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Topics in Algebraic Topology (18.917): Lecture 23


In this lecture, we will discuss the convergence of the cohomological Eilenberg-Moore spectral sequence. 
We begin with a definition. 

Definition 1. Let p be a prime number. A topological space X is p-finite if the following conditions are 
satisfied: 

• The set π0X is finite. 

• For every point x ∈ X and every i > 0, the group πi(X, x) is a finite p-group. 

• The groups πi(X, x) vanish for i � 0. 

Example 2. Every Eilenberg-MacLane space of the form K(Z/pkZ, n) is p-finite. 

Remark 3. Suppose given a fibration f : E B, where B is p-finite. Then E is p-finite if and only if each →
fiber of f is p-finite (this follows from the long exact sequence of homotopy groups).


Lemma 4. A path connected topological space X is p-finite if and only if there exists a sequence of fibrations


X � Xm → Xm−1 → . . . → X0 � ∗ 

where each Xi is a principal fibration over Xi−1 with fiber K(Fp, j) for some integer j ≥ 1. 

Proof. The “if” direction follows from Remark 3. To prove the converse, we work by induction on pk = 

i |πi(X, x)|, where x is some fixed base point of X. If k = 0 then X is weakly contractible and there is 
nothing to prove. Otherwise, there exists some largest i > 0 such that πi(X, x) does not vanish. 

Each orbit of π1(X, x) on πi(X, x) has cardinality a power of p, and the sum of the cardinality of the 
orbits is again a power of p. Since there is an orbit of size 1 (the orbit of the identity element), there must 
be at least p orbits of size 1: in other words, the subgroup G of π1(X, x)-invariants in πi(X, x) is nontrivial. 
Since G is a finite p-group, there exists an element of G of order p; let G0 be the cyclic subgroup of order p. 
Let X � be the space obtained from X by killing the subgroup G0 ⊆ πi(X, x). Then X → X � is equivalent to 
a principal fibration with fiber K(Fp, i). We now conclude by applying the inductive hypothesis to X �. 

Corollary 5. Let X be a p-finite space. Then each cohomology group Hn(X; Fp) is a finite dimensional 
vector space over Fp. 

Proof. The result is true when X = K(Fp, n) by an explicit calculation (which we performed in a previous 
lecture when p = 2). The result follows in general from Lemma 4 and the Serre spectral sequence. 

The main result of today’s lecture is the following: 
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Theorem 6. Suppose given a homotopy pullback square 

X � �� X 

�� ��
Y � �� Y 

of p-finite spaces. Then the induced square 

C∗(X �; Fp) �� C∗(X; Fp) 

C∗(Y �; Fp) �� C∗(Y ; Fp) 

is a homotopy pushout square of E -algebras.∞

Remark 7. The proof of Theorem 6 really requires much weaker hypotheses than p-finiteness, but this 
version will be sufficient for our immediate needs. 

For the remainder of this lecture, we let C∗(Z) denote the mod-p cochain complex C∗(Z; Fp) of a 
topological space Z. Theorem 6 asserts that the canonical map 

C∗(X) ⊗C∗ (Y ) C
∗(Y �) → C∗(X �) 

induces an isomorphism after passing to cohomology. In the case where Y is a point, we can identify C∗(Y ) 
with Fp; then Theorem 6 follows from the Kunneth theorem (since H∗(X) and H∗(Y �) are finite dimensional 
in each degree thanks to Corollary 5). 

In general, it is natural to try to prove Theorem 6 using a relative version of the same argument. For 
each point y ∈ Y , let Xy, X � , and Yy

� denote the (homotopy) fibers of X, X �, and Y � over the point y. Wey 
then have an identification Xy

� � Xy × Yy
�, which induces an equivalence of E∞-algebras 

C∗(Xy) ⊗ C∗(Yy
�) → C∗(Xy

� ). 

The E -algebras C∗(X � ) and C∗(X � ) are equivalent whenever y and y� lie in the same path component∞ y y� 

of Y , and are canonically equivalent if we specify a path from y to y� (since the choice of such a path induces 
a weak homotopy equivalence of fibers Xy

� � Xy
�
� ). In other words, we can regard the construction 

y �→ C∗(X � )y

as providing a local system L of E -algebras over Y . Moreover, we can identify C∗(X �) with the cochain∞
complex C∗(Y ; L) of Y with coefficients in L. Similarly, we have local systems 

L0 : y �→ C∗(Xy) 

L1 : y �→ C∗(Yy
�). 

and equivalences C∗(X) � C∗(Y ; L0), C∗(Y �) � C∗(Y ; L1). The Kunneth theorem provides an equivalence 
L � L0 ⊗ L1 of local systems on Y . Theorem 6 then reduces to a special case of the following result: 

Theorem 8. Let Y be a p-finite space. Let L0 and L1 be local systems (of cochain complexes of Fp-vector 
spaces) on Y satisfying the following condition: 

(∗) The cohomology groups H∗ L0 and H∗ L1 vanish for ∗ < 0. 
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Then the canonical map 
C∗(Y ; L0) ⊗C∗(Y ) C

∗(Y ; L1) → C∗(Y ; L0 ⊗ L1) 

is an isomorphism on cohomology. 

Let us say that a local system (of cochain complexes) L0 on Y is good if it satisfies (∗), and the conclusion 
of Theorem 8 is satisfied for L0 (and for any other local system L1 satisfying (∗)). We wish to show that 
every L0 which satisfies (∗) is good. 

For every local system L0, we can define a new local system τ ≤nL0 equipped with a map τ ≤nL0 → L0, 
uniquely determined (up to quasi-isomorphism) by the following condition: 

Hk τ ≤nL0 � 
Hk L0 if k ≤ n 

0 otherwise. 

Then L0 is equivalent to the filtered colimit inj lim{τ≤nL0}. To prove that L0 is good, it will therefore suffice 
to show that each τ ≤nL0 is good. In other words, we may assume that L0 has cohomology only in finitely 
many degrees. 

The collection of good local systems is also closed under extensions. We may therefore suppose that L 
is concentrated in a single degree, corresponding to a representation V of the fundamental group π1Y (in 
some degree). Since π1Y is finite, we can write V as a filtered colimit of finite-dimensional representations of 
π1Y . It therefore suffices to prove the result when V is finite dimensional, and we work by induction on the 
dimension of V . If V � 0 there is nothing to prove. Assume that V is of positive dimension. The counting 
argument used in the proof of Lemma 4 shows that V contains a one-dimensional subspace V0 ⊆ V on which 
π1Y acts trivially. By the inductive hypothesis, the local system V/V0 is good. It will therefore suffice to 
show that V0 is good. In other words, we have reduced the proof of Theorem 8 to the case where the local 
system L0 is trivial. 

Using the same argument, we can reduce to the case where L1 is trivial. We can now restate Theorem 8 
as the assertion that the canonical map 

C∗(Y ) ⊗C∗(Y ) C
∗(Y ) → C∗(Y ) 

is an isomorphism on cohomology, which is obvious. 
We conclude with an explanation of the relationship of Theorem 6 with the convergence of the Eilenberg-

Moore spectral sequence. Let A be an E -algebra, and let M and N be A-modules. Choosing a resolution∞
of M or N (or both) by free modules, we obtain a spectral sequence for computing cohomology H∗(M ⊗A N), 
with E2-term given by 

Ep,q = TorH
∗ A(H∗ M ⊗ H∗ N)q .2 −p 

This spectral sequence is of “homological type”, and therefore converges without any additional assumptions. 
Given a homotopy pullback square 

X � �� X 

�� ��
Y � �� Y, 

we get an induced map 
C∗(X) ⊗C∗(Y ) C

∗(Y �) → C∗(X �). 

The conclusion of Theorem 6 is that this map induces an isomorphism on cohomology, so we have a spectral 
sequence with E2-term 

Ep,q = TorH
∗ Y (H∗ X, H∗ Y �)q 

2 −p 

converging to H∗(X �). This is the classical cohomological Eilenberg-Moore spectral sequence. 
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