega V)
$$

commutes with the Steenrod operations $\mathrm{Sq}^{k}$.
Corollary 3. Let $X$ be a pointed topological space, and $\Sigma X$ its suspension. Then the canonical isomorphism

$$
\mathrm{H}^{*}\left(X ; \mathbf{F}_{2}\right) \simeq \mathrm{H}^{*+1}\left(\Sigma X ; \mathbf{F}_{2}\right)
$$

commutes with the action of the Steenrod operations $\mathrm{Sq}^{k}$.
We can apply Corollary 3 to compute the Steenrod operations in some simple cases:
Example 4. Let $v \in \mathrm{H}_{\text {red }}^{n}\left(S^{n} ; \mathbf{F}_{2}\right)$ be the generator for the top cohomology of the $n$-sphere. Then

$$
\mathrm{Sq}^{k}(v)= \begin{cases}v & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

To prove this, use Corollary 3 to reduce to the case $n=0$. In this case, Example ?? shows that the operation $\mathrm{Sq}^{0}$ is the identity on $\mathrm{H}_{\mathrm{red}}^{0}\left(S^{0} ; \mathbf{F}_{2}\right)$.

Corollary 5. Let $X$ be a topological space, and let $v \in \mathrm{H}^{n}\left(X ; \mathbf{F}_{2}\right)$. Then

$$
\mathrm{Sq}^{k}(x)= \begin{cases}x & \text { if } k=0 \\ 0 & \text { if } k<0\end{cases}
$$

Proof. Recall that the cohomology group $\mathrm{H}^{n}\left(X ; \mathbf{F}_{2}\right)$ can be identified with the set of homotopy classes of maps from $X$ into an Eilenberg-MacLane space $K\left(\mathbf{F}_{2}, n\right)$. More precisely, there exists a tautological cohomology class

$$
\chi \in \mathrm{H}^{n}\left(K\left(\mathbf{F}_{2}, n\right) ; \mathbf{F}_{2}\right)
$$

such that pulling back $\chi$ induces a bijection

$$
\pi_{0} \operatorname{Map}\left(X, K\left(\mathbf{F}_{2}, n\right)\right) \rightarrow \mathrm{H}^{n}\left(X ; \mathbf{F}_{2}\right)
$$

for every CW complex $X$. By general nonsense, we can reduce to the case $X=K\left(\mathbf{F}_{2}, n\right)$ and where $x=\chi$.
Let $v \in \mathrm{H}^{n}\left(S^{n} ; \mathbf{F}_{2}\right)$ be the cohomology class described in Example 4. Then $v$ induces a map

$$
f: S^{n} \rightarrow K\left(\mathbf{F}_{2}, n\right)
$$

The induced map

$$
\mathrm{H}^{n+k}\left(K\left(\mathbf{F}_{2}, n\right) ; \mathbf{F}_{2}\right) \rightarrow \mathrm{H}^{n+k}\left(S^{n} ; \mathbf{F}_{2}\right)
$$

is injective (in fact, bijective) for $k \leq 0$. We may therefore reduce to the case where $X=S^{n}$ and $x=v$. The desired result now follows from Example 4.

Warning 6. The negative Steenrod operations $\left\{\mathrm{Sq}^{n}\right\}_{n<0}$ act trivially on the cohomology of spaces, but are nontrivial in other examples. Similarly, $\mathrm{Sq}^{0}$ acts by the identity on the cohomology of spaces, but not in general.

We now turn to the second main topic of this lecture: the Cartan formula. We begin by studying the interaction between the extended square functor $D_{2}$ and tensor products. Let $V$ and $W$ be complexes. We have equivalences

$$
\begin{gathered}
D_{2}(V) \otimes D_{2}(W) \simeq V_{h \Sigma_{2}}^{\otimes 2} \otimes W_{h \Sigma_{2}}^{\otimes 2} \simeq(V \otimes W)_{h\left(\Sigma_{2} \times \Sigma_{2}\right)}^{\otimes 2} \\
D_{2}(V \otimes W) \simeq(V \otimes W)_{h \Sigma_{2}}^{\otimes 2}
\end{gathered}
$$

There is a canonical map

$$
(V \otimes W)_{h \Sigma_{2}}^{\otimes 2} \rightarrow(V \otimes W)_{h\left(\Sigma_{2} \times \Sigma_{2}\right)}^{\otimes 2}
$$

given by the diagonal embedding of $\Sigma_{2}$ into $\Sigma_{2} \times \Sigma_{2}$. This induces a map $\psi: D_{2}(V \otimes W) \rightarrow D_{2}(V) \otimes D_{2}(W)$.
Proposition 7. Let $V$ and $W$ be complexes. Let $v \in \mathrm{H}^{m} V$, $w \in \mathrm{H}^{n} W$, so that we can form a class $v \otimes w \in \mathrm{H}^{m+n}(V \otimes W)$. For every integer $k$, we have an equality

$$
\psi \overline{\mathrm{Sq}}^{k}(v \otimes w)=\Sigma_{k=k^{\prime}+k^{\prime \prime}} \overline{\mathrm{Sq}}^{k^{\prime}}(v) \otimes \overline{\mathrm{Sq}}^{k^{\prime \prime}}(w)
$$

in the cohomology group $\mathrm{H}^{m+n+k}\left(D_{2}(V) \otimes D_{2}(W)\right)$.
Remark 8. The sum in this expression is well-defined, since $\overline{\mathrm{Sq}}^{k^{\prime}}(v) \otimes \overline{\mathrm{Sq}}^{k^{\prime \prime}}(w)$ vanishes for $k^{\prime}>m$ or $k^{\prime \prime}>n$. There are only finitely many terms which do not satisfy either condition.

Proof. If $k>m+n$, then the result is obvious since both sides vanish. Let us therefore assume that $k=m+n-i$, where $i \geq 0$. We can rewrite the equation

$$
\psi \overline{\mathrm{Sq}}^{m+n-i}(v \otimes w)=\Sigma_{i=i^{\prime}+i^{\prime \prime}} \overline{\mathrm{Sq}}^{m-i^{\prime}}(v) \otimes \overline{\mathrm{Sq}}^{n-i^{\prime \prime}}(w)
$$

where the sum is taken over $i^{\prime}, i^{\prime \prime} \geq 0$.
Without loss of generality, we may assume that $V=\mathbf{F}_{2}[-m]$ and $W=\mathbf{F}_{2}[-n]$. In this case, we have canonical isomorphisms

$$
\begin{gathered}
\mathrm{H}^{*}\left(D_{2}(V)\right) \simeq \mathrm{H}_{2 m-*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) e_{2 m} \\
\mathrm{H}^{*}\left(D_{2}(W)\right) \simeq \mathrm{H}_{2 n-*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) e_{2 n} \\
\mathrm{H}^{*}\left(D_{2}(V \otimes W)\right) \simeq \mathrm{H}_{2 m+2 n-*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) e_{2 m+2 n}
\end{gathered}
$$

For each $j \geq 0$, let $x_{j}$ denote a generator of $\mathrm{H}_{j}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right)$. Under the identifications above, we have

$$
\begin{aligned}
& \overline{\mathrm{Sq}}^{m+n-i}(v \otimes w) \mapsto x_{i} e_{2 m+2 n} \\
& \overline{\mathrm{Sq}}^{m-i^{\prime}}(v) \mapsto x_{i^{\prime}} e_{2 m} \\
& \overline{\mathrm{Sq}}^{n-i^{\prime \prime}}(w) \mapsto x_{i^{\prime \prime}} e_{2 n} .
\end{aligned}
$$

Moreover, the map $\psi$ simply corresponds to the comultiplication

$$
\Psi: \mathrm{H}_{*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) \rightarrow \mathrm{H}_{*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) \otimes \mathrm{H}_{*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right)
$$

on the homology of the space $B \Sigma_{2}$. The cohomology ring $\mathrm{H}^{*}\left(B \Sigma_{2} ; \mathbf{F}_{2}\right) \simeq \mathrm{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right)$ is simply isomorphic to a polynomial ring $\mathbf{F}_{2}[t]$ having a basis $\left\{t^{j}\right\}_{j \geq 0}$. The corresponding comultiplication is given in the dual basis $\left\{x_{i}\right\}_{i \geq 0}$ by the formula

$$
x_{i} \mapsto \sum_{i^{\prime}+i^{\prime \prime}} x_{i^{\prime}} \otimes x_{i^{\prime \prime}}
$$

We now simply compute

$$
\overline{\mathrm{Sq}}{ }^{m+n-i}(v \otimes w)=x_{i} e_{2 m+2 n} \mapsto \sum_{i=i^{\prime}+i^{\prime \prime}}\left(x_{i^{\prime}} e_{2 m}\right) \otimes\left(x_{i^{\prime \prime}} e_{2 n}\right)=\overline{\mathrm{Sq}}^{m-i^{\prime}}(v) \otimes \overline{\mathrm{Sq}}^{n-i^{\prime \prime}}(w)
$$

to obtain the desired formula.
For any complex $V$ equipped with a symmetric multiplication $m: D_{2}(V) \rightarrow V$, we can form a diagram


If $m$ is good (see Lecture 4), then this diagram commutes up to homotopy. Passing to cohomology and applying Proposition 7, we deduce the following:

Corollary 9. Let $V$ be a complex equipped with a good symmetric multiplication. Then, for every pair of elements $v, w \in \mathrm{H}^{*}(V)$, the Cartan formula holds:

$$
\mathrm{Sq}^{k}(v w)=\sum_{k=k^{\prime}+k^{\prime \prime}} \mathrm{Sq}^{k^{\prime}}(v) \mathrm{Sq}^{k^{\prime \prime}}(w)
$$

Corollary 10. Let $X$ be a topological space, and let $x, y \in \mathrm{H}^{*}\left(X ; \mathbf{F}_{2}\right)$. Then, for each $n \geq 0$,

$$
\mathrm{Sq}^{n}(x y)=\sum_{n=n^{\prime}+n^{\prime \prime}} \mathrm{Sq}^{n^{\prime}}(x) \mathrm{Sq}^{n^{\prime \prime}}(y)
$$

It is convenient to summarize Corollary 10 by asserting that the total Steenrod square $x \mapsto \sum_{n \geq 0} \mathrm{Sq}^{n}(x)$ is a multiplicative operation.

We can now compute the action of the Steenrod algebra in a situation where they are definitely nontrivial:
Corollary 11. Let $\mathrm{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}[t]$. Then the action of the Steenrod algebra on $\mathbf{F}_{2}[t]$ can be described by the following formula:

$$
\mathrm{Sq}^{k} t^{n}=\binom{n}{k} t^{n+k}
$$

Here $\binom{n}{k}$ denotes the binomial coefficient

$$
\frac{n!}{k!(n-k)!}
$$

if $0 \leq k \leq n$; by convention we will agree that $\binom{n}{k}$ vanishes otherwise.
Proof. Let Sq denote the operation $x \mapsto \sum_{n \geq 0} \operatorname{Sq}^{n}(x)$. Since $t$ has degree $1, \mathrm{Sq}^{n}(t)$ vanishes for $n>1$ and is equal to $t^{2}$ when $t=1$. It follows that $\mathrm{Sq}(t)=\mathrm{Sq}^{0}(t)+\mathrm{Sq}^{1}(t)=t+t^{2}$. Since the operation Sq is multiplicative, we have

$$
\operatorname{Sq}\left(t^{n}\right)=\left(t+t^{2}\right)^{n}=\sum_{0 \leq k \leq n}\binom{n}{k} t^{n+k}
$$

The desired result now follows by extracting individual coefficients.
Warning 12. Our convention that $\binom{n}{k}$ vanishes for $n<0$ is somewhat nonstandard. For example, it has the consequence that $\binom{n}{k}$ is not a polynomial function of $n$, even for $k=1$.

The cohomology ring $\mathrm{H}^{*}\left(\mathbf{R} P^{\infty} ; \mathbf{F}_{2}\right)$ is a very important example which will play a large role in the later part of this course.

