18.917 Topics in Algebraic Topology: The Sullivan Conjecture Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

A Pushout Square (Lecture 22)

In the last lecture we saw that the cohomology $\mathrm{H}^* \mathcal{F}(n)$ of the free E_{∞} -algebra on one generator was itself freely generated by one element, as an unstable algebra over the big Steenrod algebra $\mathcal{A}^{\mathrm{Big}}$. The Cartan-Serre theorem implies that the cohomology ring $\mathrm{H}^* K(\mathbf{F}_2, n)$ is the free unstable \mathcal{A} -module on one generator, in the same degree. This suggests a close relationship between $\mathrm{H}^* \mathcal{F}(n)$ and $\mathrm{H}^* K(\mathbf{F}_2, n)$. In fact, we can say more: there is a close relationship between the E_{∞} -algebras $\mathcal{F}(n)$ and $C^* K(\mathbf{F}_2, n)$ for each $n \geq 0$.

To make this precise, we begin by observing that the canonical element $\nu \in \operatorname{H}^{n} K(\mathbf{F}_{2}, n)$ gives rise to a map of E_{∞} -algebras

$$f: \mathfrak{F}(n) \to C^*K(\mathbf{F}_2, n)$$

Let μ denote the canonical generator of $\mathrm{H}^* \mathfrak{F}(n)$, so that f carries μ to ν .

The map f is certainly not a homotopy equivalence. The target $\mathrm{H}^* K(\mathbf{F}_2, n)$ is a module over the usual Steenrod algebra \mathcal{A} , so that Sq^0 acts by the identity on $\mathrm{H}^* K(\mathbf{F}_2, n)$. However, Sq^0 does not act by the identity on the cohomology of the left hand side. We therefore have

$$f(\mu - \mathrm{Sq}^0 \mu) = f(\mu) - \mathrm{Sq}^0 f(\mu) = \nu - \mathrm{Sq}^0 \nu = 0,$$

so that f fails to be injective on cohomology.

However, this turns out to be the *only* obstruction to f being a homotopy equivalence. To make this precise, we observe that there is map $g : \mathcal{F}(n) \to \mathcal{F}(n)$, which is determined up to homotopy by the requirement that $g(\mu) = \mu - \operatorname{Sq}^0 \mu \in \operatorname{H}^n \mathcal{F}(n)$. The above calculation shows that $f \circ g$ carries μ to zero in $\operatorname{H}^n K(\mathbf{F}_2, n)$. We therefore obtain a (homotopy) commutative diagram of E_{∞} -algebras

Our goal in this lecture is to prove:

Theorem 1. The above diagram is a homotopy pushout square in the category of E_{∞} -algebras over \mathbf{F}_2 .

In other words, the cochain complex $C^*K(\mathbf{F}_2, n)$ has a very simple presentation as an E_{∞} -algebra over \mathbf{F}_2 . It is "generated" by the tautological class $\nu \in \mathrm{H}^n K(\mathbf{F}_2, n)$, and subject only to the "relation" that ν is fixed by Sq^0 .

To prove Theorem 1, we need to understand homotopy pushouts in the world of E_{∞} -algebras. We first recall the situation for ordinary commutative rings. Given a pair of commutative ring homomorphisms

$$A \leftarrow R \rightarrow B$$
,

the pushout $A \coprod_R B$ in the category of commutative rings is given by the relative tensor product $A \otimes_R B$. In the case of E_{∞} -algebras, the situation is more or less identical. More precisely:

- Given an E_{∞} -algebra R, there is a good theory of R-modules (or R-module spectra).
- Given any map $R \to A$ of E_{∞} -algebras, we can regard A as an R-module.
- Given an E_{∞} -ring R, the collection of R-module spectra is endowed with a tensor product operation $(M, N) \mapsto M \otimes_R N$. (More traditionally, this is denoted by $M \wedge_R N$ and called the *smash product over* R).
- Given a pair of E_{∞} -algebra maps

 $A \leftarrow R \rightarrow B$,

the homotopy pushout of A and B over R in the setting of E_{∞} -rings is again an R-algebra, and the underlying R-module is given by the tensor product $A \otimes_R B$.

Given these facts, we can restate Theorem 1. We have a canonical map

$$\mathfrak{F}(n) \otimes_{\mathfrak{F}(n)} \mathbf{F}_2 \to C^* K(\mathbf{F}_2, n),$$

and we wish to show that this map is a homotopy equivalence. In other words, we wish to show that it induces an isomorphism after passing to cohomology. The cohomology of the right side is given by the Cartan-Serre theorem: $H^* K(\mathbf{F}_2, n)$ can be identified with the polynomial ring on generators $\{Sq^I\nu\}$, where I ranges over admissible positive sequences of excess < n. It therefore remains to compute the cohomology of the left hand side.

The calculation will be based on the following lemma:

Lemma 2. Let R be an E_{∞} -algebra over \mathbf{F}_2 , and let M and N be R-modules. Then $\mathrm{H}^* M$ and $\mathrm{H}^* N$ are modules over the cohomology ring $\mathrm{H}^* R$. Suppose that $\mathrm{H}^* M$ is free as a graded $\mathrm{H}^* R$ -module. Then the canonical map

$$\mathrm{H}^* M \otimes_{\mathrm{H}^* R} \mathrm{H}^* N \to \mathrm{H}^* (M \otimes_R N)$$

is an isomorphism.

Proof. Choose elements $\{x_i \in H^{n_i} M\}$ which freely generate $H^* M$ as an $H^* R$ -module. Each x_i determines a map of R-modules $R[-n_i] \to M$. Adding these together, we obtain a map $\oplus R[-n_i] \to M$. By assumption this map induces an isomorphism on cohomology, and is therefore a homotopy equivalence. Thus, M is a direct sum of *free* R-modules (in various degrees).

Let us say that an R-module M is good if the canonical map

$$\mathrm{H}^* M \otimes_{\mathrm{H}^* R} \mathrm{H}^* N \to \mathrm{H}^* (M \otimes_R N)$$

is an isomorphism. Both the left hand side and the right hand side above are functors of M, which commute with shifting and with the formation of direct sums. Therefore, to show that $\oplus R[-n_i]$ is good, it will suffice to show that R is good. But this is clear, since

$$\mathrm{H}^* R \otimes_{\mathrm{H}^* R} \mathrm{H}^* N \simeq \mathrm{H}^* N \simeq \mathrm{H}^* (R \otimes_R N).$$

To prove Theorem 1, we will show that Lemma 2 applies: namely, that $H^* \mathcal{F}(n)$ is *free* when regarded s an $H^* \mathcal{F}(n)$ -module via the map g. It then follows that we have an isomorphism

$$\mathrm{H}^*(\mathfrak{F}(n) \otimes_{\mathfrak{F}(n)} \mathbf{F}_2) \simeq \mathrm{H}^* \mathfrak{F}(n) \otimes_{\mathrm{H}^* \mathfrak{F}(n)} \mathbf{F}_2 = \mathrm{H}^* \mathfrak{F}(n) / I,$$

where I is the ideal of $\mathrm{H}^* \mathfrak{F}(n)$ generated by the elements g(x), where $x \in \mathrm{H}^* \mathfrak{F}(n)$ has positive degree.

In the last lecture, we proved that $\mathrm{H}^* \mathcal{F}(n)$ is isomorphic to the free unstable $\mathcal{A}^{\mathrm{Big}}$ -module $F_{\mathrm{Alg}}^{\mathrm{Big}}(n)$. It is therefore isomorphic to a polynomial ring on generators {Sq}^I μ }, where I ranges over admissible sequences of excess < n. For every such sequence I, we let $X_I = g(\mathrm{Sq}^I \mu) = \mathrm{Sq}^I \mu - \mathrm{Sq}^I \mathrm{Sq}^0 \mu \in \mathrm{H}^* \mathcal{F}(n)$. To complete the proof of Theorem 1, it will suffice to verify the following: **Proposition 3.** The cohomology ring $H^* \mathfrak{F}(n)$ is a polynomial ring on generators $\{X_I\}_{Iadmissible of excess < n}$ and $\{\operatorname{Sq}^I \mu\}_{Iadmissible and positive of excess < n}$.

Proof. Let \mathcal{J} denote the collection of all admissible sequences of integers of excess < n. We have a decomposition $\mathcal{J} = \mathcal{J}' \coprod \mathcal{J}''$, where \mathcal{J}' consists of those sequences (i_1, \ldots, i_k) such that k > 0 and $i_k < 0$. The complement \mathcal{J}'' has a further decomposition

$$\mathcal{J}'' = \mathcal{J}''(0) \coprod \mathcal{J}''(1) \coprod \dots$$

where $\mathcal{J}''(m)$ consists of those sequence (i_1, \ldots, i_k) which end with precisely k zeroes. For each $I \in \mathcal{J}''(k)$, let $I^+ \in \mathcal{J}''(k+1)$ be the result of appending a zero to the sequence I. We have a decomposition

$$\mathrm{H}^* \, \mathcal{F}(n) \simeq \mathbf{F}_2[\mathrm{Sq}^I \, \mu]_{I \in \mathcal{J}'} \otimes \mathbf{F}_2[\mathrm{Sq}^I \, \mu]_{I \in \mathcal{J}''}.$$

To complete the proof, it will suffice to show:

- (1) The polynomial ring $\mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}'}$ is also polynomial on the generators $\{X_I\}_{I \in \mathcal{J}'}$.
- (2) The polynomial ring $\mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}''}$ is also polynomial on the generators $\{X_I\}_{I \in \mathcal{J}''}$ and $\{\operatorname{Sq}^I \mu\}_{I \in \mathcal{J}''(0)}$.

Assertion (2) follows immediately from the observation that $X_I = \operatorname{Sq}^I \mu - \operatorname{Sq}^{I^+} \mu$ for $I \in \mathcal{J}''$. We can divide the proof of (1) further into three steps:

- (1*a*) The map θ : $\mathbf{F}_2[X_I]_{I \in \mathcal{J}'} \to \mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}'}$ is well-defined. In other words, if $I \in \mathcal{J}'$, then X_I belongs to $\mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}'}$.
- (1b) The map θ is injective.
- (1c) The map θ is surjective.

Assertion (1a) is an immediate consequence of the following:

Lemma 4. Let $I = (i_m, \ldots, i_1)$ be a sequence of integers with $i_1 < 0$. Then in \mathcal{A}^{Big} we have an equality

$$\operatorname{Sq}^{I}\operatorname{Sq}^{0}=\sum_{\alpha}\operatorname{Sq}^{J_{\alpha}}$$

where each J_{α} is an admissible sequence of the form (j_m, \ldots, j_0) , where $j_0 < 0$.

Proof. We first apply the Adem relations to write

$$Sq^{i_1} Sq^0 = \sum_k (2k - i_1, -k - 1) Sq^k Sq^{i_1 - k}.$$

The coefficient $(2k - i_1, -k - 1)$ vanishes unless

$$\frac{i_1}{2} \le k < 0.$$

We may therefore restrict our attention to those integers k for which $i_1 - k \leq \frac{i_1}{2} < 0$, so the sequence $I'(k) = (i_m, \ldots, i_2, k, i_1 - k)$ ends with a negative integer.

Each I'(k) can be rewritten as a sum of admissible monomials using the Adem relations. Let us analyze this process. Given a sequence

$$J = (j_m, \ldots, a, b, \ldots, j_0)$$

with a < 2b, we have

$$\operatorname{Sq}^{J} = \sum_{k} (2k - a, b - k - 1) \operatorname{Sq}^{J_{k}},$$

where J_k is obtained from J by replacing a by b+k and b by a-k. The coefficient (2k-a, b-k-1) vanishes unless $\frac{a}{2} \le k < b$; in particular, we always have $a-k \le \frac{a}{2} < b$. Thus, if the final entry in J is negative, the final entry in J_k will be negative. We now prove (1b). Recall that the cohomology ring $\mathrm{H}^* \mathcal{F}(n) \simeq \mathbf{F}_2[\mathrm{Sq}^I \mu]_{I \in \mathcal{J}}$ has a natural grading by rank, where $\mathrm{Sq}^I \mu$ has rank 2^k for every sequence $I = (i_1, \ldots, i_k)$. This grading restricts to a grading on $\mathbf{F}_2[\mathrm{Sq}^I \mu]_{I \in \mathcal{J}'}$. We have an analogous grading on $\mathbf{F}_2[X_I]_{I \in \mathcal{J}'}$, where we declare $\mathrm{rk}(X_I) = 2^k$ if $I = (i_1, \ldots, i_k)$.

The map $\theta: \mathbf{F}_2[X_I]_{I \in \mathcal{J}'} \to \mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}'}$ is not compatible with the gradings by rank. Instead we have

$$\theta(X_I) = \operatorname{Sq}^I \mu - \operatorname{Sq}^I \operatorname{Sq}^0 \mu = \operatorname{Sq}^I \mu + \text{ higher rank.}$$

We have an evident isomorphism $\theta' : \mathbf{F}_2[X_I]_{I \in \mathcal{J}'} \to \mathbf{F}_2[\operatorname{Sq}^I \mu]_{I \in \mathcal{J}'}$, given by $X_I \mapsto \operatorname{Sq}^I \mu$. Let $x \in \mathbf{F}_2[X_I]_{I \in \mathcal{J}'}$ be a nonzero element, and write x as a sum $x = x_{k_0} + x_{k_1} + \ldots + x_{k_m}$ of homogeoneous elements of ranks $k_0 < k_1 < \ldots < k_m$. Then we have

$$\theta(x) = \theta'(x) + \text{ terms of rank } i k$$

In particular, $\theta(x) = 0$ implies $\theta'(x_{k_0}) = 0$. Since θ' is an isomorphism, we get $x_{k_0} = 0$, a contradiction. This completes the proof that θ is injective.

We now prove that θ is surjective. This is an immediate consequence of the following statement:

Lemma 5. Let $I = (i_k, \ldots, i_1)$ be a sequence of integers with $i_1 < 0$ (not necessarily admissible). Then $\operatorname{Sq}^I \mu$ lies in the image of θ .

Proof. We use descending induction on i_1 . Observe that

$$\operatorname{Sq}^{I} \mu = (\operatorname{Sq}^{I} \mu - \operatorname{Sq}^{I} \operatorname{Sq}^{0} \mu) + (\operatorname{Sq}^{I} \operatorname{Sq}^{0} \mu) = \theta(X_{I}) + \operatorname{Sq}^{I} \operatorname{Sq}^{0} \mu.$$

It will therefore suffice to show that $\operatorname{Sq}^{I} \operatorname{Sq}^{0} \mu$ belongs to the image of θ . Using the Adem relations, we can write

$$\operatorname{Sq}^{I} \operatorname{Sq}^{0} = \sum_{k} (2k - i_{1}, -k - 1) \operatorname{Sq}^{I_{k}}$$

with $I_k = (i_k, \ldots, i_2, k, i_1 - k)$. The coefficient $(2k - i_1, -k - 1)$ vanishes unless $\frac{i_1}{2} \le k < 0$. This inequality forces

$$i_1 < i_1 - k \le \frac{i_1}{2} < 0.$$

Therefore Sq^{I_k} belongs to the image of θ by the inductive hypothesis.

Corollary 6. For each $n \ge 0$, the homotopy pullback square

of topological spaces determines a homotopy pushout square

of E_{∞} -algebras.

Proof. Theorem 1 implies that $C^*K(\mathbf{F}_2, n+1)$ is freely generated by a single class ν in degree (n+1), subject to the single relation killing $\nu - \operatorname{Sq}^0 \nu$. We can regard the homotopy pushout

$$\mathbf{F}_2 \otimes_{C^*K(\mathbf{F}_2,n+1)} \mathbf{F}_2$$

as the suspension of $C^*K(\mathbf{F}_2, n+1)$ in the world of (augmented) E_{∞} -algebras. Consequently, it has an analogous presentation as the free E_{∞} -algebra generated by a class $\Sigma(\nu)$ in degree n, subject to a single relation killing $\Sigma(\nu - \operatorname{Sq}^0 \nu)$. Since the Steenrod operation Sq^0 is stable, we can identify $\Sigma(\nu - \operatorname{Sq}^0 \nu)$ with $\Sigma(\nu) - \operatorname{Sq}^0 \Sigma(\nu)$. Applying Theorem 1 again, we can identify this suspension with $C^*K(\mathbf{F}_2, n)$. It is easy to see that this identification is given by the map

$$\mathbf{F}_2 \otimes_{C^*K(\mathbf{F}_2,n+1)} \mathbf{F}_2 \to C^*K(\mathbf{F}_2,n)$$

described in the statement of Corollary 6.