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The Adem Relations (Lecture 4)


Remark 1. Throughout this lecture, we will work over the field F2 with two elements. If X is a topological 
space, we will simply write H (X) and H∗(X) to denote the homology and cohomology of X with coefficients∗
in F2. Similarly, we let C (X) and C∗(X) denote the chain and cochain complexes of X, respectively.∗

Our goal in this lecture is to prove the Adem relations. We begin by describing our context. For any 
chain complex V , we have defined the nth extended power Dn(V ) = Vh

⊗
Σ
n 
n 
. We now observe that there is a 

canonical map 
φ : Dm(Dn(V )) Dmn(V ).→ 

More concretely, the left hand side is given by 

(V ⊗n )⊗m � V ⊗mn 
hΣn hΣm hG , 

where G denotes the wreath product Σm � Σm. The right hand side is simply given by V ⊗mn . The map φn hΣmn 

is induced by the inclusion of finite groups G � Σmn.→ 

Definition 2. Let V be a complex equipped with a symmetric multiplication m : D2(V ) V . We will say 
that m is good if there exists a map m� : D4(V ) → V such that the diagram 

→ 

D2(D2(V ))
D2 (m) �� D2(V ) 

φ m 

��
D4(V ) m� ��

�� V. 

Example 3. Let V be an E -algebra over the field F2. Then the symmetric multiplication on V is good. In∞
particular, if X is a topological space then the cochain complex C∗(X) has a good symmetric multiplication. 

Notation 4. Let i and j be integers. We let �� � � � 

(i, j) = 
i+

i
j = i+

j
j = (ii

+
!j
j
!
)! if i, j ≥ 0 

. 
0 otherwise. 

We will regard (i, j) as taking values in the finite field F2. We observe that if i, j ≥ 0, then (i, j) is equal to 
1 if the sum of i and j in base 2 can be computed “without carrying”, and equal to zero otherwise. 

Our goal in this lecture is to prove the following: 

Proposition 5 (Adem Relations). Let V be a complex equipped with a good symmetric multiplication, and 
let v ∈ Hn(V ). For any pair of integers a < 2b, we have 

Sqa Sqb(v) = (2k − a, b − k − 1) Sqb+k Sqa−k(v). 
k 
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Actually, we will not give a complete proof in this lecture. We will instead show how to reduce the 
statement of Proposition 5 from a calculation in the homology of groups (Lemma ??). This calculation will 
be carried out in the next lecture. 

Remark 6. The sum appearing in Proposition 5 is actually finite, since (2k − a, b − k − 1) vanishes unless 
a ≤ 2k < 2b. 

Definition 7. Let F2{. . . , Sq−1 , Sq0 , Sq1 , . . .} denote the free associative F2-algebra generated by the sym
bols {Sqi}i∈Z. The big Steenrod algebra ABig is defined to be the quotient of F2{. . . , Sq−1 , Sq0 , Sq1 , . . .} by 
imposing the Adem relations 

Sqa Sqb = (2k − a, b − k − 1) Sqb+k Sqa−k . 
k 

for every a < 2b. 
We observe that ABig the structure of a graded algebra, where each generator Sqi is given degree i. A 

module over the big Steenrod algebra ABig is a graded vector space V over the field F2, equipped with an 
action ABig ⊗V → V which respects the grading: if v ∈ V is homogeneous of degree n, then Sqk(v) is 
homogeneous of degree n + k. We will say that V is unstable if, whenever Sqk(v) vanishes whenever v is 
homogeneous of degree < k. 

Example 8. Let V be a complex equipped with a good symmetric multiplication. Then Proposition 5 
implies that the cohomology H∗(V ) has the structure of a unstable ABig-module. 

Definition 9. The Steenrod algebra A is defined to be the quotient of ABig by the (two-sided) ideal generated 
by the element 1 − Sq0 . We will say that a (graded) A-module is unstable if it is unstable when regarded as 
an ABig-module. 

Example 10. Let X be a topological space. Since Sq0 acts by the identity on the cohomology H∗(X), we 
conclude that H∗(X) has the structure of an unstable module over the Steenrod algebra. 

Remark 11. In the last lecture, we saw another feature of the action of Steenrod operations on the co
homology of spaces: the operations Sq−a vanish for a > 0. In fact, this is a formal consequence of Adem 
relations and the fact that Sq0 acts by the identity. In other words, for a > 0 the element Sq−a is equal to 
zero in the Steenrod algebra A. We will prove this by induction on a. For this, we invoke the Adem relations 
to deduce � 

Sq−a = Sq−a Sq0 = (2k + a, −k − 1) Sqk Sq−a−k . 
k 

a aIf k ≥ 0 or − < k, then the coefficient (2k + a, −k − 1) vanishes. But if − ≤ k < 0, then Sq−a−k is equal 2 2 
to zero in A by the inductive hypothesis. 

We now turn to the proof of Proposition 5. We begin with the following observation: 

Remark 12. Recall that if V is a complex equipped with a symmetric multiplication, then ΩV inherits a 
symmetric multiplication, and the isomorphism 

H∗(V ) � H∗+1(ΩV ) 

is compatible with the action of the Steenrod operations. The same argument shows that if V has a good 
symmetric multiplication, then the induced symmetric multiplication is also good. Consequently, in proving 
Proposition 5 we are free to replace V by any shift Ωn� 

(V ). In other words, we are free to enlarge the degree 
n of the cohomology class v. 

The formula of Proposition 5 looks very assymetric: the left hand side has only one term, while the 
right hand side has many terms. We will deduce Proposition 5 from the following more symmetric looking 
assertion: 
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Lemma 13. Let p and q be positive integers, let V be a complex with a good symmetric multiplication, and 
let v ∈ Hn(V ). Then we have an equality � 

(p − 2l, l) Sq2n−q−l Sqn−p+l(v) = 
� 

(q − 2l�, l�) Sq2n−p−l� 

Sqn−q−l� 

(v) 
l l� 

in H4n−p−q(V ). 

Assuming Lemma 13, we can now prove Proposition 5. 

Proof. Choose an integer m � 0. According to Remark 12, we are free to enlarge n as much as we like; in 
particular, we can choose n = 2m − 1 + b. We will now apply Lemma 13 with p = 2m − 1 and q = 2n − a. 
Let us now evaluate both sides of the expression appearing in Lemma 13. The left hand side is given by 

(2m − 1 − 2l, l) Sqa−l Sqb+l(v). 
l 

The coefficient (2m − 1 − 2l, l) obviously vanishes if l < 0, or if l ≥ 2m−1 . If 0 < l < 2m−1, then we can 
write l = 2x + 2x+1y, where 0 ≤ x ≤ m − 2. We now observe that 2x appears in the base 2 expansion of 
both 2m − 1 − 2l and l, so the coefficient (2m − 1 − 2l, l) vanishes. It follows that the left hand side consists 
of only one nonzero term, given by the expression Sqa Sqb(v). 

We now evaluate the right hand side. Let k = 2m + b − l� − 1, so that the left hand sum can be written as 

(2k − a, 2m + b − k − 1) Sqb+k Sqa−k(v). 
k 

To complete the proof, it will suffice to show that for every integer k, either 

(2k − a, 2m + b − k − 1) = (2k − a, b − k − 1) 

or Sqb+k Sqa−k(v) vanishes. We consider four cases: 

(i) 2k < a: In this case, we have 

(2k − a, 2m + b − k − 1) = (2k − a, b − k − 1) = 0. 

(ii) a ≤ 2k < 2b: In this case, 2k − a < 2b − a ≤ 2m . It follows that (2k − a, z) = (2k − a, z + 2m) for every 
nonnegative integer x (see Notation 4). 

(iii) 2b ≤ 2k < a + 2m: The expression (2k − a, b − k − 1) vanishes in this case. Moreover, we have 
2k − a ≥ 2b − a > 0, so we can choose a nonnegative integer y such that 2y ≤ 2k − a ≤ 2y+1 − 1. Our 
assumption implies that y < m. Since 2k ≤ 2y+1 + a − 1 ≤ 2y+1 +2b − 2, we deduce that k − b +1 ≤ 2y. 
We now observe that 2y appears in the base 2 expansion of both 2k − a and 2m − (k − b + 1), so the 
expression (2k − a, 2m + b − k − 1) vanishes. 

(iv) a + 2m ≤ 2k: In this case, we have 

deg(Sqa−k(v)) = (a − k) + n = (a − k) + (2m + b − 1). 

Since a +2m ≤ 2k, we get deg(Sqa−k(v)) ≤ k + b − 1 < k + b. Thus Sqk+b Sqa−k(v) vanishes for reasons 
of degree. 

We now turn to the proof of Lemma 13. As usual, the equation among Steenrod operations on a complex 
V with a symmetric multiplication is an immediate consequence of the following more universal relation, 
which holds for any complex V : 
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Lemma 14. Let V be a complex, let p and q be positive integers, and let v ∈ Hn(V ). Then the sums 

(p − 2l, l) Sq
2n−q−l 

Sq
n−p+l

(v) ∈ H4n−p−q(D2(D2(V )) 
l 

(q − 2l�, l�) Sq
2n−p−l� 

Sq
n−p+l� 

(v) ∈ H4n−p−q (D2(D2(V ))) 
l� 

have the same image in H4n−p−q(D4(V )) under the map φ : D2(D2(V )) D4(V ).→ 

To prove Lemma 14, we may assume that V � F2[−n] is generated by the cohomology class v. In this 
case, D4(V ) � V ⊗4 can be identified with a (4n)-fold shift of the chain complex C (BΣ4). Similarly, hΣ4 ∗

D2(D2(V )) � D2(C (BΣ2)[−2n]) � D2(C (BΣ2))[−4n]∗ ∗

can be identified with a shift of the chain complex C (BG), where G is the semidirect product Σ2 × Σ2 �∗
Σ2, which we can identify with a 2-Sylow subgroup of Σ4. Let us use our usual basis {xi}i≤0 for the 
homology H (BΣ2). As we saw in the second lecture, this determines a basis for H (BG) � H−∗ D2(C (BΣ2),∗ ∗ ∗

consisting of pairwise products {xixj }i<j and Steenrod operations {Sq
k 
xi}k≤−i. We have an isomorphism 

H (BG) � H4n−∗(D2(D2(V ))),∗

which carries Sq
k 
xi to Sq

2n+k 
Sq

n−i
(v). Consequently, Lemma 14 is an immediate consequence of the 

following assertion: 

Lemma 15. Let p and q be positive integers. Then the expressions 

(p − 2l, l) Sq
−q−l 

xp−l ∈ Hp+q(BG) 
l 

(q − 2l�, l�) Sq
−p−l� 

xq−l� ∈ Hp+q(BG) 
l 

have the same image in Hp+q(BΣ4). 

We will prove Lemma 15 in the next lecture. 
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