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12 Lecture 12-17(Notes: K. Venkatram) 

12.1 Generalized Complex Structures and Topological Obstructions 

Let E ∼= (T ⊕ T ∗,H) be an exact Courant algebroid. 

Definition 19. A generalized complex structure (GCS) on E is an integrable orthogonal complex structure 
J : E E, i.e. a map s.t. → 

• �JA, JB� = �A,B� 

• L = Ker (J − i1) 

Note.	 1. �JA,B� = �J2A, JB� = −�A, JB�, and thus �J·, ·� is a symplectic struction on E compatible 
with �, �. 

2. L is maximal isotropic and so is L, and thus E = L ⊕ L = L ⊕ L∗ and we get a Lie bialgebroid. 

3. V	 must be even dimensional: letting x ∈ V ⊕ V ∗ be a null vector then �Jx, x� = 0 and �Jx, Jx� = 0, 
so we can always enlarge a null set by 2 vectors; thus the maximal null set is even. 

At the level of structure groups, (T ⊕ T ∗, �, �), J corresponds to 
O(2n, 2n) → U(n, n) = O(2n, 2n) ∩ GL(2n, C). 

Problem.	 Show that O(V ⊕ V ∗) acts transitively by conjugation on a set of GCS 

O(2n, 2n)
=SJ 
∼

U(n, n)	
(30) 

J
Example. 1. J = −J∗ acting on V ⊕ V ∗. 

2. J = 
−ω−1 

acting on V ⊕ V ∗. 
ω 

3. Any conjugation AJA−1, A ∈ O(2n, 2n), e.g. eJe−1 , � �� �� � �	 �� � � � 
1 J 1 1 J 0 J 0 

=	 = 
B 1 −J∗ −B 1 B 1	 J∗B −J∗ J∗B + BJ −J∗ ⎛	 ⎞ � �� �� � �	 �� � ω−1B1 −ω−1 1 

=
1 ω−1B −ω−1 

= ⎝ −ω−1 ⎠ 
B 1 ω 1 B 1 ω 0−B	

ω + Bω−1B −Bω−1 

(31) 
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Lemma 3. O(n.n) � O(n) × O(n).


Proof. Let C+ ⊂ V ⊕ V ∗ be positive definite and C = C⊥. THen O(n, n) acts transitively on the space of
− + 

all C+, with stabilizer Stab(C+) = O(n) × O(n). Question: what is O(n,n) ? C � (see diagram below) is O(n)×O(n) + 

given by A : Rn Rn , ||Ax|| < ||x||∀x, i.e. ||A||op < 1. Thus, it is the unit ball under the operator → 
norm.


Lemma 4. U(n, n) � U(n) × U(n)


Proof. We can enlarge C̃+ to C+ by adding V ⊥ C̃+ and JV , and get complex decomposition

E = C+ ⊕ C⊥ = C+ + C−. U(n, n) acts transitively on these spaces with stabilizer + 
Stab(C+) = U(n) × U(n). As above, we obtain the unit ball in Cn . 

Thus, the existence of J is topologically equivalent to the reduction to U(n) × U(n), i.e. complex structures 
J± := J| ± on C+ and C− = C⊥ (since the bundle of positive-definite subspaces is contractible). C + 

Note. The projection π : C T is an isomorphism, so we obtain almost complex structure J : T T .± → ± → 

Thus M must be almost complex, and J has two sets of Chern classes c±i ∈ H2i(M, Z) associated to J±
(i.e. c±i = ci(c±)) and c(T ⊕ T ∗, J) = c(C+) ∪ c(C−). 

Remark. Topologically, E has structure group U(n, n) � U(n) × U(n), so the bundle is classified by 
ψ : X → B(U(n) × U(n)) = BU(n) × BU(n) = C+ × C− with Chern classes ψ∗C+, ψ∗C−. 

Now, spaces L ⊂ T ⊕ T ∗ correspond to canonical bundes KL ⊂ Ω∗(M). 

Proposition 5. A generalized complex structure is equivalent to a complex Dirac structure of real index 0, 
i.e. to a Dirac structure L ⊂ (T ⊕ T ∗) ⊗ C s.t. L ∩ L = {0}. 

Proof. ⇐: given L, set J = i|L + (−i)| , and obtain L

�J(α + β), J(α + β)� = �iα − iβ, iα − iβ� = �α, β� + �β, α� = �α + β, α + β� (32) 

→: given J, set L = Ker (J − i1), so 

�α, β� = �Jα, Jβ� = −�α, β� = 0 (33) 

Therefore, (T ⊕ T ∗) ⊗ C = L ⊕ L, and we obtain a transverse complex Dirac structure. This gives us a 
Z-grading on S ⊗ C = Ω∗(M, C) as 

(KL = Un) ⊕ Un−1 ⊕ · · · ⊕ U−n+1 ⊕ (U−n = KL) (34) 

with conjugation exchanging Uk and U−k. 

Definition 20. KL = U−n is the canonical line bundle of the generalized complex structure. 

Furthermore, the decomposition dH = ∂ + ∂ gives the general Dolbeault complex via ∂ : Uk ↔ Uk−1 : ∂. 

Problem. Use the Mukai pairing between KL and KL to show that 2c1(KL) = c∗ 
1 + c−1 . 
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12.1.1 Z-grading on spinors 

iθLet J be a generalized complex structure: then J ∈ so(T ⊕ T ∗). The transformtation eθJ behaves like e
and thus defines an S1 action on T ⊕ T ∗ and thus, by the spin representation, on on Ω∗(M) (in fact, we 
can imagine this as cos θ 1 + J sin θ). Just as (T ⊕ T ∗) ⊗ C decomposes as L ⊕ L, we have· · 
J(x, φ) = [J, x] φ + x Jφ, where [J, x] is the so-action. Thus, for an eigenvector x ∈ L, Jx = ix, then· · 
Jxφ = xJφ + iφ. That is, the action of L increases by i, while L decreases by i, givng us a diagram 

L L 

KL = U−n �� U−n+1 · · · Un−1 �� Un = KL (35) 
L L 

Since the eigenvalues are symmetric, they must be {−ni, (−n + 1)i, . . . , ni}, with Uk the ik-eigenspace of J. 
Now, via the decomposition dH = ∂ + ∂, we can form another real differential operator 
dJ = [d, J] = [∂ + ∂, J]. Applying this to φk gives 

[d, J]φk = ik(∂ + ∂)φ − i(k + 1)∂φ − i(k − 1)∂φ = i(∂ − ∂)φ (36) 

Thus, dJ = i(∂ − ∂), and (dJ)2 = 0 as desired. 
For each GCS, we obtain three complexes: (C∞( ∗ 

L∗), dL) and the pair (U∗, ∂), (U∗, ∂). 

Proposition 6. (C∞( ∗ 
L∗), dL) is elliptic. 

Recall that in general, this is not true. In particular, in the case of Poisson structures, the complex is 
infinite dimensional. 

Proof. Since L is a Lie algebra, we obtain a symbol sequence 

k−1 k k+1

L∗ Sξ L∗ Sξ L∗ (37) → → 

where Sξ(φ) = π∗ξ ∧ φ for a given ξ ∈ T ∗ real. If ξ = 0, it can be decomposed as� α + α ∈ L ⊕ L with α = 0.�
Moreover, for x ∈ L, we have 

(π∗ξ)(x) = ξ(πx) = �ξ, x� = �α + α, x� = �α, x� (38) 

so π∗ξ = α is nonzero. 

Corollary 4. H∗(L),H∗(L) are finite dimensional on compact generalized complex manifolds. 

For the other complex, we have that dH (fφ) = df ∧ φ + fdH φ = (dLf + d f)φ + fdH φ, so thatL

∂(fφ) = (dLf)φ + f∂φ. 

Problem. Using the right derived bracket, show that (dLx) = [∂, x ] for x ∈ C∞( 
�k 

L∗).· ·

By the above, we have a symbol sequence Uk−1 ← Sξ Uk ← Sξ Uk+1 given by the anihilation operator 
Sξ(φ) = αφ which is also an exact sequence. Doing a similar procedure for ∂, and following the above logic 
(replacing the Clifford action with the wedge product), we obtain: 

Corollary 5. H
∂ 
∗(M),H∂ 

∗(M) are finite dimensional for compact generalized complex manifolds. 

Remark. One has a spectral sequence H∗ (M) = H∗ (M). Moreover, this spectral sequence is trivial � ∂,∂ 
⇒ dH 

(i.e. Hd
∗ 

H 
= H

∂ 
∗(M) if the ∂∂-lemma holds for M : if ∂α = 0 and α = ∂β, then α = ∂∂γ for some γ. In 

other words, 

Im ∂ ∩ Ker ∂ = Ker ∂ ∩ Im ∂ = Im ∂∂ (39) 
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Finally, we obtain actions of H∗(L),H∗(L) on H
∂ 
∗(M),H∂ 

∗(M) respectively via 

k

∂(x φ) = (dLx) φ + (−1)x x ∂φ, x ∈ L· · · 

Problem. Show the above statement. 

(40) 

This statement implies dLx = [∂, x], so dLx = 0, ∂φ = 0 = ∂(x φ) = 0, making the action well-defined. ⇒ · 

12.1.2 Complex Case 

Given an almost-complex structure J , we obtain a generalized complex structure JJ = 

� 
J− 

We 
J∗ . 

claim that JJ is integrable w.r.t. [, ] ⇔ J is integrable. To see this, decompose L = T0,1 ⊕ T1
∗ 
,0, and choose 

elements x, y ∈ T0,1, ξ, η ∈ T1
∗ 
,0. One obtains 

[x, y] + Lxη − iydξ = [x, y] + ix∂η − iy∂ξ (41) 

where [x, y] ∈ T0,1 ⇔ J is integrable, and Lxη = ixdη = ix(∂η + ∂η) = ix∂η because ∂η ∈ 
�2 

T ∗ and thus 0,1 
does not survive ix. 

Remark. Adding a term ixiyH to the above expression, where H = 0, we find that �
ixiy H ∈ T1,0∀x, y ∈ T0,1 ⇔ H(0,3) = 0, i.e. the gerbe is homogeneous. This is similar to the fact that 
F (2,0) = 0 for (L, �) holomorphic. 

We have two different complexes: 

k� 
∗L 

∗ 
L∗), dL), where 1. First, the complex (C∞( 

p p� 
= ( T1,0) ⊗ ( T0

∗ 
,1) (42) 

p+q=k 

and the differential map is given by the individual partials 

+1p p p p� 
∂ : C∞( T1,0 ⊗ T0

∗ 
,1) → C∞( T1,0 ⊗ T0

∗ 
,1) 

(43) 

That is, each of the bundles p 
T1,0 has a ∂ operator and dL is their sum. This implies that 

k 1p −� 
Hk(L) = Hq( T1,0) = H0(∧kT1,0) ⊕ H1( T1,0) ⊕ · · · ⊕ Hk(Ø) (44) 

p+q=k 

2. Second, we have the complex (Uk , ∂) as defined above. Note first that, being the canonical bundles, 
we have that KL 

n 
T1
∗ 
,0 = Ωn,0 (similarly, KL = U−n = Ωn,0 

, we find that L acts on each Ωk,l by either increasing k or decreasing l, giving us our 
By the decomposition = Un = . 

L = T0,1 + T1
∗ 
,0

sequence as the decomposed Hodge diamond 

L = Ω0,n Ω0,n−1 

Ω1,n · · · 
Ω0,0 

. . . 
Ωn,n 

· · · Ωn−1,0 

Ωn,1 Ωn,0 = KL (45)K

That is, U
Hk 

k = Ωp,q, with the boundary maps given by the usual ones on Ω and p−q=k 

Hk 
∂ 
(M) = p−q=k �d∂ 

(M). 
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12.1.3 Symplectic Case 

Given a symplectic form ω, we obtain a generalized complex structure Jω = 
−ω−1 

. Given an 
ω 

i-eigenvector 
x 

, we have 
ξ 

ω(x) − ω−1(ξ) = ix + iξ = ⇒ iη = ω(x) (46) 

Thus, L = {x − iω(x) : x ∈ T ⊗ C} = Γ−iω, where Γ−iω denotes the graph of −iω : T ⊗ C T ∗ ⊗ C, is a →
simple Dirac structure. Moreover, Ωσ is integrable w.r.t. [, ]H dH σ = 0. In our case, we have ⇔
d(−ω) = −H ∧ (−iω), so dω and H must be 0 (i.e. ω is symplectic). We again get two complexes 

1. (C∞( ∗ 
L∗)dL) ∼ ∗ 

T ∗ ⊗ C), d) is trivial, and Hk(L) ∼ (M). However, one does have a = (C∞( = Hk � dR

nontrivial Gerstenhaber structure (C∞( ∗ 
L∗), dL, [, ] ), and one has an equivalence between (L,L)∗

and (T ⊗ C, Γ(∂iω)−1 ) (the Lie bialgebroid of a complex Poisson structure). 

2. The ends of the complex (Uk , ∂) can be simply exhibited as KL = �eiω�,KL = �e−iω�. The next term 
can be computed via 

U−n+1 = (X − iωX)e−iω = −iω(x) ∧ e−iω − iω(x) ∧ e−iω = e iω Ω1 (47)· 

2The higher terms are more complicated: given general invertible σ, the transformation e−σe 
σ−1 

on 
T ⊕ T ∗ sends T ∗ → Γσ (i.e. 1 → eσ) and T → Γ−σ (i.e. Ωn → e−σ). Thus, we find that 

Uk = e iω e 
ω
2
−
i 

1 

Ωn−k (48) 

Letting L, Λ denore the maps φ �→ ω ∧ φ, φ �→= −iω−1 φ, we obtain the expression Uk = eiLe− 2
Λ 
i Ωn−k . 

ω−1 
These maps arise via the decomposition of J as −ω 

+ . Setting 

� � � � � � 

H = [L, Λ] = 
0 
0 

0 
−1 

− 
1 
0 

0 
0 

= 
1 
0 

0 
−1 

(49) 

we find that [H,L] = −2L and [H, Λ] = 2Λ. These are precisely the sl2R commutator relations, 
giving us associated actions on the symplectic manifold. In particular, H acts as 

1 
Hφ = tr(id) − (id∗)φ = sum(n − k)πkφ (50)

2 

where πk : Ω Ωk is the projection. Via our decomposition of J, we find that →
dJ = [d, L + Λ] = [d, Λ] = δ is a degree −1 operator with δ2 = 0 (called the symplectic adjoint of d) 
and ∂ = d − iδ : Uk → Uk−1 . Using an analogous dδ (or ∂∂) lemma for symplectic manifolds, we find 
that any cohomology class α ∈ H∗ has a δ-closed representation (since δα = δdγ and d(α − γ) = 0, dR 
implying that δ(α − dγ) = 0). Thus, setting α̃ = α − γ, we find that 

˜ � 
[d, J]alpha = 0 [d, Λ]α̃ = 0 = d( α̃) = 0. These statements combine to give an action of (L, Λ)⇔ ⇒ 

H2n−kon cohomology, i.e. an sl2R action on H∗(M). Furthermore, Ln−k : Hk is an isomorphism, 
implying an equivalence between the dδ-lemma and the Lefshetz properlty 

→
(see Cavalcanti thesis for 

).⇐
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12.2 Intermediate Cases 

We have studied 

JJ = 
J

, Jω = 
−ω−1	

(51)−J∗	 ω 

What about the intermediate cases? 

•	 intermediate types and spinors


Poisson structure
• 

Local form • 

•	 Examples of type jumping by deformation 

•	 interpolation 

Given a complex bundle T ∗ → E → π T , let J � E with JT ∗ = T ∗. Then T ∗ ⊂ E is a complex subspace, 
and E/T ∗ = T obtains an almost complex structure J which is integrable. Furthermore, 

(Jξ)(X) = �Jξ, X̃� = −�ξ, Jx̃� = ξ(Jx) = −J∗ξ(X)	 (52) 

i.e. J|T ∗ = −J∗. 

12.2.1 Complex and Symplectic Decompositions 

Let S : T → E be any splitting, i.e. π ◦ s = id|T . Then we can produce a complex splitting by averaging 

1 
2
(S − JsJ) = S�	 (53) 

Note. π(−JsJ)(X) = π(−J(s(JX))) = −J2X = X, so −JxJ is a splitting. 

J
Observe that, in splitting S� : E → T ⊕ T ∗, we obtain J = −J∗ . 

Problem. Write J is a non-complex splitting using S. Hint: what is the difference between the splittings 
S and −JSJ? 

Finally, assume that JT ∗ ∩ T ∗ = {0}. Then E = T ∗ ⊕ JT ∗ and, in this splitting, 

J = 
−ω−1	

(54)
ω 

where ω(X,Y ) = �JxX, xY �. 

12.2.2 General case 

In general, T ∗ + JT ∗ is a complex subspace of E, as is T ∗ ∩ J∗T ∗ ⊂ T ∗ + JT ∗ ⊂ E.


Definition 21. Δ = π(T ∗ + JT ∗) = πJT ∗.


Note that


Ann Δ = (T ∗ + JT ∗)⊥ ∩ T ∗ = T ∗ ∩ JT ∗ ∩ T ∗ = T ∗ ∩ JT ∗	 (55) 

is complex, and T ∗+JT ∗ 

= Δ∗ ⊕�J Δ has symplectic structure. Also, E/(T ∗ + JT ∗) = T/Δ has a complex Ann Δ 
∼

structure, with complex dimension k (called the type). 
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Theorem 8. M is generally foliated by symplectic leaves with transverse complex structure.


Lemma 5. JT ∗ is Dirac.


Proof. Observe first that the +i eigenspace is closed, i.e.


z − iJz = [x − iJx, y − iJy] 
= [x, y] − [Jx, Jy] − i([x, Jy] + [Jx, y]) 

[x, Jy] + [Jx, y] = J[x, y] − J[Jx, Jy] 
(56) 

[Jx, Jy] = [x, y] + J([x, Jy] + [Jx, y]) 

Thus, [Jξ, Jη] = [ξ, η] + J([ξ, Jη] + [Jξ, η]) = Jα (note that πα = 0 = ⇒ α ∈ T ∗). 

Problem. Show that NJ(x, y) = [Jx, Jy] − J[x, Jy] − J[Jx, y] − [x, y] is tensorial and express it in terms of 
T, T �. 

Problem. eθJT ∗ is Dirac ∀θ. Hint: eθJT ∗ = ((cos θ 1) + (sin θ)J)(T ∗) = (1 + tan θJ)T ∗, and · 

[ξ + tJξ, η + tJη] = t([ξ, Jη] + [Jξ, η]) + t2J([ξ, Jη] + [Jξ, η]) = (1 + tJ)(t([ξ, Jη] + [Jξ, η])) (57) 

Lemma 6. For small θ, eθJT ∗ is a twisted Poisson structure in a splitting satisfying [π, π] = 
�3 

π∗H. 
dTaking the derivative (eθJT ∗) at θ = 0, we obtain a tangent vector to Dir(T ⊕ T ∗) at T ∗: this is a skew dθ 

map T ∗ T , i.e. an element π ∈ C∞( 
�2 

T ) s.t. [θπ, θπ] = θ3π∗H = [π, π] = 0. Thus, d (eθJT ∗) = π, 
and π : ξ

→
�→ πT Jξ is a Poisson structure, and we can split 

⇒ dθ 

A πJ = (58)
σ −A∗ 

The proof of the theorem follows from the following two observations: 

1. Δ = Im (π) is the image of a Poisson structure and thus a generalized distribution. 

2. The symplectic structure on Δ agrees with π, i.e. for ξ, η ∈ Δ∗, ω−1(ξ, η) = �Jξ, η� = π(ξ, η). 

12.2.3 Weinstein Splitting 

Now, assume that the foliation is of locally constant rank near p ∈ M . 

Theorem 9 (Weinstein Splitting). For any p ∈ (M,π) Poisson, there exist coordinates 
(q1, . . . , qr, p1, . . . , pr, y1, . . . , y�) s.t. 

r �� ∂ ∂ � ∂ ∂ 
π = 

∂qi 
∧ 
∂pi 

+ φ(y) 
∂yi 
∧ 
∂yj 

(59) 
i=1 i,j=1 

with φ(0) = 0.


Note. • When � = 0, this is the Darboux theorem.


• When the rank at p is locally constant, φ = 0 in a neighborhood of p. (Lie’s Theorem) 

If the rank is locally constant, then J induces a complex structure J on �y1, , y2k� which is integrable · · · 
since (πx, πy) = π(x, y). Moreover, it is independent of the {pi, qi}, as 

[Jdpi, Jdyj ] = J(d{pi, yj }) = 0 (60) 

and similarly for q. This gives us a local coordinate system R2(n−k) × Ck . 
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12.2.4 Examples of type jumping 

Given a complex structure JJ = 
−J 

and spaces 
J∗ 

2 2	 2

L = T0,1 ⊕ T1
∗ 
,0, L∗ = T1,0 ⊕ (T1,0 ⊗ T0

∗ 
,1) ⊕ T0

∗ 
,1	

(61) 

we can examine deformations � ∈ 
�2 

L∗ s.t. d� + 1 [�, �] = 0. 2 

Example. For � ∈ 
�2 

T1,0, 

2	 3� � 1 
T1,0 ⊗ T0

∗ 
,1 ⊕ T1,0 � ∂� + 

2
[�, �] = 0 = ⇒ ∂� = 0, [�, �] = 0 (62) 

i.e. � is a holomorphic Poisson structure. 

By construction, � �� � 
1	 � L 

= 1 + � + �	 (63)
�	 1 L 

Letting P = � + �, we obtain a transformation JJ �→ epJe−P , � � � � � � � � � � � � � � 
1 P 

1 
J 
−J∗ 

1 −P 
1 

= 
1 P 

1 
J 
0 
−JP 
−J∗ = 

J 
0 
−JP − P J∗ 

−J∗ = 
P J 2Q 

−J∗ 

(64) 

for Q = i(� − �). Thus, the type is given by n − rkQ. 

Example. On CP 2 , 
�2 

T1,0 = O(3), and � ∈ H0(O(3)). 

12.3 Spinorial Description 

Recall that J determines as is determined by the +i-eigenbundle L. Set pi : L → T ⊗ C to be the map 
π(L) = E ⊂ T ⊗ C. Since L = L(E, �), kL = �e�Ω�, i.e. kL is generated by products φ = eB+iωθ1 ∧ · · · ∧ θk 

when �θ1, . . . , θk� = Ann E. 

Note. However, 

1. Let ξ ∈ T ∗ be real: then ξ = α + α ∈ L ⊕ L = ⇒ Jξ = i(α + α) and 
π(α) + π(α) = 0 = ⇒ π(Jξ) = iπ(α − α) = 2iπ(α) = −2iπ(α). Therefore E ∩ E = Δ ⊗ C, with 
Ann Δ = �Ω ∧ Ω�, and k is the type of J. 

2.	 f∗ω is nondegenerate on Δ, as 
�φ, φ� � B+iωΩ, eB−iωΩ� � 2iω Ω, Ω� = 0 � ⇔ ωn−k = 0. �= 0 ⇔ �e = 0 ⇔ �e ∧ Ω ∧ Ω 

Problem. Show that ω−1 = π|Δ. 

Given coordinates (x1, . . . , xn−k, p1, . . . , pn−k, z1, . . . , zk) for R2(n−k) × Ck , ω0 = ω Δ, J has a general spinor ω0	 |
φ = eB+iωdz1 ∧ · · · ∧ dzk around each regular point. Here, we are fixing the splitting so that H = 0. Now, 
dφ = α φ = (X + ξ) φ = d(B + iω) ∧ φ: by degree considerations, iX Ω = 0 and iX (B + iω) + ξ = 0, so · · 
dφ = 0 and d(B + iω) ∧ Ω = 0, giving us ∞-integrability. 
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Theorem 10. φ = eB�+iω0 Ω with B� closed, i.e. J is equivalent to R2(n−k) × Ck 
ω0 . 

Proof. The general strategy is to transfer to some eB+iωΩ and use the freedom available to make B closed. 
Using the splitting on R2(n−k) × Ck, we have a decomposition d = df + ∂ + ∂. Set A = B + iω: then Aω0 

breaks up into a triangle ⎛ ⎞ 
A200 ⎝ A110 A101 ⎠ (65) 
A020 A011 A002 

which acts effectively via exponentiation on Ω0k0 . Note that, via averaging, we have 
ω0 = ω|Δ = 2 

i (A200 − A200). Our goal is to modify the triangle (A110, A020, A011) so that A101, A002 enter 
only in the real part of A. To this end, let C011 be any real form, and set 

A� = A200 + (A101 + A101) + (A002 + A002) + C011 

1 1 (66) 
= (A200 + A200) + A101 + A101 + A002 + A002 + C011 + (A200 + A200) = B� + iω02 2 

The condition that dA ∧ Ω = 0 gives four constraints on the Aijk: 

(a)df A
200 = 0 

(b)∂A200 + df A
101 = 0 

(67)
(c)∂A101 + df A

0020 

(d)∂A002 = 0 

The desire for B� to be closed requires (dB�)012 = (dB�)111 = 0, which gives the following two constraints: 

∂A002 + ∂C = 0 
(68) 

∂A101 + df C + ∂A101 = 0 

We obtain the desired C via the Dolbeault lemma. For the first constraint, note that (d) 
= A002 = ∂α001 . Thus ⇒ 

(1) ⇔ ∂C + ∂∂α = 0 ⇔ ∂(C − ∂α) = 0 ⇔ ∂(C − ∂α − ∂α) = 0 
(69) 

⇔ C − ∂α − ∂α = ∂ψ ⇔ C = ∂α + ∂α + i∂∂χ 

for χ a real function. For the second constraint, note that (c) is true 
⇔ 0 = ∂A101 + df A

002 = ∂(A101 − df α) = ⇒ A101 = df α + ∂β100 for β a 100-form. This implies that 

(2) ⇔ ∂(df α + ∂β) + ∂(df α + ∂β) + df (∂α + ∂α + i∂∂χ) = 0 ⇔ ∂∂(β − β) = idf ∂∂χ (70) 

Moreover, (b) is true ⇔ ∂A200 + df A
101 = 0 ⇔ df ∂β = −∂A200 . Thus, 

df ∂∂(β − β) = ∂∂(A200 − A200) = 0, so we can choose the desired χ. 

Corollary 6. A GCS on an exact Courant algebroid is locally equivalent, near a regular point, to 
R2(n−k) 

ω0 × Ck . 
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12.3.1 More Examples of Type Jumping 

Recall that we say type jumping via the operator eβ+β JJ e
−(β+β). We can see this behavior more explicitly 

using forms. Recall that a complex structure on C2 a representation by a spinor φ = dz1 ∧ dz2. Let 
β ∈ H0( 

�2 
T ) be a holomorphic section, e.g. β = z1∂1 ∧ ∂2 (obviously holomorphic). Then 

e β φ = e β+β φ = dz1 ∧ dz2 + iz1∂1 ∧∂2 dz1 ∧ dz2 = z1 + dz1 ∧ dz2 (71) 

At z1 = 0, this gives the complex structure dz1 ∧ dz2. Outside z1 = 0, we have z1(1 + dz1
z
+
1 

dz2 ) ∼ eB+iω , 
where B + iω = dz1+dz2 . z1 

12.3.2 Interpolation 

Suppose (g, I, J) is a Hyperk ahler structure, i.e. (I, g), (J, g) are K ahler and IJ = −JI. Then (K = IJ, g)

is another integrable K ahler structure, and one obtains a family of complex structures

{aI + bJ + cK|a2 + b2 + c2 = 1} parameterized by S2, all of which are K ahler w.r.t. g.


Remark. This places a strong constraint on g (reduction of holonomy, Ricci-flat metric, i.e. Einstein) but

does not imply that the Riemann curvature is 0. The only known compact examples known are


K3 surface • 

Flat T 4 • 

• Hilbn(K3) 

• Hilbn(T 4) 

• Two examples in dimensions 12 and 20 (O’Grady). 

Setting ωJ I = gJ, ωK = gK, one obtains 

wJ I = gJI = −gIJ = I∗gJ = I∗ωJ (72) 

Moreover, considering the GCSs 

J kJI = 
I 
−I∗ , JωJ = 

ωJ 

−ω−1 

, JωK = 
ωk 

−ω−1 

(73) 

one obtains the relations 

JI JωJ = −I∗ωJ 

−IωJ
−1 

= −ωJ I 
−ωJ

−1I∗ 
= −JωJ JI (74) 

Similarly, JI JωK = −JωK JI and JωJ JωK = −JωK JωJ , whereas JI JωI = JωI JI . Thus, 
(aJI + bJωK + cJωJ )

2 = −(a2 + b2 + c2), giving a 2-sphere of GCSs interpolating I → ωJ . 

Problem. Show that the intermediate structures are all B-field transforms of symplectic forms. 

Note. On CP 2, for the complex case JJ , K = Ωn, so K = Ø(3) and c1(K) = −3. For Jω, on the other 
hand, K = �eiω� and c1(K) = 0. So we see that we can never interpolate complex to symmetric. In fact, 
for any even general complex structure, 

ev 0 2 4

KJ ⊂ T ∗ ⊗ C = ⊕ ⊕ (75) 

there is a canonical projection s : KJ → 
�0 = C ( i.e. s ∈ C∞(KJ

∗)) which vanishes when type jumps off of 
zero. Hence, we see that for a generic GCS in four dimensions, the type change locus is PD to c1(K). 
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Example. In dimension 4, one has types {0, 1, 2}, so an odd GCS corresponds to a four-manifold foliated 
by 2-d symplectic leaves and transverse complex structure, e.g. Σω × ΣJ or a symplectec surface bundle 
over a complex Riemann surface. 

Example. In dimension 6, one has types {0, 1, 2, 3}, and one can construct an odd GCS by deforming the 
complex structure by a holomorphic Poisson structure (here, the Poisson condition is nontrivial). 0-2 
structures? 

Problem. Construct an interesting even GCS on a compact 6-manifold. 

We now consider examples on Hyperk ahler manifolds. Recall that, for a K ahler manifold one has maps 

g 

J ω 

T T ∗ 

(76) 

T 

s.t. J, ω are integrable, g = −ωJ , and g∗ = g ⇔ J∗ω = −ωJ . Thus, � �� � � � 

G = JJ Jω = 
−J −ω−1 

=
0 Jω−1 

J∗ ω J∗ω 0 � � � �� � (77) 
= 

g
g−1 

= 
ω 
−ω−1 −J

J∗ = JωJJ 

is a generalized Riemannian metric. The integrability condition can be rephrased as �I = 0 or �ω = 0. As 
above, for a Hyperk ahler manifold, we have almost complex structures (I, J,K) which are K ahler w.r.t. g 
and satisfy quaternion relations, thereby giving us a 2-sphere of complex structures {aI + bJ + cK}. This 
gives us an integrable complex structure which is K ahler w.r.t. g for {(a, b, c) ∈ S2}. 
Now, the relations �I = 0, �J = 0, �K = 0 reduce the holonomy of our manifold: the first reduces it 
U(n), while the second reduces it to the quaternionic unitary group U(n)I ∩ U(n)J = Sp(n). This is 
modeled as follows: set (V, I) to be a complex vector space, with dual V ∗ and anti-complex space V ∼=R 

with action i x = −ix. Then, in the category of vector spaces with C-linear maps, one has a diagram· 

h 
V ��

��
��V ∗ 

J Q (78) 

V 

with Q a complex symplectic form and h = g + ig(J ·, ) the induced hermitian metric. Note that J is·
”anti-linear”, in the sense that Ji = −iJ = ⇒ JI − iIJ . One thus finds that the holonomy reduction forces 
the Ricci flow to be trivial, though the whole Riemann tensor need not vanish. 
Finally, recall that the only known compact examples are the K3 and T 4 surfaces, the Hilbert schemes of 
both, and the two examples of O’Grady in dimensions 12 and 20. Except for the T 4 and Hilbn(T 4), the 
metrics on these manifolds are not explicit, as they rely on Yau’s existence theorem of Ricci flat metrics on 
K ahler manifolds with holomorphic trivial canonical bundle (Q ∧ · · · ∧ Q = 0).�

12.3.3 Intermediate Types 

As earlier, given a Hyperk ahler structure (g, I, J,K = IJ) and setting ωI = gI, ωJ = gJ, ωK = gK, we have 
an S2-parameterized family of structures aJI + bJωJ + cJωK . Moreover, observe that JI JωJ = −JωJ JI , so 

J = aJI + bJωJ = 
−aI −bωJ

−1 

(79)
bωJ aI∗ 
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is generalized almost-complex for a2 + b2 = 1. It has Poisson structure −bω−1 = −ω−1, so J could be a J 
B-field transform � �� �� � � � 

1 −ω−1 1 ω−1B −ω−1 

B 1 ω −B 1 = 
ω + Bω−1B −Bω−1 (80) 

a aof J 1 . This holds if bω−1B = −aI, i.e. B = − wJ I = ωK .ωJ J b bb 

Problem. Check that 
1 
ωJ + 

� a �2 
bωK ωJ

−1ωK =
1 − 
b2 

a2 

ωJ = bωJ (81) 
b b 

Thus, we find that J = e 
a
b ωk J 1 ωJ 

e− ab ωK is integrable. 
b

In another direction, a small deformation of JI by a holomorphic Poisson structure is a B-symplectic 
structure, e.g. take β = (ωJ + iωK )−1 , ∂β = 0, [β, β] = 0. 

Problem. Show that ωJ + iωK is a holomorphic, nondegenerate (2, 0)-form and therefore 
β = (ωJ + iωK )−1 is a holomorphic, Poisson, nowhere-vanishing bivector field. Thus, the β-transform is of 
symplectic type: determine it explicitly. 

12.3.4 Generalized K ahler Geometry 

Starting with (I, ωI ) in a Hyperk ahler manifold, one can do an infinitesimal deformation by a bivector 
tωJ
−1 (the real part of the holomorphic Poisson structure (ωJ + iωK )−1). (...) 

Thus, the generalized K ahler structure (JA, JB ) induces a Z × Z-grading on complex differetial forms 

S· ⊗ C = Up,q 

p + q ∼ mod 2 (82)= n 
p + q ≤ n 

and that 

dH = δ+ + δ + δ + δ+ (83)− − 

maps Up,q to Up+1,q+1 ⊕Up+1,q+1 ⊕Up+1,q−1 ⊕Up−1,q+1 ⊕Up−1,q−1 . Since ΔdH = 4
1 Δδ± (−), we obtain the 

Hodge decomposition 

H∗ (M, C) = Hp,q (84)H 

Now, recall that the key observation leading to the K ahler identities was ∗|Up,q = ip+q 

Example. Define the twisted Betti numbers to be the values bev/od = dim Hev/od (M), where, if [H] = 0, � � H 
bev = k b

2k, bod = k b
2k+1 . Consider the four-dimensional case as given before: then, if the generalized 

K ahler form is of type (ev, ev), one finds that bod must be even as well, since the action of complex 
conjugation is reflected through U0,0 . Opposingly, if the generalized K ahler form is of type (od, od), bev 

must be even. In particular, this implies that on CP 2, there are no (od, od) generalized K ahler structures 
(since bev = 1 + 1 + 1 = 3). 
Now, recall that ∗ = (i)p+q satisfies the identity α(α(∗)φ) = �φ: in four dimensions, this implies that 
α(∗) = (−1)4∗3/2∗ = ∗ and α(φ) = φ is degrees 0, 1, 4, −φ in degrees 2, 3. Applying this to the (ev, ev) case, 
we find that U0,0 = (Ω0 + Ω4)+ + Ω2 , while U−2,0 + U0,2 + U2,0 + U0,−2 = (Ω0 + Ω4) + Ω2 Opposingly, − − +. 
in the (od, od) case, we find that U0,0 = (Ω1,3) , while U−1,1 1,−1 = Ω2 + (Ω0 + Ω4)+ and 
U1,1 ⊕ U−1,−1 = Ω2 + (Ω0 + Ω4)−. 

−

= b2 + b2 

⊕ U − 

+ 
Finally, if [H] = 0, ∗ induces a splitting on H2 . Thus, in the (ev, ev) case, b2 is odd and b1 = b3+ − + 
is even, while in the (od, od) case, both b2 are odd, and just b1 is necessarily even. In particular, for the ± 

space CP 2#CP 2#CP 2#CP 2, one has twisted Betti numbers 1, 0, 4, 0, 1. 
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12.4 Introduction to Hermitian Geometry 

Let G = −JAJB : decomposing E = C+ ⊕ C into ±-definite spaces, ones finds that C = Ker (G � 1), i.e. 
P± = 1±2 

G are the projection operators to C
−

±, so that P± 
2 = P±. Recall that, given X

± 

∈ T , one has a 
unique pair of lifts X± to C±. We previously obtained C± = Gr(b ± g) in an isotropic splitting, so 

g(X,Y ) = �X+, Y +� = �X−, Y −� (85) 

independent of the isotropy choice. Now, since G commutes with JA and JB , the C are complex ±
sub-bundles, with JA = JB on C+ and JA = −JB on C−. Via the isomorphism π : C± → T , any structure 
on C can be transported to T . In particular, the complex structure on C gives two almost complex ± ±
structures J+, J− on T , both of which are g-orthogonal (since JA preserves �� on C±). That is, we obtain 
almost-Hermitian structures (g, J+), (g, J ) on T .−

Proposition 7. Choose the unique splitting for E where b = 0, i.e. E = (GT ∗) ⊕ T ∗ = T ⊕ T ∗. Then 
(JA, JB ) can be reconstructed from (g, J+, J ) as follows: −

• JA is J+ on C+, J− on C− 

• JB is J− on C+, J+ on C− 

That is, 

JA/B = π −1 J+πP+ ± π|−1 J−πPC+ C|� � − � 
− � � � � � 

= 
2
1 

g 
1 

J+ 
� 

1 0 
� 

g 
1 g−

1 

1 
± 

2
1 

−
1 
g

J− 
� 

1 0 
� 
−
1 
g 
−g

1 

−1 

(86) �� � � � �
1 1 � � 1 � � 

=
2 g

J+ J+g
−1 ± −g J− −J−g−1 

Setting ω = gJ±, w
−1 = −J±g−1, one obtains ± ± �� � � ��

1 J+ −ω−1 J ω−1 

JA/B = + − −
2 ω+ + −ω −J∗ � 

−J∗ ± 
−� 

− (87)
1 −ω−1 ± ω−1 

= 
J+ ± J− + −

2 ω+ � ω− −J∗ −+ � J∗ 

12.4.1 Condition on Types 

The above expression implies that πA/B = ω−1 � ω−1 are real Poisson structures and ω−1 = −J+g
−1, with + − + 

types 

1
type(JA) = 

2
dim R(Ker πA = Ker (J+ − J−)) 

(88)1
type(JB ) = dim R(Ker πB = Ker (J+ + J ))

2 −

Note that 

(�)[J+, J−] = (J+ + J−)(J+ − J−) (89) 

Thus, 

1. (J+ − J−), (J+ + J−) have linearly independent kernels. 
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2. � = ⇒ Ker (J+ − J−) ⊕ Ker (J+ + J−) ⊂ Ker [J+, J−] 

3. If [J+, J ]x = 0, then −

x = 
x + J

2 
+J−x 

+ 
x − J

2 
+J−x (90) 

and (J+ + J−)(x + J+J−x) = 0. Thus, Ker (J+ + J−) ⊕ Ker (J+ − J−) = Ker [J+, J−], and 
type(JA) + type(JB ) = 12 dim RKer [J+, J−]. 

Corollary 7. type(A) + type(B) ≤ n on M2n . 

It immediatly follows from this that, since type(A) + type(B) = n everywhere [J+, J ] = 0, then the ⇔ −
pair (type(A), type(B)) is constant on a connected manifold. 

12.4.2 Integrability 

As above, we have a map with structure actions JA � C T � J from our decomposed bundle to T .± → ±
Note that the complexifications of these bundles are given by 

C+ ⊗ C = L+ ⊕ L+, C− ⊗ C = L− ⊕ L− (91) 

, where L+ = LA 
1,0
∩ LB , L− = LA ∩ LB . Now, LA, LB are integrable = ⇒ L± are Courant integrable 

= ⇒ π(L±) = T are Lie integrable = ⇒ J± are integrable = ⇒ (J±, g) are both Hermitian. With the ±
chosen splitting, we have 

L+ = {X + gX : X ∈ T 1,0 } = {X − iω+X : X ∈ T 1,0 } (92)+ + 

L+ is closed under H-Courant ⇔ 

∀X,Y ∈ T 1,0, iX iY (H − idω+) = 0 (93)+ 

Similarly, 

L− = {X − gX : X ∈ T− 
1,0 } = {X + iω−X : X ∈ T− 

1,0 } (94) 

and L is closed under H-Courant − ⇔ 

∀X,Y ∈ T− 
1,0, iX iY (H + idω−) = 0 (95) 

We can rewrite this as 

iX iY (H � idω±) = 0 

iX iY (H � i(∂∂)ω±) = 0(since iX iY ∂ω± = 0) 
(96) 

iX iY (H ± dc ω ) = 0 ± ±

H ± dc ω = 0 ± ± 

That is, for a generalized K ahler manifold, we must have H = dc ω+ = −dc ω in order that J is 
integrable. 

+ − − ± 

Theorem 11. An abstracted defined JA/B on T ⊕ T ∗,H defines a generalized K aher structure 
⇔ H = d+

c ω+ = −d−c ω−. That is, a generalized K ahler structure over a b-field is a triple (g, J+, J−) s.t. 
dc ω+ω+ = −dc 

− −. 
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