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The Dual Steenrod Algebra (Lecture 13)


We have seen that the Steenrod algebra A admits a comultiplication map A ⊗ A → A, described by the 
formula � 

Sqn �→ Sqn� 

⊗ Sqn�� 

. 
n=n�+n�� 

This comultiplication map is obviously symmetric, and therefore endows the graded dual A∨ = ⊕n(An)∨ 

with the structure of a commutative ring. Our goal in this lecture is to understand the structure of A∨. 
For the remainder of this lecture, we will work in the category of (affine) schemes over the field F2. (In 

other words, we work in the opposite to the category of commutative F2-algebras.) 
The noncommutative multiplication on A induces a comultiplication map A∨ A∨ ⊗ A∨, which in turn 

determines a map of F2-schemes 
→ 

Spec A∨ × Spec A∨ → Spec A∨ . 

This map exhibits Spec A∨ as a group scheme over the field F2. Let us henceforth denote this group scheme 
by G. 

For every topological space X, the Steenrod algebra acts on the cohomology ring H∗(X) via a map 
A ⊗ H∗(X) → H∗(X). If the cohomology ring H∗(X) is finite dimensional, then we can transpose this action 
to obtain a map 

H∗(X) → H∗(X) ⊗ A∨ . 

Rephrasing this in the language of algebraic geometry, we get a map 

G × Spec H∗(X) → Spec H∗(X). 

This map endows the scheme Spec H∗(X) with an action of the group scheme G. 
If H∗(X) is not finite-dimensional, then we need to be a bit more careful. Suppose instead that H∗(X) 

is finite dimensional in each degree. For each n ≥ 0, the direct sum Rn = ⊕0≤k≤n Hk(X) can be viewed as 
a quotient of the cohomology ring H∗(X), and inherits the structure of an unstable A-algebra. Using the 
above argument, we obtain an action 

G × Spec Rn → Spec Rn. 

Moreover, if n = 1, then this action is trivial. 
Let us now specialize to the case where X is the space RP ∞. In this case, the cohomology ring H∗(X) 

is isomorphic to F2[t]. We therefore have isomorphisms Rn � F2[t]/(tn+1) for n ≥ 0. For each n ≥ 0, there 
exists a group scheme parametrizing automorphisms of Spec Rn which induce the identity on Spec R1. We 
will denote this group scheme by Hn. By definition, Hn has the following universal property: 

Hom(Spec B,Hn) � Hom0(Spec B × Spec Rn, Spec Rn) � Hom0(F2[t]/(tn+1, B[t]/(tn+1) � t + t2B/(tn+1B), 

(here the superscripts indicate the requirement that the morphism reduce to the identity on R1) so Hn is 
just isomorphic to an (n − 1)-dimensional affine space An . Let H∞ denote the inverse limit of the tower 

. . . H2 → H1 → H0,→ 
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so that H is the infinite dimensional affine space which is the automorphism group of the formal scheme ∞
Spf F2[[t]]. More concretely, we are just saying that every automorphism of the power series ring B[[t]] which 
reduces to the identity modulo t2 is given by a transformation 

t �→ t + b1t
2 + b2t

3 + . . . , 

so we get an identification H∞ � Spec F2[b1, b2, . . .] 
The above analysis gives us a map of group schemes φ : G → H∞. Our first result is: 

Proposition 1. The map φ : G H is a monomorphism. → ∞ 

To prove this, let G0 ⊆ G be the kernel of the homomorphism φ. Then G0 acts trivially on the formal 
spectrum Spf H∗(RP ∞). It follows that the diagonal action of G0 on 

Spf H∗(RP ∞) × . . . × Spf H∗(RP ∞) � Spf H∗((RP ∞)k) 

is trivial for all k. 
We observe that G0 = Spec C, where C is some Hopf algebra quotient of the dual Steenrod algebra A∨. 

It is not difficult to see that C inherits a grading from A∨, so that the graded dual C∨ can be identified with 
a subalgebra of the Steenrod algebra A. The above analysis shows that C∨ acts trivially on the cohomology 
H∗((RP ∞)k) for all k ≥ 0. We claim that C∨ � F2. If not, then we can find some nonconstant element of 
C∨ of the form α SqIα , where Iα ranges over some collection of admissible positive sequences. Choosing k 
larger than the excess of each Iα, we see that C∨ acts nontrivially on t1 . . . tk ∈ Hk((RP ∞)k), a contradiction. 
Thus C∨ � F2, so G0 � Spec F2 and the map φ is a monomorphism as desired. 

We now wish to describe the image of the map φ. For this, we observe that the formal affine line 
Â1 � Spf F2[[t]] is isomorphic to the formal additive group over the field F2. In other words, we have an 
addition map 

Â1 × Â1 → Â1 , 

which is described in coordinates by the map of power series rings 

F2[[t]] F2[[t1, t2]]→ 

t− > t1 + t2. 

In fact, this map comes from topology. The group Σ2 is abelian, so the multiplication map 

Σ2 × Σ2 → Σ2 

is a group homomorphism. It follows that we obtain a map of classifying spaces 

BΣ2 × BΣ2 � B(Σ2 × Σ2) → BΣ2. 

The induced map on cohomology 

H∗(RP ∞) → H∗(RP ∞ × RP ∞) 

is also described by the formula 
t �→ t1 + t2. 

It follows that the action of the Steenrod algebra A is compatible with the comultiplication on H∗(RP ∞). 
In other words, the action of the group scheme G = Spec A∨ on the formal affine line Â1 preserves the group 
structure on Â1 . 

Let End(A1) denote the subgroup scheme of H which preserves the group structure on A1 . We note ∞
that a B-valued point of H is an automorphism of B[[t]] of the form ∞ 

t �→ t + b1t
2 + b2t

3 + . . . . 
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This B-valued point belong to End(A1) if and only if the power series f(t) = t + b1t2 + b2t3 + . . . is additive, 
in the sense that f(t1 + t2) = f(t1) + f(t2) ∈ B[[t1, t2]]. Since we are working in characteristic 2, additivity 
is equivalent to the requirement that the terms bi−1t

i vanish unless i is a power of 2. In other words, we can 
identify End(A1) with the infinite dimensional affine space parametrizing power series of the form 

t + b1t
2 + b3t

4 + b7t
8 + . . . . 

Theorem 2. The map φ induces an isomorphism G End(A1).→ 

In other words, we claim that the corresponding map of commutative rings 

ψ : F2[b1, b3, b7, . . .] A∨→ 

is an isomorphism. Proposition 1 implies that ψ is surjective. Moreover, ψ is a map of graded rings, where 
each bi is regarded as having degree i. It will therefore suffice to show that the algebras F2[b1, b3, b7, . . .] and 
A∨ have the same dimensions in each degree. 

Fix an integer n ≥ 0. The nth graded piece of F2[b1, b3, b7, . . .] is spanned by monomials 

b�1 
1 b�3 

2 b�7 
3 . . . , 

which are indexed by sequences of nonnegative integers (�1, �2, . . .) satisfying − 1)�k = n. 
We have also seen that the the Steenrod algebra A has a basis consisting of expressions SqI = Sqi1 Sqi2 

(2k 
k

. . . Sqim , 
where the quantities 

δk = 

⎧ ⎪⎨ ⎪⎩ 

ik − 2ik+1 if k < m 

im if k = m 

0 if k > m 

are required to be nonnegative. Moreover, we have 

ik = δk + 2δk+1 + 4δk+2 + . . . 

so that the total degree of SqI is 

2m 

k>0 k>0,m≥0 k�>0 

ik = δk+m = δk� (2k� 

− 1). 

We therefore obtain a bijection from a basis of F2[b1, b3, . . .]n to a basis of An, given by the correspondence 

(�1, �2, . . .) (δ1, δ2, δ3, . . .).↔ 

Remark 3. In fact, more is true: the bijection described above is actually upper-triangular with respect to 
duality between A and F2[b1, b3, . . .] determined by the ring homomorphism ψ. This is implicit in our proof 
that the admissible monomials are linearly independent in A. 

Corollary 4. The dual Steenrod algebra A∨ is isomorphic to a polynomial ring F2[b1, b3, b7, . . .]. 

We can describe the comultiplication on A∨ (and therefore the multiplication on A) very concretely 
in terms of the isomorphism of Corollary 4. This comultiplication correpsonds to the group structure on 
End(A1): in other words, it corresponds to composition of transformations having the form t �→ t + b1t2 + 
b3t

4 + . . . . Let f(t) = −1t
2i 

t2
j

and g(t) = Thenb�2jb2i .i≥0 j≥0 −1

(f ◦ g)(t) = b2i−1(b�2j −1)
2i 2i+j 

t . 
i,j≥0 
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Consequently, the comultiplication on the ring F2[b1, b3, . . .] can be described by the formula 

b2k −1 �→ b2i−1 ⊗ b22
i

j −1. 
k=i+j 

Here we include the extreme possibilities i = 0 and j = 0, in which case we agree to the convention that 
b0 = 1 ∈ F2[b1, b3, . . .]. 

Remark 5. The results above describe the dual Steenrod algebra A∨ as the algebra of functions on the 
algebraic group G � End(A1). We get a dual description of the Steenrod algebra A itself as an algebra 
of distributions on the group G: namely, A is isomorphic to the space of distributions on G which are 
set-theoretically supported at the identity. In this language, the (noncommutative) multiplication on A is 
induced by convolution. 
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