MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

18.950 Homework 8

1. (10 points) Let $M \subset \mathbb{R}^{n+1}$ be a compact hypersurface, and $p \in \mathbb{R}^{n+1} \backslash M$ a point. The winding number is defined to be the degree of the map

$$
M \longrightarrow S^{n}, \quad y \mapsto \frac{y-p}{\|y-p\|}
$$

Prove the following: if the winding number is nonzero, every smooth path $c:[0, \infty) \rightarrow \mathbb{R}^{n+1}$ with $c(0)=p, \lim _{t \rightarrow \infty}\|c(t)\|=\infty$ must intersect M somewhere.
2. (10 points) Determine the degree of the map

$$
\phi: S^{2} \rightarrow S^{2}, \phi\left(y_{1}, y_{2}, y_{3}\right)=\frac{\left(y_{1}^{2}-y_{2}^{2}, 2 y_{1} y_{2}, y_{3}\right)}{\sqrt{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+y_{3}^{2}}}
$$

(i) by computing the integral (computer-assistance is highly recommended), and (ii) using more advanced results from the lecture.

