MIT OpenCourseWare
http://ocw.mit.edu

### 18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Admissible Monomials (Lecture 6)

Recall that we have define the big Steenrod algebra $\mathcal{A}^{\text {Big }}$ to be the quotient of the free associated $\mathbf{F}_{2^{-}}$ algebra

$$
\mathbf{F}_{2}\left\{\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right\}
$$

obtained by imposing the Adem relations:

$$
\mathrm{Sq}^{a} \mathrm{Sq}^{b}=\sum_{k}(2 k-a, b-k-1) \mathrm{Sq}^{b+k} \mathrm{Sq}^{a-k}
$$

for $a<2 b$, and the Steenrod algebra $\mathcal{A}$ to be the quotient of of $\mathcal{A}^{\text {Big }}$ by imposing the further relation $\mathrm{Sq}^{0}=1$. Our goal in this lecture is to explain some consequences of the Adem relations for the structure of the algebras $\mathcal{A}^{\text {Big }}$ and $\mathcal{A}$.

We say that a monomial $\mathrm{Sq}^{a} \mathrm{Sq}^{b}$ is admissible if $a \geq 2 b$. If $\mathrm{Sq}^{a} \mathrm{Sq}^{b}$ is not admissible, then the Adem relations allow us rewrite the monomial $\mathrm{Sq}^{a} \mathrm{Sq}^{b}$ as a linear combination of other monomials. We observe that the coefficient $(2 k-a, b-k-1)$ appearing in the Adem relations vanishes unless $\frac{a}{2} \leq k<b$. Using the inequality $k \geq \frac{a}{2}$, we deduce

$$
b+k \geq b+\frac{a}{2}>\frac{a}{2}+\frac{a}{2}=2\left(a-\frac{a}{2}\right) \geq 2(a-k)
$$

In other word, the Adem relations allow us rewrite each inadmissible expression $\mathrm{Sq}^{a} \mathrm{Sq}^{b}$ as a sum of admissible monomials.

We would like to generalize the preceding observation. For every sequence of integers $I=\left(i_{n}, i_{n-1}, \ldots, i_{0}\right)$, we let $\mathrm{Sq}^{I}$ denote the product $\mathrm{Sq}^{i_{n}} \mathrm{Sq}^{i_{n-1}} \ldots \mathrm{Sq}^{i_{0}}$. We will say that the sequence $I$ is admissible if

$$
i_{j} \geq 2 i_{j-1}
$$

for $1 \leq j \leq n$. In this case, we will also say that $\mathrm{Sq}^{I}$ is an admissible monomial.
Proposition 1. The big Steenrod algebra $\mathcal{A}^{\text {Big }}$ is spanned (as an $\mathbf{F}_{2}$-vector space) by the admissible monomials $\mathrm{Sq}^{I}$. The usual Steenrod algebra $\mathcal{A}$ is spanned by the admissible monomials $\mathrm{Sq}^{I}$ where $I$ is a sequence of positive integers.

Proof. Recall that $\mathrm{Sq}^{i}$ is equal to zero in $\mathcal{A}$ if $i<0$. It follows that $\mathrm{Sq}^{I}$ vanishes in $\mathcal{A}$ unless $I$ is a sequence of nonnegative integers. Moreover, if $I^{\prime}$ is the sequence of integers obtained from $I$ by deleting all occurences of 0 , then $\mathrm{Sq}^{I}=\mathrm{Sq}^{I^{\prime}}$ in $\mathcal{A}$ (since $\mathrm{Sq}^{0}=1$ ); moreover, if $\mathrm{Sq}^{I}$ is admissible then $\mathrm{Sq}^{I^{\prime}}$ is also admissible. Thus, the second assertion follows from the first.

The idea of the proof is now simple: let $I$ be an arbitrary sequence of integers. We wish to show that we can use the Adem relations to rewrite $\mathrm{Sq}^{I}$ as a linear combination of admissible monomials. The proof will use inducation. In order to make the induction work, we will need the following slightly stronger inductive hypothesis:
(*) Let $I=\left(i_{n}, \ldots, i_{0}\right)$ be a sequence of integers, and let $x$ be an integer such that $i_{j} \leq 2^{j} x$ for $0 \leq j \leq n$. Then in $\mathcal{A}^{\text {Big }}$ there is a relation of the form

$$
\mathrm{Sq}^{I}=\sum_{\alpha} \mathrm{Sq}^{I(\alpha)}
$$

where each $I(\alpha)=\left(i_{n}(\alpha), \ldots, i_{0}(\alpha)\right)$ is an admissible sequence satisfying $i_{j}(\alpha)<2^{j} x$ for $0 \leq j \leq n$.
We will prove this result by induction on $n$. For fixed $n$ and $x$, we will use descending induction on $i_{n}$ (this is justified since $i_{n}$ is bounded above by $2^{n} x$, by assumption).

If $n=0$, then assertion $(*)$ is vacuous, since the expression $\mathrm{Sq}^{I}$ is automatically admissible. Let us therefore assume that $n>0$. Let $I=\left(i_{n}, \ldots, i_{0}\right)$, and let $I^{\prime}=\left(i_{n-1}, \ldots, i_{0}\right)$. By the inductive hypothesis, we get an equation of the form

$$
\mathrm{Sq}^{I^{\prime}}=\sum_{\beta} \mathrm{Sq}^{I^{\prime}(\beta)}
$$

so that

$$
\mathrm{Sq}^{I}=\mathrm{Sq}^{i_{n}} \mathrm{Sq}^{I^{\prime}}=\sum_{\beta} \mathrm{Sq}^{i_{n}} \mathrm{Sq}^{I^{\prime}(\beta)}
$$

It therefore suffices to prove $(*)$ for the sequences $\left(i_{n}, i_{n-1}(\beta), \ldots, i_{0}(\beta)\right)$. In other words, we may assume without loss of generality that the sequence $I^{\prime}=\left(i_{n-1}, \ldots, i_{0}\right)$ is already admissible.

If $i_{n} \geq 2 i_{n-1}$, then the sequence $I$ is admissible and there is nothing to prove. Otherwise, we can invoke the Adem relations to deduce

$$
\mathrm{Sq}^{i_{n}} \mathrm{Sq}^{i_{n-1}}=\sum_{k}\left(2 k-i_{n}, i_{n-1}-k-1\right) \mathrm{Sq}^{i_{n-1}+k} \mathrm{Sq}^{i_{n}-k}
$$

The terms on the right side vanish unless $\frac{i_{n}}{2} \leq k<i_{n-1}$. In particular, we get

$$
\begin{gathered}
i_{n-1}+k<2 i_{n-1} \leq 2^{n} x \\
i_{n}-k \leq i_{n}-\frac{i_{n}}{2} \leq 2^{n-1} x
\end{gathered}
$$

so that the new sequence $J=\left(i_{n-1}+k, i_{n}-k, i_{n-2}, \ldots, i_{0}\right)$ satisfies the hypotheses of $(*)$. Moreover,

$$
i_{n-1}+k>\frac{i_{n}}{2}+\frac{i_{n}}{2}=i_{n}
$$

so the inductive hypothesis implies that $\mathrm{Sq}^{J}$ can be rewritten in the desired form.
Scholium 2. Let $\mathcal{B}$ be the subspace of $\mathcal{A}^{\text {Big }}$ generated by $\mathrm{Sq}^{I}$, where $I=\left(i_{n}, \ldots, i_{0}\right)$ is an admissible sequence of nonpositive integers. Then $\mathcal{B}$ is a subalgebra of $\mathcal{A}^{\mathrm{Big}}$.

Proof. Apply ( $*$ ) in the case $x=0$.
The subalgebra $\mathcal{B} \subseteq \mathcal{A}^{\text {Big }}$ is usually called the Dyer-Lashof algebra.
Proposition 1 is subsumed by the following stronger result:
Proposition 3. The admissible monomials $\mathrm{Sq}^{I}$ form a basis for the big Steenrod algebra $\mathcal{A}^{\text {Big }}$. The admissible monomials of the form $\mathrm{Sq}^{I}$, where $I$ is a sequence of positive integers, form a basis for the usual Steenrod algebra $\mathcal{A}$.

Proposition 1 already implies that $\mathcal{A}^{\text {Big }}$ is generated (as a vector space) by the admissible monomials. Hence, the only thing we need to check is that the admissible monomials are linearly independent. This is a consequence of a more precise result, which we now formulate. First, we recall a bit of terminology. Let $M$ be a module over $\mathcal{A}^{\text {Big }}$ (always assumed to be graded). We say that $M$ is unstable if $\mathrm{Sq}^{k}(m)=0$ whenever $k>\operatorname{deg}(m)$.

Let $I=\left(i_{n}, i_{n-1}, \ldots, i_{0}\right)$ be an admissible sequence of integers, so we can write $i_{j}=2 i_{j-1}+\epsilon_{j}$ where $\epsilon_{j} \geq 0$. The sum $\epsilon_{n}+\ldots+\epsilon_{1}+i_{0}$ is called the excess of $I$. Our reason for introducing this notion is the following:

Lemma 4. Let $M$ be an unstable $\mathcal{A}^{\text {Big }-m o d u l e, ~ a n d ~ l e t ~} I=\left(i_{n}, \ldots, i_{0}\right)$ be an admissible sequence of integers. Then $\mathrm{Sq}^{I}(m)$ vanishes whenever the excess of $I$ is larger than the degree of $m$.

Proof. Let $I^{\prime}=\left(i_{n-1}, \ldots, i_{0}\right)$. To show that $\mathrm{Sq}^{I}(m)$ vanishes, it will suffice to show that $i_{n}>\operatorname{deg}\left(\mathrm{Sq}^{I^{\prime}}(m)\right)$. We now observe that

$$
i_{n}-\operatorname{deg}\left(\operatorname{Sq}^{I^{\prime}}(m)\right)=i_{n}-\left(i_{n-1}+\ldots+i_{0}+\operatorname{deg}(m)\right)=\left(i_{n}-2 i_{n-1}\right)+\left(i_{n-1}-2 i_{n-2}\right)+\ldots+i_{0}-\operatorname{deg}(m)
$$

is positive if the excess of $I$ is larger than the degree of $m$.
Given any graded $\mathcal{A}^{\text {Big }}$-module $M$, we can construct an unstable $\mathcal{A}^{\text {Big }}$-module by taking the quotient of $M$ by the submodule generated by elements of the form $\mathrm{Sq}^{i}(m), i>\operatorname{deg}(m)$. In particular, if we take $M$ to
 which we will denote by $\mathrm{F}^{\text {Big }}(n)$ : we call $\mathrm{F}^{\text {Big }}(n)$ the free unstable $\mathcal{A}^{\text {Big }}$-module on one generator in degree $n$. There is a canonical element $\bar{\nu}_{n} \in \mathrm{~F}^{\mathrm{Big}}(n)^{n}$. By construction, this element has the following universal property: if $N$ is any unstable $\mathcal{A}^{\text {Big }}$-module, then evaluation at $\bar{\nu}_{n}$ induces an isomorphism of $\mathbf{F}_{2}$-vector spaces $\operatorname{Hom}_{\mathcal{A}}{ }^{\text {Big }}\left(\mathrm{F}^{\mathrm{Big}}(n), N\right) \rightarrow N^{n}$.

Similarly, we can define the free unstable $\mathcal{A}$-module on a generator in degree $\nu_{n}$, which we will denote by $F(n)$.

Proposition 3 is an immediate consequence of the following result:
Proposition 5. Let $n$ be an integer. Then:
(1) The free unstable $\mathcal{A}^{\text {Big }}$-module $\mathrm{F}^{B \mathrm{ig}}(n)$ has a basis consisting of elements $\mathrm{Sq}^{I} \bar{\nu}_{n}$, where $I$ is an admissible sequence of excess $\leq n$.
(2) The free unstable $\mathcal{A}$-module $F(n)$ has a basis consisting of elements $\mathrm{Sq}^{I} \nu_{n}$, where $I$ is an admissible sequence of positive integers of excess $\leq n$.

Once again, half of Proposition 5 is clear: since $\mathcal{A}^{\text {Big }}$ is generated by admissible monomials, $\mathrm{F}^{\mathrm{Big}}(n)$ is generated by expressions of the form $\mathrm{Sq}^{I} \bar{\nu}$, where $I$ is admissible. Lemma 4 implies that $\mathrm{Sq}^{I} \bar{\nu}$ vanishes if $I$ has excess $>n$. Thus $\mathrm{F}^{\mathrm{Big}}(n)$ is generated by admissible monomials $\mathrm{Sq}^{I} \bar{\nu}_{n}$, where $I$ is admissible and has excess $\leq n$. The same reasoning shows that $F(n)$ is generated by elements of the form $\mathrm{Sq}^{I} \nu_{n}$, where $I$ is admissible, positive and has excess $\leq n$.

To complete the proof of Proposition 5, we need to show:
(1') The elements $\left\{\operatorname{Sq}^{I} \bar{\nu}_{n}\right\}$ are linearly independent in $\mathrm{F}^{\mathrm{Big}}(n)$, where $I$ ranges over admissible sequences of excess $\leq n$.
(2') The elements $\left\{\mathrm{Sq}^{I} \nu_{n}\right\}$ are linearly independent in $F(n)$, where $I$ ranges over positive admissible sequences of excess $\leq n$.

Our strategy is as follows. Let $M$ be an unstable module over the Steenrod algebra $\mathcal{A}$, and let $v \in M^{n}$. Then, by construction, we get an induced map $F(n) \rightarrow M$ of modules over the Steenrod algebra. To show that the generators $\left\{\mathrm{Sq}^{I} \nu_{n}\right\}$ are linearly independent in $F(n)$, it will suffice to show that the elements $\left\{\mathrm{Sq}^{I} v\right\}$ are linearly independent in $M$. It will therefore suffice to find a particularly clever choice for the pair
$(M, v)$. Fortunately, we have a host of examples of modules unstable $\mathcal{A}$-modules to choose from: namely, the cohomology $\mathrm{H}^{*}(X)$ of any space $X$ is an unstable $\mathcal{A}$-module. We will therefore be able to deduce $\left(2^{\prime}\right)$ by finding a sufficiently nontrivial example of a cohomology class on a topological space. We will return to this point in the next lecture.

Let us assume $\left(2^{\prime}\right)$ for the moment, and show how to use $\left(2^{\prime}\right)$ can be used to deduce $\left(1^{\prime}\right)$. The proof is based on the following observation:

Lemma 6. Let $n$ and $p$ be integers. Then there is a canonical isomorphism of vector spaces

$$
\phi: \mathrm{F}^{B \mathrm{ig}}(n) \rightarrow \mathrm{F}^{B \mathrm{ig}}(n+p)
$$

described by the formula

$$
\mathrm{Sq}^{i_{m}} \ldots \mathrm{Sq}^{i_{1}} \mathrm{Sq}^{i_{0}} \bar{\nu}_{n} \mapsto \mathrm{Sq}^{i_{m}+2^{k} p} \ldots \mathrm{Sq}^{i_{1}+2 p} \mathrm{Sq}^{i_{0}+p} \bar{\nu}_{n+p}
$$

Proof. The above formula defines a map

$$
\widetilde{\phi}: \mathbf{F}_{2}\left\{\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^{0}, \ldots\right\} \bar{\nu}_{n} \rightarrow \mathbf{F}_{2}\left\{\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^{0}, \ldots\right\} \bar{\nu}_{n+p}
$$

of free modules over the free algebra $R=\mathbf{F}_{2}\left\{\ldots, \mathrm{Sq}^{-1}, \mathrm{Sq}^{0}, \mathrm{Sq}^{1}, \ldots\right\}$. To show that $\phi$ is well-defined, we need to show that $\widetilde{\phi}$ descends to the quotient. This amounts to two observations:
(a) Let $J$ denote the two-sided ideal of $R$ generated by the Adem relations. Then $\widetilde{\phi}$ carries $J \bar{\nu}_{n}$ into $J \bar{\nu}_{n+p}$. This amounts to a "translation-invariance" feature of the Adem relations: if $a<2 b$, then we have an Adem relation

$$
\mathrm{Sq}^{a} \mathrm{Sq}^{b}=\sum_{k}(2 k-a, b-k-1) \mathrm{Sq}^{b+k} \mathrm{Sq}^{a-k}
$$

But we also have $\left(a+2^{l} p\right)<2\left(b+2^{l-1} p\right)$, and a corresponding Adem relation

$$
\mathrm{Sq}^{a+2^{l} p} \mathrm{Sq}^{b+2^{l-1} p}=\sum_{k}\left(2 k-a-2^{l} p, b+2^{l-1}-k-1\right) \mathrm{Sq}^{b+2^{l-1} p+k} \mathrm{Sq}^{a+2^{l} p-k}
$$

Letting $k^{\prime}=k+2^{l-1} p$, we can rewrite this as

$$
\mathrm{Sq}^{a+2^{l} p} \mathrm{Sq}^{b+2^{l-1} p}=\sum_{k^{\prime}}\left(2 k^{\prime}-a, b-k^{\prime}-1\right) \mathrm{Sq}^{b+2^{l} p+k^{\prime}} \mathrm{Sq}^{a+2^{l-1}-k^{\prime}}
$$

which is precisely the sort of term that appears in the image of $\widetilde{\phi}$.
(b) Let $x \in R \bar{\nu}_{n}$ have degree $q$, so that $\operatorname{Sq}^{a}(x)$ vanishes in $\mathrm{F}^{\mathrm{Big}}(n)$ for $a>q$. We wish to show that $\widetilde{\phi}\left(\mathrm{Sq}^{a}(x)\right)$ vanishes in $\mathrm{F}^{\mathrm{Big}}(n+p)$. Without loss of generality, we may suppose that

$$
x=\mathrm{Sq}^{i_{m}} \ldots \mathrm{Sq}^{i_{0}} \bar{\nu}_{n}
$$

where $q=i_{m}+\ldots+i_{0}+n$. Then

$$
\widetilde{\phi}\left(\mathrm{Sq}^{a}(x)\right)=\mathrm{Sq}^{a+2^{m+1} p} \mathrm{Sq}^{i_{m}+2^{m} p} \ldots \mathrm{Sq}^{i_{0}+p} \bar{\nu}_{p}=\mathrm{Sq}^{a+2^{m+1} p} \widetilde{\phi}(x)
$$

vanishes in $\mathrm{F}^{\mathrm{Big}}(n+p)$ since

$$
a+2^{m+1} p>\left(i_{m}+\ldots+i_{0}+n\right)+2^{m+1} p=\left(i_{m}+2^{m} p\right)+\ldots+\left(i_{0}+p\right)+(n+p)=\operatorname{deg}(\widetilde{\phi}(x))
$$

This completes the proof that $\phi$ is well-defined. To show that $\phi$ induces an isomorphism $\mathrm{F}^{\mathrm{Big}}(n) \rightarrow$ $\mathrm{F}^{\mathrm{Big}}(n+p)$, we observe that the same construction (applied to $n+p$ and $-p$ ) gives a map $\mathrm{F}^{\mathrm{Big}}(n+p) \rightarrow \mathrm{F}^{\mathrm{Big}}(n)$ which is inverse to $\phi$.

Proof of $\left(2^{\prime}\right) \Rightarrow\left(1^{\prime}\right)$. Fix an integer $n$. We wish to show the elements $\mathrm{Sq}^{I} \bar{\nu}_{n}$ are linearly independent in $\mathrm{F}^{\mathrm{Big}}(n)$, where $I$ ranges over admissible sequences of integers of excess $\leq n$. Assume otherwise; then there exists a nontrivial relation of the form

$$
\sum_{\alpha} \mathrm{Sq}^{I(\alpha)} \bar{\nu}_{n}=0
$$

Choose $p \gg 0$, and let $\phi: \mathrm{F}^{\mathrm{Big}}(n) \rightarrow \mathrm{F}^{\mathrm{Big}}(n+p)$ be as in Lemma 6 . We then get a nontrivial relation

$$
\sum_{\alpha} \phi\left(\mathrm{Sq}^{I(\alpha)} \bar{\nu}_{n}\right)=\sum_{\alpha} \mathrm{Sq}^{J(\alpha)} \bar{\nu}_{n+p}=0
$$

in $\mathrm{F}^{\mathrm{Big}}(n+p)$. It follows that

$$
\sum_{\alpha} \mathrm{Sq}^{J(\alpha)} \nu_{n+p}=0
$$

in $F(n+p)$. The sequences $J(\alpha)$ are distinct, admissible, and positive if $p$ is chosen sufficiently large. Thus ( $1^{\prime}$ ) implies that the elements $\left\{\mathrm{Sq}^{J(\alpha)} \nu_{n+p}\right\}$ are linearly independent in $F(n+p)$, and we obtain a contradiction.

