MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Finiteness Conditions (Lecture 15)

Our goal in this lecture is to prove that the category \mathcal{U} of unstable \mathcal{A}-modules is locally Noetherian. We begin with by recalling a few definitions.

Definition 1. An object X of a Grothendieck abelian category \mathcal{C} is Noetherian if every ascending chain of subobjects

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \ldots
$$

eventually stabilizes.
We will say that a Grothendieck abelian category \mathcal{C} is locally Noetherian if every object $X \in \mathcal{C}$ is the direct limit of its Noetherian subobjects. direct limit

Remark 2. Suppose given an exact sequence

$$
0 \rightarrow X^{\prime} \rightarrow X \rightarrow X^{\prime \prime} \rightarrow 0
$$

in a Grothendieck abelian category \mathcal{C}. Then X is Noetherian if and only if X^{\prime} and $X^{\prime \prime}$ are Noetherian. The "only if" direction is clear: any infinite ascending sequence of subobjects of X^{\prime} or $X^{\prime \prime}$ gives rise to an infinite ascending sequence of subobjects of X. For the converse, we observe that an infinite ascending sequence of objects

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \ldots \subseteq X
$$

gives rise to a collection of long exact sequences

$$
0 \rightarrow X_{i} \cap X^{\prime} \rightarrow X_{i} \rightarrow\left(\operatorname{Im} X_{i} \rightarrow X^{\prime \prime}\right) \rightarrow 0
$$

If X^{\prime} and $X^{\prime \prime}$ are Noetherian, then the subobjects $X_{i} \cap X^{\prime}$ and $\operatorname{Im} X_{i} \rightarrow X^{\prime \prime}$ are independent of i for $i \gg 0$, so that X_{i} is also independent of i for $i \gg 0$.

In particular, the collection of Noetherian objects of \mathcal{C} is closed under finite direct sums.
Example 3. Let R be a (left) Noetherian ring. Then the category \mathcal{C} of (left) R-modules is locally Noetherian. An object $X \in \mathcal{C}$ is Noetherian if and only if it is finitely generated as an R-module.

The Steenrod algebra \mathcal{A} itself is not left Noetherian. For example, the left ideal of \mathcal{A} generated by $\left\{\mathrm{Sq}^{i}\right\}_{i>0}$ is not finitely generated. Nevertheless, we have the following analogue of Example 3:

Theorem 4. (1) The category \mathfrak{U} of unstable \mathcal{A}-algebras is locally Noetherian.
(2) An object $M \in \mathcal{U}$ is Noetherian if and only if it is finitely generated as a \mathcal{A}-module.

The implication $(2) \Rightarrow(1)$ is clear, since every object in \mathcal{U} is the direct limit of its finitely generated subobjects. The "only if" direction follows formally from the following observation:

Lemma 5. An object $M \in \mathcal{U}$ is Noetherian if and only if every submodule $M^{\prime} \subseteq M$ is finitely generated.

Proof. If $M^{\prime} \subseteq M$ is not finitely generated, then we can find an infinite ascending sequence of submodules

$$
\mathcal{A} x_{1} \subset \mathcal{A} x_{1}+\mathcal{A} x_{2} \subset \ldots \subseteq M^{\prime}
$$

by choosing each x_{i} to be an element of M^{\prime} which does not belong to the submodule generated by $\left\{x_{j}\right\}_{j<i}$.
Conversely, if M is not Noetherian, we can find an infinite ascending sequence of submodules

$$
M_{0} \subset M_{1} \subset M_{2} \subset \ldots
$$

Let $M^{\prime}=\bigcup M_{i} \subseteq M$. Then M^{\prime} cannot be finitely generated: if it were, then it would be generated by elements belonging to M_{n} for $n \gg 0$, so that $M_{n+1} \subseteq M_{n}$, contrary to our assumption.

We wish to prove that every finitely generated unstable \mathcal{A}-module M is Noetherian. In this case, we can write M as a quotient of a finite sum $\oplus_{i} F\left(n_{i}\right)$. Remark 2 implies that the collection of Noetherian objects of \mathcal{U} is stable under finite direct sums and quotients. In view of Lemma 5 , it will suffice to prove the following:

Theorem 6. Let $F(n)$ denote the free unstable \mathcal{A}-module on a single generator ν_{n} in degree n. Then every submodule $M \subseteq F(n)$ is finitely generated.

We will prove Theorem 6 using induction on n. The case $n=0$ is obvious. To handle the general case, we will need the following:

Lemma 7. Let M be an unstable \mathcal{A}-module. If ΩM is finitely generated and M^{0} is finitely generated, then M is finitely generated.

Proof. If ΩM is finitely generated, then $\Sigma \Omega M$ is finitely generated. In the last lecture, we saw that there is an exact sequence

$$
\Phi M \rightarrow M \rightarrow \Sigma \Omega M \rightarrow 0
$$

Choose a finite set of (homogeneous) generators $\left\{\bar{x}_{i}\right\}$ for $\Sigma \Omega M$, and lift them to (homogeneous) elements $\left\{x_{i} \in M\right\}$. Let N be the submodule of M generated by M^{0} and $\left\{x_{i}\right\}$. We claim that $N=M$. We will prove by induction that $N^{n}=M^{n}$ for all integers n. If $n=0$ there is nothing to prove. If n is odd, then the exact sequence above gives $M^{n} \simeq(\Sigma \Omega M)^{n}$, and the result is obvious. If $n=2 k>0$ is even, then our exact sequence can be rewritten

$$
M^{k} \xrightarrow{\mathrm{Sq}^{k}} M^{2 k} \rightarrow(\Sigma \Omega M)^{2 k} \rightarrow 0
$$

It is clear that $M^{2 k}$ is generated by $N^{2 k}$ together with the image of Sq^{k}. The inductive hypothesis guarantees that $\mathrm{Sq}^{k} M^{k}=\mathrm{Sq}^{k} N^{k} \subseteq N^{2 k}$, so that $M^{2 k}=N^{2 k}$ as desired.

We are now ready to proceed with the proof of Theorem 6.
We define an ascending chain of submodules

$$
M=M_{0} \subseteq M_{1} \subseteq \ldots \subseteq F(n)
$$

as follows: let M_{n} be defined so that $\Phi^{n} M_{n}$ is the inverse image of $M=M_{0}$ under the iterated Frobenius map

$$
\Phi^{n} F(n) \rightarrow \Phi^{n-1} F(n) \rightarrow \ldots \rightarrow F(n)
$$

We have for each $m \geq 0$ an exact sequence

$$
\Phi M_{m+1} \rightarrow M_{m} \rightarrow M_{m}^{\prime} \rightarrow 0
$$

where M_{m}^{\prime} denotes the image of M_{m} in $\Sigma \Omega F(n) \simeq \Sigma F(n-1)$. The inductive hypothesis implies that every ascending sequence of submodules of $F(n-1)$ stabilizes, so that $M_{m}^{\prime}=M_{m+1}^{\prime}$ for $m \geq m_{0}$.

We claim also that $M_{m}=M_{m+1}$ for $m \geq m_{0}$. To prove this, we show by induction on k that the sequence

$$
M_{m_{0}}^{k} \subseteq M_{m_{0}+1}^{k} \subseteq M_{m_{0}+2}^{k} \subseteq \ldots
$$

is constant. If $k=0$ there is nothing to prove. For $k>0$, we have exact sequences

$$
M_{m+1}^{\frac{k}{2}} \xrightarrow{\mathrm{Sq}^{\frac{k}{2}}} M_{m}^{k} \rightarrow M_{m}^{\prime k} \rightarrow 0
$$

(here the left term vanishes by convention if k is odd). The desired result follows from the inductive hypothesis (since $\frac{k}{2}<k$).

We now prove that each M_{m} is finitely generated, using descending induction on m. We observe that $\Sigma \Omega M_{m_{0}} \simeq M_{m_{0}}^{\prime}$ is a submodule of $\Sigma F(n-1)$, and therefore finitely generated by our inductive hypothesis. Therefore $M_{m_{0}}$ is finitely generated by Lemma 7 .

To handle the general case, we use the exact sequence

$$
\Phi M_{m+1} \rightarrow M_{m} \rightarrow M_{m}^{\prime} \rightarrow 0 .
$$

The inductive hypothesis guarantees that M_{m+1} is finitely generated. Let $\left\{x_{i}\right\}$ be a finite set of generators for M_{m+1}. Then $\left\{\Phi\left(x_{i}\right)\right\}$ is a finite set of generators for ΦM_{m+1}. Let $\left\{y_{i}\right\}$ denote the images of these generators in M_{m}. Since M_{m}^{\prime} is a submodule of $\Sigma F(n-1)$, we deduce that M_{m}^{\prime} is generated by a finite set of elements $\left\{\bar{z}_{j}\right\}$. Choose elements $\left\{z_{j}\right\}$ in M_{m} which lift these elements. It is now clear that M_{m} is generated by the finite set $\left\{y_{i}\right\} \cup\left\{z_{j}\right\}$. This completes the proof of Theorem 6 .

Our next goal in this lecture is to prove the following result:
Proposition 8. The collection of finitely generated unstable \mathcal{A}-modules is closed under the formation of tensor products.

In other words, we wish to show that if M and N are finitely generated, then $M \otimes N$ is finitely generated. We can write M as a quotient some finite sum $\oplus_{i} F\left(m_{i}\right)$, so that $M \otimes N$ is a quotient of some finite sum $\oplus_{i}\left(F\left(m_{i}\right) \otimes N\right)$. It will therefore suffice to show that each $F\left(m_{i}\right) \times N$ is finitely generated. Applying the same argument to N, we are reduced to proving the following special case of Proposition 8:

Proposition 9. For every pair of nonnegative integers $m, n \geq 0$, the tensor product $F(m) \otimes F(n)$ is finitely generated.

To prove Proposition 9, we first recall the structure of the free unstable \mathcal{A}-module $F(n)$. Let X denote a product of n copies of $\mathbf{R} P^{\infty}$, so that $\mathrm{H}^{*}(X) \simeq \mathbf{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Then we can identify $F(n)$ with the \mathcal{A} submodule of $\mathrm{H}^{*}(X)$ generated by the element $t_{1} \ldots t_{n} \in \mathrm{H}^{n}(X)$. Moreover, we have an explicit description of this submodule: it consists of those polynomials $f\left(t_{1}, \ldots, t_{n}\right)$ which are symmetric and whose exponents involve only powers of 2 . In particular, $F(1)$ can be identified with the \mathcal{A}-module of $\mathbf{F}_{2}[t]$ spanned by $\left\{t, t^{2}, t^{4}, \ldots\right\}$. We can therefore identify $F(n)$ with the submodule of $F(1)^{\otimes n}$ spanned by the symmetric polynomials: in other words, we have an isomorphism

$$
F(n) \simeq\left(F(1)^{\otimes n}\right)^{\Sigma_{n}} \subseteq F(1)^{\otimes n}
$$

Let us turn to the proof of Proposition 9. We have an inclusion

$$
F(m) \otimes F(n) \subseteq\left(F(1)^{\otimes m}\right) \otimes\left(F(1)^{\otimes n}\right) \simeq F(1)^{\otimes m+n}
$$

Since the collection of finitely generated unstable \mathcal{A}-modules is closed under the formation of subobjects, it will suffice to prove the following:

Proposition 10. For each $n \geq 0$, the \mathcal{A}-module $F(1)^{\otimes n}$ is finitely generated.
The proof goes by induction on n, the case $n=0$ being obvious. To handle the general case, we use Lemma 7: it will suffice to show that $\Sigma \Omega F(1)^{\otimes n}$ is finitely generated. We observe that $F(1)^{\otimes n}$ can be identified with the submodule of $\mathbf{F}_{2}\left[t_{1}, \ldots, t_{n}\right]$ spanned by monomials of the form $t_{1}^{2^{b_{1}}} \ldots t_{n}^{2_{n}}$. We have an exact sequence

$$
\Phi F(1)^{\otimes n} \xrightarrow{f} F(1)^{\otimes n} \rightarrow \Sigma \Omega F(1)^{\otimes n} \rightarrow 0
$$

The map f can be identified with the usual Frobenius map which sends each element to its square. Its image consists of the span of those monomials $t_{1}^{2^{b_{1}}} \ldots t_{n}^{2_{n}}$ such that each b_{i} is positive.

Consequently, $\Sigma \Omega F(1)^{\otimes n}$ can be identified with a submodule of

$$
\oplus_{1 \leq i \leq n} F(1)^{\otimes i} \otimes \Sigma \mathbf{F}_{2} \otimes F(1)^{\otimes n-i-1} \simeq \oplus_{1 \leq i \leq n} \Sigma F(1)^{\otimes n-1}
$$

which is finitely generated by the inductive hypothesis.

