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Topics in Algebraic Topology (18.917): Lecture 23

In this lecture, we will discuss the convergence of the cohomological Eilenberg-Moore spectral sequence.
We begin with a definition.

Definition 1. Let p be a prime number. A topological space X is p-finite if the following conditions are
satisfied:

e The set myX is finite.
e For every point € X and every ¢ > 0, the group 7;(X, x) is a finite p-group.
e The groups m;(X, x) vanish for ¢ > 0.

Example 2. Every Eilenberg-MacLane space of the form K(Z/p*Z,n) is p-finite.

Remark 3. Suppose given a fibration f : £ — B, where B is p-finite. Then F is p-finite if and only if each
fiber of f is p-finite (this follows from the long exact sequence of homotopy groups).

Lemma 4. A path connected topological space X is p-finite if and only if there exists a sequence of fibrations
X~X, > Xn1—...>Xg=x
where each X; is a principal fibration over X;_1 with fiber K(F,,j) for some integer j > 1.

Proof. The “if” direction follows from Remark 3. To prove the converse, we work by induction on p* =
L |m:(X,x)|, where z is some fixed base point of X. If k = 0 then X is weakly contractible and there is
nothing to prove. Otherwise, there exists some largest ¢ > 0 such that 7;(X, ) does not vanish.

Each orbit of m (X, x) on m;(X,x) has cardinality a power of p, and the sum of the cardinality of the
orbits is again a power of p. Since there is an orbit of size 1 (the orbit of the identity element), there must
be at least p orbits of size 1: in other words, the subgroup G of 71 (X, z)-invariants in 7; (X, z) is nontrivial.
Since G is a finite p-group, there exists an element of G of order p; let Gy be the cyclic subgroup of order p.
Let X’ be the space obtained from X by killing the subgroup Gy C 7;(X,x). Then X — X’ is equivalent to
a principal fibration with fiber K(F,,). We now conclude by applying the inductive hypothesis to X’. [

Corollary 5. Let X be a p-finite space. Then each cohomology group H"(X;F,) is a finite dimensional
vector space over F.

Proof. The result is true when X = K(F,,n) by an explicit calculation (which we performed in a previous
lecture when p = 2). The result follows in general from Lemma 4 and the Serre spectral sequence. O

The main result of today’s lecture is the following:



Theorem 6. Suppose given a homotopy pullback square
X —X
Y'—Y

of p-finite spaces. Then the induced square

C*(X";F,) =<— C*(X;Fp)

! |

C*(Y';F,) <— C*(Y;F))
is a homotopy pushout square of E.-algebras.

Remark 7. The proof of Theorem 6 really requires much weaker hypotheses than p-finiteness, but this
version will be sufficient for our immediate needs.

For the remainder of this lecture, we let C*(Z) denote the mod-p cochain complex C*(Z;F),) of a
topological space Z. Theorem 6 asserts that the canonical map

C*(X) ®cr) C*(Y') = C*(X)

induces an isomorphism after passing to cohomology. In the case where Y is a point, we can identify C*(Y)
with F,; then Theorem 6 follows from the Kunneth theorem (since H*(X) and H*(Y”) are finite dimensional
in each degree thanks to Corollary 5).

In general, it is natural to try to prove Theorem 6 using a relative version of the same argument. For
each point y € Y, let X, X, and Y, denote the (homotopy) fibers of X, X', and Y” over the point y. We
then have an identification Xz,/ ~ X, x Yy’ , which induces an equivalence of F..-algebras

C*(Xy) ® C*(Y,) — C*(X,).

The E-algebras C*(X; ) and C* (X;,) are equivalent whenever y and /' lie in the same path component
of Y, and are canonically equivalent if we specify a path from y to y’ (since the choice of such a path induces
a weak homotopy equivalence of fibers XL o le;’)' In other words, we can regard the construction

y— C*(X,)

as providing a local system L of E..-algebras over Y. Moreover, we can identify C*(X”’) with the cochain
complex C*(Y; L) of Y with coefficients in L. Similarly, we have local systems

Ly:y— C*(Xy)
Ly :y— C*(Y,).

and equivalences C*(X) ~ C*(Y; Ly), C*(Y') = C*(Y; L1). The Kunneth theorem provides an equivalence
L ~ Ly ® Ly of local systems on Y. Theorem 6 then reduces to a special case of the following result:

Theorem 8. Let Y be a p-finite space. Let Ly and Ly be local systems (of cochain complexes of Fp-vector
spaces) on'Y satisfying the following condition:

(¥) The cohomology groups H* Ly and H* Ly vanish for x < 0.



Then the canonical map
C*(Y; Lo) ®@c+(vy C*(Y; L) — C*(Y; Lo ® L)

is an isomorphism on cohomology.

Let us say that a local system (of cochain complexes) Lo on Y is good if it satisfies (), and the conclusion
of Theorem 8 is satisfied for Ly (and for any other local system L; satisfying (x)). We wish to show that
every Lo which satisfies (x) is good.

For every local system Lg, we can define a new local system 7" Lg equipped with a map 7<"Lo — Lo,
uniquely determined (up to quasi-isomorphism) by the following condition:

HFrSn o {HkLo itk <n

0 otherwise.
Then Ly is equivalent to the filtered colimit inj lim{7="Ly}. To prove that Ly is good, it will therefore suffice
to show that each 7="L is good. In other words, we may assume that Ly has cohomology only in finitely
many degrees.

The collection of good local systems is also closed under extensions. We may therefore suppose that L
is concentrated in a single degree, corresponding to a representation V' of the fundamental group mY (in
some degree). Since 7Y is finite, we can write V' as a filtered colimit of finite-dimensional representations of
mY. It therefore suffices to prove the result when V is finite dimensional, and we work by induction on the
dimension of V. If V ~ 0 there is nothing to prove. Assume that V is of positive dimension. The counting
argument used in the proof of Lemma 4 shows that V' contains a one-dimensional subspace Vy C V' on which
mY acts trivially. By the inductive hypothesis, the local system V/V} is good. It will therefore suffice to
show that V} is good. In other words, we have reduced the proof of Theorem 8 to the case where the local
system Ly is trivial.

Using the same argument, we can reduce to the case where L is trivial. We can now restate Theorem 8
as the assertion that the canonical map

C*(Y) ®@c(v) C*(Y) — C*(Y)

is an isomorphism on cohomology, which is obvious.

We conclude with an explanation of the relationship of Theorem 6 with the convergence of the Eilenberg-
Moore spectral sequence. Let A be an E-algebra, and let M and N be A-modules. Choosing a resolution
of M or N (or both) by free modules, we obtain a spectral sequence for computing cohomology H* (M ® 4 N),
with Fs-term given by

EY? = Tor™ A(H* M @ H* N)“.

This spectral sequence is of “homological type”, and therefore converges without any additional assumptions.
Given a homotopy pullback square
X —X

b

we get an induced map
C*(X) @cw(v) C*(Y') = C*(X').

The conclusion of Theorem 6 is that this map induces an isomorphism on cohomology, so we have a spectral

sequence with Fs-term
EP? = Tor™ Y (H* X, H"Y")"

converging to H*(X”). This is the classical cohomological Filenberg-Moore spectral sequence.



