MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Injectivity of Tensor Products (Lecture 17)

Our goal in this lecture is to prove the following result:
Theorem 1. Let n and k be nonnegative integers. Then the tensor product $K(n) \otimes J(k)$ is an injective object in the category of unstable \mathcal{A}-modules.

We begin with some general remarks. For every nonnegative integer p, the Brown-Gitler module $J(p)$ comes equipped with a canonical functional $J(p)^{p} \rightarrow \mathbf{F}_{2}$. Given a pair of integers $p, q \geq 0$, we obtain an induced map

$$
(J(p) \otimes J(q))^{p+q} \rightarrow J(p)^{p} \otimes J(q)^{q} \rightarrow \mathbf{F}_{2} \otimes F_{2} \simeq \mathbf{F}_{2},
$$

which induces a map

$$
\mu_{p, q}: J(p) \otimes J(q) \rightarrow J(p+q)
$$

The proof of Theorem 1 depends on the following observation:
Lemma 2. Fix nonnegative integers n, k, and a. Then the map

$$
\mu_{2^{p} n, k}^{a}:\left(J\left(2^{p} n\right) \otimes J(k)\right)^{a} \rightarrow J\left(2^{p} n+k\right)^{a}
$$

is an isomorphism for $p \gg 0$.
We now give the proof of Theorem 1, assuming Lemma 2. For each $m \geq 0$, let $f: J(2 m) \rightarrow J(m)$ be the map of Brown-Gitler modules corresponding to the Steenrod operation Sq^{m}. For $0 \leq p \leq q$, let $F_{p, q}: J\left(2^{q} n\right) \rightarrow J\left(2^{p} n\right)$ denote the composition

$$
J\left(2^{q} n\right) \xrightarrow{f} \ldots \xrightarrow{f} J\left(2^{p} n\right) .
$$

We will construct a sequence of integers $0=p_{0}<p_{1}<p_{2}<\ldots$ and maps $G_{i}: J\left(2^{p_{i+1}} n+k\right) \rightarrow J\left(2^{p_{i}} n+k\right)$ such that the diagrams

are commutative. In fact, the existence and uniqueness of G_{i} are clear as soon as the upper horizontal map is an isomorphism in degree $2^{p_{i}} n+k$. Lemma 2 implies that this is true provided that p_{i+1} is chosen large enough.

By definition, the Carlsson module $K(n)$ is defined to be the inverse limit of the sequence

$$
\ldots \rightarrow J(4 n) \rightarrow J(2 n) \xrightarrow{f} J(n)
$$

It can equally well be defined as the inverse limit of the subsequence

$$
\ldots \rightarrow J\left(2^{p_{2}} n\right) \rightarrow J\left(2^{p_{1}} n\right) \rightarrow J\left(2^{p_{0}} n\right)
$$

Since $J(k)$ is finite dimensional, we can identify $K(n) \otimes J(k)$ with the inverse limit of the sequence

$$
\ldots \rightarrow J\left(2^{p_{2}} n\right) \otimes J(k) \rightarrow J\left(2^{p_{1}} n\right) \otimes J(k) \rightarrow J\left(2^{p_{0}} n\right) \otimes J(k)
$$

The multiplication maps $\mu_{2^{p_{i}}, k}$ determine a homomorphism from this inverse system to the inverse system

$$
\ldots \rightarrow J\left(2^{p_{2}} n+k\right) \xrightarrow{G_{1}} J\left(2^{p_{1}} n+k\right) \xrightarrow{G_{0}} J\left(2^{p_{0}} n+k\right)
$$

For every $a \geq 0$, Lemma 2 guarantees that $\mu_{2^{p_{i}} n, k}$ is an isomorphism in degree a for $i \gg 0$. Consequently, we get an isomorphism of inverse limits

$$
K(n) \otimes J(k) \simeq \lim \left\{J\left(2^{p_{i}}+k\right)\right\}_{i \geq 0}
$$

In the last lecture, we saw that any inverse limit of Brown-Gitler modules is injective. It follows that $K(n) \otimes J(k)$ is injective, as desired.

We now turn to the proof of Lemma 2. The domain of $\mu_{2^{p} n, k}^{a}$ can be identified with the direct sum

$$
\oplus_{a=a^{\prime}+a^{\prime \prime}} J\left(2^{p} n\right)^{a^{\prime}} \otimes J(k)^{a^{\prime \prime}}
$$

Recall that, for every pair of integers x and y, we have canonical isomorphisms

$$
J(x)^{y} \simeq \operatorname{Hom}_{\mathcal{A}}(F(y), J(x))=\left(F(y)^{x}\right)^{\vee}
$$

Using these isomorphisms, we can identify $\mu_{2^{p} n, k}^{a}$ with the dual of the canonical map

$$
\phi: F(a)^{2^{p} n+k} \rightarrow \oplus_{a=a^{\prime}+a^{\prime \prime}} F\left(a^{\prime}\right)^{2^{p} n} \otimes F\left(a^{\prime \prime}\right)^{k}
$$

Let us identify $F(m)$ with the subspace of the polynomial ring $\mathbf{F}_{2}\left[t_{1}, \ldots, t_{m}\right]$ consisting of symmetric additive polynomials. For each monomial $f=t_{1}^{i_{1}} \ldots t_{m}^{i_{m}}$, let $\sigma(f)$ denote the symmetrization of f as in Lecture 7, so that f appears in $\sigma(f)$ with multiplicity one. Then $F(a)^{2^{p} n+k}$ has a basis consisting of the symmetrizations of monomials of the form

$$
t_{1}^{2_{1}^{i_{1}}} \ldots t_{a}^{2^{i_{a}}}
$$

where $i_{1} \leq i_{2} \leq \ldots \leq i_{a}$, and $\sum 2^{i_{j}}=2^{p} n+k$. If $p \gg 0$, then Lemma 3 below implies that there exists a unique $a^{\prime \prime} \leq a$ such that

$$
\begin{gathered}
2^{i_{1}}+\ldots+2^{i_{a^{\prime \prime}}}=k \\
2^{i_{a^{\prime \prime}}+1}+\ldots+2^{i_{a}}=2^{p} n
\end{gathered}
$$

We now observe that ϕ carries $\sigma\left(t_{1}^{i_{1}} \ldots t_{a}^{2_{a}}\right)$ to the tensor product

$$
\sigma\left(t_{1}^{2^{i^{a^{\prime \prime}+1}}} \ldots t_{a^{\prime}}^{2^{i a}}\right) \otimes \sigma\left(t_{1}^{2^{i_{1}}} \ldots t_{a^{\prime \prime}}^{2^{i} a^{\prime \prime}}\right)
$$

and that these tensor products form a basis for

$$
\oplus_{a=a^{\prime}+a^{\prime \prime}} F\left(a^{\prime}\right)^{2^{p} n} \otimes F\left(a^{\prime \prime}\right)^{k}
$$

It remains only to verify:
Lemma 3. Fix nonnegative integers n, k, and a. Then for every sufficiently large integer p and every equation

$$
2^{p} n+k=2^{i_{1}}+\ldots+2^{i_{a}}
$$

there exists a unique partition $\{1, \ldots, a\}=J \coprod J^{\prime}$, such that

$$
\begin{aligned}
2^{p} n & =\sum_{j \in J} 2^{i_{j}} \\
k & =\sum_{j \in J^{\prime}} 2^{i_{j}}
\end{aligned}
$$

Proof. Let 2^{b} be the smallest power of 2 larger than k. We will prove that the assertion is true provided that Let $J_{0}=\left\{1 \leq j \leq a: i_{j}>b\right\}$, and let $J_{0}^{\prime}=\left\{1 \leq j \leq a: i_{j} \leq b\right\}$.

It is clear that any decomposition $\{1, \ldots, a\}=J \coprod J^{\prime}$ must satisfy $J^{\prime} \subseteq J_{0}^{\prime}$: otherwise, we have

$$
\sum_{j \in J^{\prime}} 2^{i_{j}}>2^{b} \geq k
$$

We will show that $\sum_{j \in J_{0}^{\prime}} 2^{i_{j}}=k$ provided that p is sufficiently large. Then the containment $J^{\prime} \subseteq J_{0}^{\prime}$ forces $J^{\prime}=J_{0}^{\prime}$, so that $\left(J_{0}, J_{0}^{\prime}\right)$ is the unique partition with the desired property.

Since every base 2-digit of k must appear in the sum $2^{i_{1}}+\ldots+2^{i_{a}}$, we deduce that $\sum_{j \in J_{0}^{\prime}} 2^{i_{j}} \geq k$. Let $k^{\prime}=\left(\sum_{j \in J_{0}^{\prime}} 2^{i_{j}}\right)-k$. We wish to prove that $k^{\prime}=0$. Suppose otherwise. We note that $k^{\prime} \leq a 2^{b}$. Moreover, the sum

$$
k^{\prime}+\sum_{j \in J_{0}} 2^{i_{j}}=2^{p} n
$$

is divisible by 2^{p}. It follows that the largest nonzero digit of k^{\prime} is at least 2^{p-a}. On the other hand, k^{\prime} is bounded above by $a 2^{b}$, which is $\left\langle 2^{p-a}\right.$ provided that $p \gg 0$.

