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A Pushout Square (Lecture 22)


In the last lecture we saw that the cohomology H∗ F(n) of the free E -algebra on one generator was itself∞
freely generated by one element, as an unstable algebra over the big Steenrod algebra ABig. The Cartan-Serre 
theorem implies that the cohomology ring H∗ K(F2, n) is the free unstable A-module on one generator, in 
the same degree. This suggests a close relationship between H∗ F(n) and H∗ K(F2, n). In fact, we can say 
more: there is a close relationship between the E∞-algebras F(n) and C∗K(F2, n) for each n ≥ 0. 

To make this precise, we begin by observing that the canonical element ν ∈ Hn K(F2, n) gives rise to a 
map of E -algebras∞

f : F(n) C∗K(F2, n).→ 

Let µ denote the canonical generator of H∗ F(n), so that f carries µ to ν. 
The map f is certainly not a homotopy equivalence. The target H∗ K(F2, n) is a module over the usual 

Steenrod algebra A, so that Sq0 acts by the identity on H∗ K(F2, n). However, Sq0 does not act by the 
identity on the cohomology of the left hand side. We therefore have 

f(µ − Sq0 µ) = f(µ) − Sq0 f(µ) = ν − Sq0 ν = 0, 

so that f fails to be injective on cohomology. 
However, this turns out to be the only obstruction to f being a homotopy equivalence. To make this 

precise, we observe that there is map g : F(n) F(n), which is determined up to homotopy by the→ 
requirement that g(µ) = µ − Sq0 µ ∈ Hn F(n). The above calculation shows that f ◦ g carries µ to zero in 
Hn K(F2, n). We therefore obtain a (homotopy) commutative diagram of E -algebras∞

F(n) 
g �� F(n) 

f 

F2 
�� C∗K(F2, n). 

Our goal in this lecture is to prove: 

Theorem 1. The above diagram is a homotopy pushout square in the category of E -algebras over F2.∞

In other words, the cochain complex C∗K(F2, n) has a very simple presentation as an E -algebra over∞
F2. It is “generated” by the tautological class ν ∈ Hn K(F2, n), and subject only to the “relation” that ν is 
fixed by Sq0 . 

To prove Theorem 1, we need to understand homotopy pushouts in the world of E -algebras. We first∞
recall the situation for ordinary commutative rings. Given a pair of commutative ring homomorphisms 

A R B,← → 

the pushout A B in the category of commutative rings is given by the relative tensor product A ⊗R B.R 
In the case of E -algebras, the situation is more or less identical. More precisely:∞
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Given an E -algebra R, there is a good theory of R-modules (or R-module spectra).• ∞

•	 Given any map R → A of E∞-algebras, we can regard A as an R-module. 

•	 Given an E∞-ring R, the collection of R-module spectra is endowed with a tensor product operation 
(M,N) �→ M ⊗R N . (More traditionally, this is denoted by M ∧R N and called the smash product over 
R). 

Given a pair of E -algebra maps •	 ∞
A R B, ← → 

the homotopy pushout of A and B over R in the setting of E -rings is again an R-algebra, and the ∞
underlying R-module is given by the tensor product A ⊗R B. 

Given these facts, we can restate Theorem 1. We have a canonical map 

F(n) ⊗F(n) F2 → C∗K(F2, n), 

and we wish to show that this map is a homotopy equivalence. In other words, we wish to show that it 
induces an isomorphism after passing to cohomology. The cohomology of the right side is given by the 
Cartan-Serre theorem: H∗ K(F2, n) can be identified with the polynomial ring on generators {SqI ν}, where 
I ranges over admissible positive sequences of excess < n. It therefore remains to compute the cohomology 
of the left hand side. 

The calculation will be based on the following lemma: 

Lemma 2. Let R be an E -algebra over F2, and let M and N be R-modules. Then H∗ M and H∗ N are ∞
modules over the cohomology ring H∗ R. Suppose that H∗ M is free as a graded H∗ R-module. Then the 
canonical map 

H∗ M ⊗H∗ R H∗ N → H∗(M ⊗R N) 

is an isomorphism. 

Proof. Choose elements {xi ∈ Hni M } which freely generate H∗ M as an H∗ R-module. Each xi determines 
a map of R-modules R[−ni] → M . Adding these together, we obtain a map ⊕R[−ni] → M . By assumption 
this map induces an isomorphism on cohomology, and is therefore a homotopy equivalence. Thus, M is a 
direct sum of free R-modules (in various degrees). 

Let us say that an R-module M is good if the canonical map 

H∗ M ⊗H∗ R H∗ N → H∗(M ⊗R N) 

is an isomorphism. Both the left hand side and the right hand side above are functors of M , which commute 
with shifting and with the formation of direct sums. Therefore, to show that ⊕R[−ni] is good, it will suffice 
to show that R is good. But this is clear, since 

H∗ R ⊗H∗ R H∗ N � H∗ N � H∗(R ⊗R N ). 

To prove Theorem 1, we will show that Lemma 2 applies: namely, that H∗ F(n) is free when regarded s 
an H∗ F(n)-module via the map g. It then follows that we have an isomorphism 

H∗(F(n) ⊗F(n) F2) � H∗ F(n) ⊗H∗ F(n) F2 = H∗ F(n)/I, 

where I is the ideal of H∗ F(n) generated by the elements g(x), where x ∈ H∗ F(n) has positive degree. 
In the last lecture, we proved that H∗ F(n) is isomorphic to the free unstable ABig-module F Big(n). It is Alg 

therefore isomorphic to a polynomial ring on generators {SqI µ}, where I ranges over admissible sequences 
of excess < n. For every such sequence I, we let XI = g(SqI µ) = SqI µ − SqI Sq0 µ ∈ H∗ F(n). To complete 
the proof of Theorem 1, it will suffice to verify the following: 
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Proposition 3. The cohomology ring H∗ F(n) is a polynomial ring on generators {XI }Iadmissible of excess <n 

and {SqI µ}Iadmissible and positive of excess <n. 

Proof. Let J denote the collection of all admissible sequences of integers of excess < n. We have a decom
position J = J� J��, where J� consists of those sequences (i1, . . . , ik) such that k > 0 and ik < 0. The 
complement J�� has a further decomposition 

J�� = J��(0) J��(1) . . . 

where J��(m) consists of those sequence (i1, . . . , ik) which end with precisely k zeroes. For each I ∈ J��(k), 
let I+ ∈ J��(k + 1) be the result of appending a zero to the sequence I. We have a decomposition 

H∗ F(n) � F2[SqI µ]I∈J� ⊗ F2[SqI µ]I∈J�� . 

To complete the proof, it will suffice to show: 

(1) The polynomial ring F2[SqI µ]I∈J� is also polynomial on the generators {XI }I∈J� . 

(2) The polynomial ring F2[SqI µ]I∈J�� is also polynomial on the generators {XI }I∈J�� and {SqI µ}I∈J��(0). 

Assertion (2) follows immediately from the observation that XI = SqI µ − SqI+ 

µ for I ∈ J��. We can 
divide the proof of (1) further into three steps: 

(1a) The map θ : F2[XI ]I∈J� → F2[SqI µ]I∈J� is well-defined. In other words, if I ∈ J�, then XI belongs to 
F2[SqI µ]I∈J� . 

(1b) The map θ is injective. 

(1c) The map θ is surjective. 

Assertion (1a) is an immediate consequence of the following: 

Lemma 4. Let I = (im, . . . , i1) be a sequence of integers with i1 < 0. Then in ABig we have an equality 

SqI Sq0 = SqJα 

α 

where each Jα is an admissible sequence of the form (jm, . . . , j0), where j0 < 0. 

Proof. We first apply the Adem relations to write 

Sqi1 Sq0 = (2k − i1, −k − 1) Sqk Sqi1−k . 
k 

The coefficient (2k − i1, −k − 1) vanishes unless 

i1 

2 
≤ k < 0. 

We may therefore restrict our attention to those integers k for which i1 − k ≤ i1 < 0, so the sequence 2 
I �(k) = (im, . . . , i2, k, i1 − k) ends with a negative integer. 

Each I �(k) can be rewritten as a sum of admissible monomials using the Adem relations. Let us analyze 
this process. Given a sequence 

J = (jm, . . . , a, b, . . . , j0) 

with a < 2b, we have � 
SqJ = (2k − a, b − k − 1) SqJk , 

k 

where Jk is obtained from J by replacing a by b + k and b by a − k. The coefficient (2k − a, b −k −1) vanishes 
unless a ≤ k < b; in particular, we always have a − k ≤ a < b. Thus, if the final entry in J is negative, the 2 2 
final entry in Jk will be negative. 
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We now prove (1b). Recall that the cohomology ring H∗ F(n) � F2[SqI µ]I∈J has a natural grading by 
rank, where SqI µ has rank 2k for every sequence I = (i1, . . . , ik). This grading restricts to a grading on 
F2[SqI µ]I∈J� . We have an analogous grading on F2[XI ]I∈J� , where we declare rk(XI ) = 2k if I = (i1, . . . , ik). 

The map θ : F2[XI ]I∈J� → F2[SqI µ]I∈J� is not compatible with the gradings by rank. Instead we have 

θ(XI ) = SqI µ − SqI Sq0 µ = SqI µ + higher rank. 

We have an evident isomorphism θ� : F2[XI ]I∈J� → F2[SqI µ]I∈J� , given by XI �→ SqI µ. Let x ∈ F2[XI ]I∈J� 

be a nonzero element, and write x as a sum x = xk0 + xk1 + . . . + xkm of homogeoneous elements of ranks 
k0 < k1 < . . . < km. Then we have 

θ(x) = θ�(x) + terms of rank ¿ k. 

In particular, θ(x) = 0 implies θ�(xk0 ) = 0. Since θ� is an isomorphism, we get xk0 = 0, a contradiction. 
This completes the proof that θ is injective. 

We now prove that θ is surjective. This is an immediate consequence of the following statement: 

Lemma 5. Let I = (ik, . . . , i1) be a sequence of integers with i1 < 0 (not necessarily admissible). Then 
SqI µ lies in the image of θ. 

Proof. We use descending induction on i1. Observe that 

SqI µ = (SqI µ − SqI Sq0 µ) + (SqI Sq0 µ) = θ(XI ) + SqI Sq0 µ. 

It will therefore suffice to show that SqI Sq0 µ belongs to the image of θ. Using the Adem relations, we can 
write � 

SqI Sq0 = (2k − i1, −k − 1) SqIk 

k 

with Ik = (ik, . . . , i2, k, i1 − k). The coefficient (2k − i1, −k − 1) vanishes unless i1 ≤ k < 0. This inequality2 
forces 

i1 < i1 − k ≤ 
i1 

< 0.
2 

Therefore SqIk belongs to the image of θ by the inductive hypothesis. 

Corollary 6. For each n ≥ 0, the homotopy pullback square 

K(F2, n) �� ∗ 

∗ �� K(F2, n + 1) 

of topological spaces determines a homotopy pushout square 

C∗K(F2, n) �� F2 

F2 
�� C∗K(F2, n + 1) 

of E -algebras.∞
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Proof. Theorem 1 implies that C∗K(F2, n + 1) is freely generated by a single class ν in degree (n + 1), 
subject to the single relation killing ν − Sq0 ν. We can regard the homotopy pushout 

F2 ⊗C∗K(F2 ,n+1) F2 

as the suspension of C∗K(F2, n + 1) in the world of (augmented) E -algebras. Consequently, it has an ∞
analogous presentation as the free E -algebra generated by a class Σ(ν) in degree n, subject to a single ∞
relation killing Σ(ν − Sq0 ν). Since the Steenrod operation Sq0 is stable, we can identify Σ(ν − Sq0 ν) with 
Σ(ν) − Sq0 Σ(ν). Applying Theorem 1 again, we can identify this suspension with C∗K(F2, n). It is easy to 
see that this identification is given by the map 

F2 ⊗C∗ K(F2,n+1) F2 → C∗K(F2, n) 

described in the statement of Corollary 6. 
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