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Free E∞-Algebras (Lecture 21)


In this lecture we will review the theory of E -algebras over the field F2 of two elements. ∞
Roughly speaking, an E -algebra over F2 is a chain complex V of F2-vector spaces, equipped with a ∞

multiplication 
m : V ⊗ V V→ 

which is commutative, associative, and unital, up to coherent homotopy. We summarize some of the basic 
properties of this notion: 

(1) For every topological space X, the cochain complex C∗(X) has the structure of an E -algebra over ∞
F2. 

(2) If V is an E -algebra over F2, then the product map m descends to a good symmetric multiplication ∞
D2(V ) V , in the sense of our previous lectures. Consequently, the cohomology H∗(V ) is endowed →
with the structure of an unstable ABig-module, where ABig denotes the big Steenrod algebra. 

(3) The forgetful functor 

{E∞ − algebras over F2} → {chain complexes over F2} 

admits a left adjoint F. The functor F carries a chain complex V to the symmetric algebra 

F(V ) ⊕n≥0 V ⊗n = ⊕n≥0Dn(V ),hΣn 

where Dn denotes the nth extended power functor. 

For every integer n, we let F(n) = F(F2[−n]) denote the free E∞-algebra over F2 generated by a single 
class of cohomological degree n. By construction, we have a canonical map of complexes 

F2[−n] → F(n), 

which determines an element η ∈ Hn F(n). Since H∗ F(n) has the structure of an unstable ABig-algebra, the 
element η determines a map 

Bigθn : FAlg (n) H∗ F(n).→ 

Here F Big(n) denotes the free unstable ABig-module on one generator µn in degree n, whose structure was Alg 
determined in Lecture 11. 

Our goal in this lecture is to prove the following result: 

Theorem 1. For every integer n, the map θn is an isomorphism. 

To prove Theorem 1, we will show by two separate arguments that θn is injective and that θn is surjective. 
BigWe begin with the injectivity. Recall that FAlg (n) has a basis consisting of expressions 

{SqI1 (µn) SqI2 (µn) . . . SqIk (µn)}, 
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where I1, . . . , Ik range over distinct admissible sequences of excess ≤ n. This module has a grading by 
cohomological degree, but also another grading by rank, where we declare 

rk(1) = 0 

rk(µn) = 1 

rk(xy) = rk(x) + rk(y) 

rk(Sqi(x)) = 2 rk(x). 

Similarly, the cohomology H∗ F(n) can be written as a direct sum 

⊕k≥0 H∗ Dk(F2[−n]) 

is equipped with a grading by rank, where elements H∗ Dk(F2[−n]) have rank k. The multiplication on F(n) 
carries Dk(F2[−n]) ⊗ Dk� (F2[−n]) into Dk+k� (F2[−n]), and Steenrod operations Sqi carry H∗ Dk(F2[−n]) 
into H∗+i D2k(F2[−n]). It follows that the map θn is compatible with the grading by rank. 

Recall that we defined shift isomorphisms 

Big BigS : FAlg (n) FAlg (n + 1).→ 

The map S is an isomorphism of commutative rings (not compatible with the action of ABig), which is 
uniquely determined by the following requirements: 

S(µn) = µn+1 

S(Sqi(x)) = Sqi+rk(x) S(x). 

The shift maps S do not respect degree, but instead satisfy the formula 

deg(Sx) = deg(x) + rk(x) 

whenever x is homogeneous in both degree and rank. 
We have similar isomorphisms S� : H∗ F(n) H∗ F(n + 1), obtained by taking the direct sum of the 

canonical isomorphisms 
→ 

H∗ Dk(F2[−n]) = H∗−nk(BΣk, F2) � H∗+k Dk(F2[−n − 1]). 

For every integer n, we have a commutative diagram 

F Big 
Alg (n) S �� F Big 

Alg (n + 1) 

θn θn+1 

��
H∗ F(n) 

��
S� 

�� H∗ F(n + 1), 

We are now ready to prove injectivity of θn. Suppose that θn fails to be injective. Choose some nonzero 
element � 

x = SqI1 
α 

(µn) . . . SqIk
α
α (µn) 

α 

in the kernel of θn, where the sequences Iα are admissible, distinct (for fixed α), and have excess ≤ n. Theni 
for every integer p ≥ 0, the element 

Sp(x) = SqJ1 
α 

(µn+p) . . . SqJk
α
α (µn+p) 

α 
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lies in the kernel of θn+p. Choosing p � 0 and replacing x by Sp(x), we may assume that each of the 
sequences Ii

α is positive. It follows that the image of x in the free algebra FAlg(n) is nonzero. But the 
Cartan-Serre theorem identifies FAlg(n) with the cohomology ring 

H∗ K(F2, n), 

which is the cohomology of the E -algebra C∗K(F2, n). The universal property of F(n) gives a map of∞
E -algebra F(n) C∗K(F2, n), which fits into a commutative diagram∞ → 

Big ��FAlg (n) H∗ 

��
K(F2, n) 

θn 

��������� ����������� 

H∗ F(n). 

It follows that θn(x) = 0, a contradiction.�
We now prove the surjectivity of θn. The proof is based on the following elementary lemma: 

Lemma 2. Let H ⊆ G be finite groups, and suppose that |G/H| is odd. Then the induced map on homology 

p : H (BH) H (BG)∗ → ∗

is an isomorphism. 

Proof. We can realize the map of classifying spaces BH BG as a covering space map, whose fiber has 
cardinality |G/H|. We therefore have a transfer map 

→ 

t : H (BG) H (BH).∗ → ∗

The composition p ◦ t is given by multiplication by |G/H|, and is therefore an isomorphism. Since p ◦ t is 
surjective, the map p must also be surjective. 

We now return to the proof of Theorem 1. We will show, by induction on k ≥ 0, that the map 

: F Bigθn Alg (n)k → H∗ F(n)k = H∗ Dk(F2[−n]) 

is surjective; here the subscripts indicate that we consider only the component consisting of elements of rank 
k. If k = 0, this is clear: the only element of rank 0 on the right hand side is the unit 1, and we have 
θn(1) = 1. Similarly, the only element of rank 1 on the right hand side is the generator η ∈ Hn F(n), and we 
have θn(µn) = η by construction. We may therefore assume that k > 1. There are two cases to consider: 

Suppose that k is not a power of 2. Then we can write k = k� + k��, where k
k 
� = k! is odd.• k�!k��! 

Multiplication yields a commutative diagram 

F Big(n)k� ⊗ F Big(n)k�� �� F Big(n)kAlg Alg Alg 

θnθn⊗θn 

H∗ Dk� (F2[−n]) ⊗ H∗ Dk�� (F2[−n]) �� H∗ Dk(F2[−n]). 

The inductive hypothesis guarantees that the left vertical map is surjective. To prove that the right 
vertical map is surjective, it will suffice to show that the lower horizontal map is surjective. Up to a 
shift, this agrees with the pushforward map 

H∗(B(Σk� × Σk�� )) → H∗(BΣk), 
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which is surjective by Lemma 2 since 

k! |Σk/(Σk� × Σk�� )| = 
k�!k��!


is odd by assumption.


• Suppose that k is a power of 2, and let k� = k 
2 . We have a map of extended powers 

D2Dk� F2[−n] → DkF2[−n].


Up to a shift, the induced map on cohomology can be identified with the map


p : H (BG) H (BΣk),∗ → ∗

where G ⊂ Σk is the wreath product Σ2 
k� � Σ2. We observe that |Σk/G| is odd, so the map p is 

surjective by Lemma 2. 

Recall that if V is a complex of F2-vector spaces such that the cohomology H∗ V has a basis {vi}, then 
the cohomology H∗ D2(V ) has a basis consisting of pairwise products {vivj }i<j , together with Steenrod 
operations {Sq vi}. It follows that H∗ DkF2[−n] is generated by H∗ Dk� F2[−n] under the operations 
of pairwise product and Steenrod operations Sqi . The map θn is a map of unstable ABig-algebras, 
so the image of θn is stable under the formation of products and closed under the operations Sqi . 
The inductive hypothesis implies that H∗ Dk� F2[−n] belongs to the image of θn, so that H∗ DkF2[−n] 
belongs to the image of θn as well. 
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