MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

The Dual Steenrod Algebra (Lecture 13)

We have seen that the Steenrod algebra \mathbf{A} admits a comultiplication map $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$, described by the formula

$$
\mathrm{Sq}^{n} \mapsto \sum_{n=n^{\prime}+n^{\prime \prime}} \mathrm{Sq}^{n^{\prime}} \otimes \mathrm{Sq}^{n^{\prime \prime}}
$$

This comultiplication map is obviously symmetric, and therefore endows the graded dual $\mathcal{A}^{\vee}=\oplus_{n}\left(\mathcal{A}^{n}\right)^{\vee}$ with the structure of a commutative ring. Our goal in this lecture is to understand the structure of \mathcal{A}^{\vee}.

For the remainder of this lecture, we will work in the category of (affine) schemes over the field \mathbf{F}_{2}. (In other words, we work in the opposite to the category of commutative \mathbf{F}_{2}-algebras.)

The noncommutative multiplication on \mathcal{A} induces a comultiplication map $\mathcal{A}^{\vee} \rightarrow \mathcal{A}^{\vee} \otimes \mathcal{A}^{\vee}$, which in turn determines a map of \mathbf{F}_{2}-schemes

$$
\operatorname{Spec} \mathcal{A}^{\vee} \times \operatorname{Spec} \mathcal{A}^{\vee} \rightarrow \operatorname{Spec} \mathcal{A}^{\vee} .
$$

This map exhibits $\operatorname{Spec} \mathcal{A}^{\vee}$ as a group scheme over the field \mathbf{F}_{2}. Let us henceforth denote this group scheme by G.

For every topological space X, the Steenrod algebra acts on the cohomology ring $\mathrm{H}^{*}(X)$ via a map $\mathcal{A} \otimes \mathrm{H}^{*}(X) \rightarrow \mathrm{H}^{*}(X)$. If the cohomology ring $\mathrm{H}^{*}(X)$ is finite dimensional, then we can transpose this action to obtain a map

$$
\mathrm{H}^{*}(X) \rightarrow \mathrm{H}^{*}(X) \otimes \mathcal{A}^{\vee}
$$

Rephrasing this in the language of algebraic geometry, we get a map

$$
G \times \operatorname{Spec}^{*}(X) \rightarrow \operatorname{Spec} \mathrm{H}^{*}(X)
$$

This map endows the scheme $\operatorname{Spec} \mathrm{H}^{*}(X)$ with an action of the group scheme G.
If $\mathrm{H}^{*}(X)$ is not finite-dimensional, then we need to be a bit more careful. Suppose instead that $\mathrm{H}^{*}(X)$ is finite dimensional in each degree. For each $n \geq 0$, the direct sum $R_{n}=\oplus_{0 \leq k \leq n} \mathrm{H}^{k}(X)$ can be viewed as a quotient of the cohomology ring $\mathrm{H}^{*}(X)$, and inherits the structure of an unstable \mathcal{A}-algebra. Using the above argument, we obtain an action

$$
G \times \operatorname{Spec} R_{n} \rightarrow \operatorname{Spec} R_{n}
$$

Moreover, if $n=1$, then this action is trivial.
Let us now specialize to the case where X is the space $\mathbf{R} P^{\infty}$. In this case, the cohomology ring $\mathrm{H}^{*}(X)$ is isomorphic to $\mathbf{F}_{2}[t]$. We therefore have isomorphisms $R_{n} \simeq \mathbf{F}_{2}[t] /\left(t^{n+1}\right)$ for $n \geq 0$. For each $n \geq 0$, there exists a group scheme parametrizing automorphisms of Spec R_{n} which induce the identity on Spec R_{1}. We will denote this group scheme by H_{n}. By definition, H_{n} has the following universal property:
$\operatorname{Hom}\left(\operatorname{Spec} B, H_{n}\right) \simeq \operatorname{Hom}^{0}\left(\operatorname{Spec} B \times \operatorname{Spec} R_{n}, \operatorname{Spec} R_{n}\right) \simeq \operatorname{Hom}^{0}\left(\mathbf{F}_{2}[t] /\left(t^{n+1}, B[t] /\left(t^{n+1}\right) \simeq t+t^{2} B /\left(t^{n+1} B\right)\right.\right.$,
(here the superscripts indicate the requirement that the morphism reduce to the identity on R_{1}) so H_{n} is just isomorphic to an ($n-1$)-dimensional affine space \mathbf{A}^{n}. Let H_{∞} denote the inverse limit of the tower

$$
\ldots \rightarrow H_{2} \rightarrow H_{1} \rightarrow H_{0}
$$

so that H_{∞} is the infinite dimensional affine space which is the automorphism group of the formal scheme $\operatorname{Spf} \mathbf{F}_{2}[[t]]$. More concretely, we are just saying that every automorphism of the power series ring $B[[t]]$ which reduces to the identity modulo t^{2} is given by a transformation

$$
t \mapsto t+b_{1} t^{2}+b_{2} t^{3}+\ldots
$$

so we get an identification $H_{\infty} \simeq \operatorname{Spec} \mathbf{F}_{2}\left[b_{1}, b_{2}, \ldots\right]$
The above analysis gives us a map of group schemes $\phi: G \rightarrow H_{\infty}$. Our first result is:
Proposition 1. The map $\phi: G \rightarrow H_{\infty}$ is a monomorphism.
To prove this, let $G_{0} \subseteq G$ be the kernel of the homomorphism ϕ. Then G_{0} acts trivially on the formal spectrum $\operatorname{Spf} \mathrm{H}^{*}\left(\mathbf{R} P^{\infty}\right)$. It follows that the diagonal action of G_{0} on

$$
\operatorname{Spf}_{\mathrm{H}^{*}}\left(\mathbf{R} P^{\infty}\right) \times \ldots \times \operatorname{Spf} \mathrm{H}^{*}\left(\mathbf{R} P^{\infty}\right) \simeq \operatorname{Spf} \mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{k}\right)
$$

is trivial for all k.
We observe that $G_{0}=\operatorname{Spec} C$, where C is some Hopf algebra quotient of the dual Steenrod algebra \mathcal{A}^{\vee}. It is not difficult to see that C inherits a grading from \mathcal{A}^{\vee}, so that the graded dual C^{\vee} can be identified with a subalgebra of the Steenrod algebra \mathcal{A}. The above analysis shows that C^{\vee} acts trivially on the cohomology $\mathrm{H}^{*}\left(\left(\mathbf{R} P^{\infty}\right)^{k}\right)$ for all $k \geq 0$. We claim that $C^{\vee} \simeq \mathbf{F}_{2}$. If not, then we can find some nonconstant element of C^{\vee} of the form $\sum_{\alpha} \mathrm{Sq}^{I_{\alpha}}$, where I_{α} ranges over some collection of admissible positive sequences. Choosing k larger than the excess of each I_{α}, we see that C^{\vee} acts nontrivially on $t_{1} \ldots t_{k} \in \mathrm{H}^{k}\left(\left(\mathbf{R} P^{\infty}\right)^{k}\right)$, a contradiction. Thus $C^{\vee} \simeq \mathbf{F}_{2}$, so $G_{0} \simeq \operatorname{Spec} \mathbf{F}_{2}$ and the map ϕ is a monomorphism as desired.

We now wish to describe the image of the map ϕ. For this, we observe that the formal affine line $\hat{\mathbf{A}}^{1} \simeq \operatorname{Spf} \mathbf{F}_{2}[[t]]$ is isomorphic to the formal additive group over the field \mathbf{F}_{2}. In other words, we have an addition map

$$
\hat{\mathbf{A}}^{1} \times \hat{\mathbf{A}}^{1} \rightarrow \hat{\mathbf{A}}^{1}
$$

which is described in coordinates by the map of power series rings

$$
\begin{aligned}
& \mathbf{F}_{2}[[t]] \rightarrow \mathbf{F}_{2}\left[\left[t_{1}, t_{2}\right]\right] \\
& t->t_{1}+t_{2} .
\end{aligned}
$$

In fact, this map comes from topology. The group Σ_{2} is abelian, so the multiplication map

$$
\Sigma_{2} \times \Sigma_{2} \rightarrow \Sigma_{2}
$$

is a group homomorphism. It follows that we obtain a map of classifying spaces

$$
B \Sigma_{2} \times B \Sigma_{2} \simeq B\left(\Sigma_{2} \times \Sigma_{2}\right) \rightarrow B \Sigma_{2}
$$

The induced map on cohomology

$$
\mathrm{H}^{*}\left(\mathbf{R} P^{\infty}\right) \rightarrow \mathrm{H}^{*}\left(\mathbf{R} P^{\infty} \times \mathbf{R} P^{\infty}\right)
$$

is also described by the formula

$$
t \mapsto t_{1}+t_{2} .
$$

It follows that the action of the Steenrod algebra \mathcal{A} is compatible with the comultiplication on $\mathrm{H}^{*}\left(\mathbf{R} P^{\infty}\right)$. In other words, the action of the group scheme $G=\operatorname{Spec} \mathcal{A}^{\vee}$ on the formal affine line $\hat{\mathbf{A}}^{1}$ preserves the group structure on $\hat{\mathbf{A}}^{1}$.

Let $\operatorname{End}\left(\mathbf{A}^{1}\right)$ denote the subgroup scheme of H_{∞} which preserves the group structure on \mathbf{A}^{1}. We note that a B-valued point of H_{∞} is an automorphism of $B[[t]]$ of the form

$$
t \mapsto t+b_{1} t^{2}+b_{2} t^{3}+\ldots
$$

This B-valued point belong to $\operatorname{End}\left(\mathbf{A}^{1}\right)$ if and only if the power series $f(t)=t+b_{1} t^{2}+b_{2} t^{3}+\ldots$ is additive, in the sense that $f\left(t_{1}+t_{2}\right)=f\left(t_{1}\right)+f\left(t_{2}\right) \in B\left[\left[t_{1}, t_{2}\right]\right]$. Since we are working in characteristic 2 , additivity is equivalent to the requirement that the terms $b_{i-1} t^{i}$ vanish unless i is a power of 2 . In other words, we can identify $\operatorname{End}\left(\mathbf{A}^{1}\right)$ with the infinite dimensional affine space parametrizing power series of the form

$$
t+b_{1} t^{2}+b_{3} t^{4}+b_{7} t^{8}+\ldots .
$$

Theorem 2. The map ϕ induces an isomorphism $G \rightarrow \operatorname{End}\left(\mathbf{A}^{1}\right)$.
In other words, we claim that the corresponding map of commutative rings

$$
\psi: \mathbf{F}_{2}\left[b_{1}, b_{3}, b_{7}, \ldots\right] \rightarrow \mathcal{A}^{\vee}
$$

is an isomorphism. Proposition 1 implies that ψ is surjective. Moreover, ψ is a map of graded rings, where each b_{i} is regarded as having degree i. It will therefore suffice to show that the algebras $\mathbf{F}_{2}\left[b_{1}, b_{3}, b_{7}, \ldots\right]$ and \mathcal{A}^{\vee} have the same dimensions in each degree.

Fix an integer $n \geq 0$. The nth graded piece of $\mathbf{F}_{2}\left[b_{1}, b_{3}, b_{7}, \ldots\right]$ is spanned by monomials

$$
b_{1}^{\epsilon_{1}} b_{3}^{\epsilon_{2}} b_{7}^{\epsilon_{3}} \ldots
$$

which are indexed by sequences of nonnegative integers $\left(\epsilon_{1}, \epsilon_{2}, \ldots\right)$ satisfying $\sum_{k}\left(2^{k}-1\right) \epsilon_{k}=n$.
We have also seen that the the Steenrod algebra \mathcal{A} has a basis consisting of expressions $\mathrm{Sq}^{I}=\mathrm{Sq}^{i_{1}} \mathrm{Sq}^{i_{2}} \ldots \mathrm{Sq}^{i_{m}}$, where the quantities

$$
\delta_{k}= \begin{cases}i_{k}-2 i_{k+1} & \text { if } k<m \\ i_{m} & \text { if } k=m \\ 0 & \text { if } k>m\end{cases}
$$

are required to be nonnegative. Moreover, we have

$$
i_{k}=\delta_{k}+2 \delta_{k+1}+4 \delta_{k+2}+\ldots
$$

so that the total degree of Sq^{I} is

$$
\sum_{k>0} i_{k}=\sum_{k>0, m \geq 0} \delta_{k+m} 2^{m}=\sum_{k^{\prime}>0} \delta_{k^{\prime}}\left(2^{k^{\prime}}-1\right)
$$

We therefore obtain a bijection from a basis of $\mathbf{F}_{2}\left[b_{1}, b_{3}, \ldots\right]^{n}$ to a basis of \mathcal{A}^{n}, given by the correspondence

$$
\left(\epsilon_{1}, \epsilon_{2}, \ldots\right) \leftrightarrow\left(\delta_{1}, \delta_{2}, \delta_{3}, \ldots\right) .
$$

Remark 3. In fact, more is true: the bijection described above is actually upper-triangular with respect to duality between \mathcal{A} and $\mathbf{F}_{2}\left[b_{1}, b_{3}, \ldots\right]$ determined by the ring homomorphism ψ. This is implicit in our proof that the admissible monomials are linearly independent in \mathcal{A}.

Corollary 4. The dual Steenrod algebra \mathcal{A}^{\vee} is isomorphic to a polynomial ring $\mathbf{F}_{2}\left[b_{1}, b_{3}, b_{7}, \ldots\right]$.
We can describe the comultiplication on \mathcal{A}^{\vee} (and therefore the multiplication on \mathcal{A}) very concretely in terms of the isomorphism of Corollary 4. This comultiplication correpsonds to the group structure on $\operatorname{End}\left(\mathbf{A}^{1}\right)$: in other words, it corresponds to composition of transformations having the form $t \mapsto t+b_{1} t^{2}+$ $b_{3} t^{4}+\ldots$. Let $f(t)=\sum_{i \geq 0} b_{2^{i}-1} t^{2^{i}}$ and $g(t)=\sum_{j \geq 0} b_{2^{j}-1}^{\prime} t^{2^{j}}$. Then

$$
(f \circ g)(t)=\sum_{i, j \geq 0} b_{2^{i}-1}\left(b_{2^{j}-1}^{\prime}\right)^{2^{i}} t^{2^{i+j}}
$$

Consequently, the comultiplication on the ring $\mathbf{F}_{2}\left[b_{1}, b_{3}, \ldots\right]$ can be described by the formula

$$
b_{2^{k}-1} \mapsto \sum_{k=i+j} b_{2^{i}-1} \otimes b_{2^{j}-1}^{2^{i}}
$$

Here we include the extreme possibilities $i=0$ and $j=0$, in which case we agree to the convention that $b_{0}=1 \in \mathbf{F}_{2}\left[b_{1}, b_{3}, \ldots\right]$.

Remark 5. The results above describe the dual Steenrod algebra \mathcal{A}^{\vee} as the algebra of functions on the algebraic group $G \simeq \operatorname{End}\left(\mathbf{A}^{1}\right)$. We get a dual description of the Steenrod algebra \mathcal{A} itself as an algebra of distributions on the group G : namely, \mathcal{A} is isomorphic to the space of distributions on G which are set-theoretically supported at the identity. In this language, the (noncommutative) multiplication on \mathcal{A} is induced by convolution.

