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Operations on E∞-Algebras: (Lecture 24)


In this lecture, we will change our notation in discussing E -algebras: we will think of them as spectra, ∞
rather than complexes of F2-vector spaces. We will therefore view the cohomology of the underlying complex 
as a homotopy group of the underlying spectrum, so we have 

πnA � H−n A. 

We have constructed the big Steenrod algebra ABig so that it acts by stable operations on homotopy of 
E -algebras over F2. Our goal in this lecture is to reformulate this in a more functorial way. Our discussion ∞
will be somewhat informal. To make these ideas precise, we really need to work in the setting of higher 
categories, but we will ignore this point. 

We begin with some remarks about the category S of spectra. For every pair of spectra X and Y , we 
have a smash product which we will denote by X ⊗ Y . The smash product endows S with a symmetric 
monoidal structure, and this symmetric monoidal structure is closed: that is, for every pair of spectra X and 
Y we can define a function spectrum Map(X, Y ) with the following universal property: 

Hom(Z, Map(X, Y )) = Hom(X ⊗ Z, Y ). 

The function spectrum Map(X, Y ) has the property that πi Map(X, Y ) can be identified with the set of 
homotopy classes of maps from X into the i-fold suspension Y [i]. 

In the special case where X = Y , the spectrum Map(X, X) is equipped with additional structure, given 
by composition of maps from X to X. The spectrum Map(X, X) is an example of an A (or associative) ∞
ring spectrum. It should be viewed as a ring of endomorphisms of X, and X is an example of a module over 
the spectrum Map(X, X). 

More generally, for any category C, the category of functors Fun(C, S) from C to spectra is enriched over 
spectra; that is, given a pair of functors F, F � : C S, we can define a spectrum of maps Map(F, F �).→
Again, in the special case where F = F �, we get an associative ring spectrum R = Map(F, F ). For every 
object C ∈ C, the spectrum F (C) has a canonical action of the A∞-algebra R. 

We wish to study the special case in which C is the category of E -algebras over F2, and the functor ∞
G : C S assigns to each E -algebra A its underlying spectrum G(A). The ring spectrum R = Map(G, G)→ ∞
then acts on the underlying spectrum of every E -algebra A over F2, so that every element of πnR gives a ∞
map A A[n], and therefore a map πkA πn+kA. This construction is functorial in A; we can therefore → →
think of elements of π∗R as giving rise to operations which act on the homotopy groups π∗A for every 
E -algebra A over F2.∞

Our goal in this lecture is to understand what the A -algebra R looks like. More precisely, we will ∞
compute the homotopy groups of R and show that they coincide a suitably completion of the graded pieces 
of the big Steenrod algebra ABig. 

The forgetful functor G from E -algebras over F2 to spectra can be described as a composition ∞

{E∞ − algebras over F2} → {complexes over F2} → {spectra} 
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where the first map forgets the multiplication, and the second map carries a complex V to the generalized 
Eilenberg-MacLane spectrum HV . This functor has a left adjoint F : S C, given by the formula → 

F (X) = (⊕n≥0Xh
⊗
Σ
n 

n 
) ⊗ F2. 

Here the tensor product indicates the smash product of spectra, and we identify F2 with the Eilenberg-
MacLane spectrum HF2. The adjointness between F and G yields a canonical identification of spectra 

MapFun(C,S)(G, G) � MapFun(S,S)(id, G ◦ F ). 

We therefore need to be able to understand maps in the category of functors Fun(S, S) from spectra to 
spectra. To this end, we need to introduce a definition: 

Definition 1. Let E be a functor from spectra to spectra. We say that E is exact if the following conditions 
are satisfied: 

(1) The functor E carries zero objects to zero objects (i.e., if X is weakly contractible, then E(X) is weakly 
contractible). 

(2) For every spectrum X, the canonical map ΣE(X) E(ΣX) (which exists in virtue of assumption (1)) 
is a weak homotopy equivalence. 

→ 

Our calculation rests on the following observation: 

Lemma 2. Let E be an exact functor from spectra to spectra. Then the canonical map 

α : MapFun(S,S)(id, E) → MapS(S, E(S)) � E(S) 

is a weak equivalence. Here S denotes the sphere spectrum. 

Sketch of proof. We will describe how to construct a map 

E(S) MapFun(S,S)(id, E)→ 

which is homotopy inverse to α. We can identify this with a collection of maps, E(S)⊗X E(X), depending 
functorially on the spectrum X. 

→ 

Let Xn denote the nth space Ω∞−nX of the spectrum X, so we can identify X with the colimit of the 
sequence 

Σ∞X0 → Σ−1Σ∞X1 → Σ−2Σ∞X2 → . . . . 

We can identify E(S) ⊗ X with the colimit of the sequence Σ−n(E(S) ⊗ Σ∞Xn), and we have a canonical 
map 

colim Σ−nE(Σ∞Xn) � colim E(Σ−nΣ∞Xn) → E(X). 

It therefore suffices to construct a compatible family of maps from E(S) ⊗ Σ∞Xn to E(Σ∞Xn). Such a 
map is simply a map from Xn to the mapping space [E(S), E(Σ∞Xn)], which arises by applying E to the 
canonical map from Xn to the mapping space [∗, Xn]. 

Unfortunately, the composition G ◦ F ∈ Fun(S, S) does not satisfy the hypotheses of Lemma 2. We have 

(G ◦ F )(X) � ⊕n(X⊗n ) ⊗ F2;hΣn 

in particular 
(G ◦ F )(0) � F2. 

To address this first obstruction, we have the following result: 
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0 Lemma 3. Let E be a functor from spectra to spectra. For every spectrum X, the canonical map X →
induces a map E(X) E(0); let E0(X) denote the fiber of this map. Then the natural transformation→
E0 → E induces a weak homotopy equivalence 

α : MapFun(S,S)(id, E0) MapFun(S,S)(id, E).→ 

Sketch of proof. Let Y = MapFun(S,S)(id, E), so that we have a canonical map Y ⊗ id E. Then, for every 
spectrum X, we get a commutative diagram 

→ 

Y ⊗ X �� E(X) 

0 �� E(0), 

which determines a map Y ⊗ X E0(X). These maps together constitute a map Y MapFun(S,S)(id, E0), 
which is homotopy inverse to α. 

→ → 

Applying Lemma 3 to the composition G F , we obtain the functor◦ 

X �→ (⊕n>0Xh
⊗
Σ
n 

n 
) ⊗ F2. 

This functor is still not exact. However, we can address the situation using Goodwillie’s calculus of functors. 

Lemma 4 (Goodwillie). Let E be a functor from spectra to spectra, and suppose that E(0) � 0. Define a 
new functor E� : S S by the formula→ 

E�(X) = proj lim{. . . Σ2E(Ω2X) ΣE(ΩX) E(X)}.→ → → 

Then E� is exact, and the canonical map 

MapFun(S,S)(id, E�) MapFun(S,S)(id, E)→ 

is a weak homotopy equivalence. 

Proof. We will only prove the second statement. Since Σn and Ωn are mutually inverse equivalences from 
the category of spectra to itself, we have canonical homotopy equivalences 

Map(id, Σn ◦ E ◦ Ωn) � Map(Ωn ◦ id ◦Σn, E) � Map(id, E). 

The desired result now follows by passing to the limit. 

We are now ready to compute the homotopy groups of the A -algebra∞

R = MapFun(C,S)(G, G). 

We first use Lemma 3 to replace G F by the pointed functor◦ 

E : X �→ ⊕n>0Xh
⊗
Σ
n 

n 
⊗ F2, 

and then Lemma 4 to replace E by its dual Goodwillie derivative E�. The functor E� is exact, and we have 

R = MapFun(C,S)(G, G) 
� MapFun(S,S)(id, G ◦ F ) 
� MapFun(S,S)(id, E) 

� MapFun(S,S)(id, E�) 

� E�(S) 
� proj lim ΣkE(S−k). 
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It follows for every integer n, we have an exact sequence 

1 
0 proj lim{πn+1−kE(S−k)} → πnR proj lim{πn−kE(S−k)} → 0.→ → 

We will show that the proj lim1-term vanishes, and compute the limit on the right hand side. 
◦ ∞By definition, (G F )(S−k) is the free E -algebra F(k) on one generator in cohomological degree k, and 

E(S−k) is its “augmentation ideal”, so we have a canonical decomposition 

F(k) = E(S−k) ⊕ F2. 

Therefore, we can identify πn−kE(S−k) with the summand of 

F Big(k)k−n � F2[SqI µk]k−n :Alg 

spanned by those expressions of positive degree; here I ranges over all admissible sequences of integers having 
excess < k. Let us denote this summand by F2[SqI µk]k0

−n . 
We have an inverse system of graded vector spaces 

. . . F2[SqI µk+1] 
θk F2[SqI µk]0 → . . . , → → 

where each map θk lowers cohomological degrees by 1. Moreover, we have θk(µk+1) = µk. Since the Steenrod 
operations are stable, it follows that θk(SqI µk+1) = SqI µk. The map θk is induced by a map of E -algebras ∞

F(k + 1) → F2 ×F(k) F2, 

and the multiplication on the right hand side is trivial at the level of homotopy groups. It follows that θk 

vanishes on products. 
The inverse system 

. . . F2[SqI µk+1] 
θk F2[SqI µk]0 → . . . → → 

is equivalent to the inverse system obtained by replacing each of the spaces F2[SqI µk]0 by the image of θk. 
The above analysis shows that this subspace has a basis given by {SqI µk}, where I is an admissible sequence 
of integers having excess ≤ k. We then obtain an inverse system of vector spaces 

k . . . F2{SqI µk+1} 
θ�

F2{SqI µk} → . . . → → 

where the maps θk
� are surjective. This proves the vanishing of the lim1-term, and shows that πnR is 

isomorphic to the inverse limit of the free vector spaces generated by the sets 

{SqI µk : I admissible of excess ≤ k and degree = −n}. 

This vector space can be identified with a completion of ABig−n . Recall that elements of ABig of degree −n 
can be written as a finite sum � 

SqIα 

α 

where Iα ranges over some collection of admissible sequences of integers which sum to −n. The vector space 
πnR is similar, except that we allow infinite sums 

f = SqI0 +SqI1 + . . . 

so long as the excess of the sequences {Ik} tends to ∞. (Note that, in this case, we can act by f on the 
cohomology of any E∞-algebra A, since for each x ∈ Hn A almost all of the expressions SqIk x will vanish 
by virtue of instability). 
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