1 Lecture 1 (Notes: K. Venkatram)

1.1 Smooth Manifolds

Let M be a f.d. C^{∞} manifold, and $C^{\infty}(M)$ the algebra of smooth \mathbb{R} -valued functions. Let T = TM be the tangent bundle of M: then $C^{\infty}(T)$ is the set of derivations $\text{Der}(C^{\infty}(M))$, i.e. the set of morphisms $X \in \text{End}(C^{\infty}(M))$ s.t. X(fg) = (Xf)g + f(Xg). Then $C^{\infty}(T)$ is equilled with a Lie bracket [,] via the commutator [X, Y]f = XYf - YXf.

Note. Explicitly, [X, Y] can be obtained as $\lim_{t\to 0} \frac{Y - \operatorname{Fl}_X^t Y}{t}$, where $\operatorname{Fl}_X^t \in \operatorname{Diff}(M)$ is the *flow* of the vector field on M.

Definition 1. The exterior derivative is the mapping

$$d: C^{\infty}\left(\bigwedge^{k} T^{*}\right) \to C^{\infty}\left(\bigwedge^{k+1} T^{*}\right)$$

$$p \mapsto \left[(X_{0}, \dots, X_{k}) \mapsto \sum_{i} (-1)^{i} X_{i} p(X_{0}, \dots, \hat{X}_{i}, \dots, X_{k}) + \sum_{i < j} (-1)^{i+j} p([X_{i}, X_{j}], X_{0}, \dots, \hat{X}_{i}, \dots, \hat{X}_{j}, \dots, X_{k}) \right]$$

$$(1)$$

Since [,] satisfies the Jacobi identity, $d^2 = 0$, i.e.

$$\cdots \to C^{\infty} \left(\bigwedge^{k-1} T^*\right) \xrightarrow{d} C^{\infty} \left(\bigwedge^k T^*\right) \xrightarrow{d} C^{\infty} \left(\bigwedge^{k+1} T^*\right) \to \cdots$$
(2)

is a differential complex of first-order differential operators. Set $\Omega^k(M) = C^{\infty}(\bigwedge^k T^*)$. Letting $m_f = \{g \mapsto fg\}$ denote multiplication by f, one finds that $[d, m_f]\rho = df \wedge \rho$, thus obtaining a sequence of symbols

$$\bigwedge^{k-1} T^* \xrightarrow{\eta \wedge \cdot} \bigwedge^k T^* \xrightarrow{\eta \wedge \cdot} \bigwedge^{k+1} T^*$$
(3)

which is exact for any nonzero 1-form $\eta \in C^{\infty}(T^*)$. Thus, Ω^* is an *elliptic complex*. In particular, if M is compact, $H^*(M) = \frac{\text{Ker } d_{|\Omega^*}}{\text{Im } d_{|\Omega^{*-1}}}$ is finite dimensional.

Remark. d has the property $d(\alpha \wedge \beta) = d\alpha \wedge d\beta + (-1)^{\deg \alpha} \alpha \wedge d\beta$. Thus, $(\Omega^{\bullet}(M), d, \wedge)$ is a differential graded algebra, and $H^{\bullet}(M) = \bigoplus H^k(M)$ has a ring structure (called the *de Rham cohomology ring*).

We would like to express [X, Y] in terms of d. Now, a vector field $X \in C^{\infty}(T)$ determines a derivation

$$i_X : \Omega^k(M) \to \Omega^{k-1}(M), \rho \mapsto [(Y_1, \dots, Y_k) \mapsto \rho(X, Y_1, \dots, Y_k)]$$

$$\tag{4}$$

of $\Omega^*(M)$. i_X has degree -1 and order 0.

Definition 2. The Lie derivative of a vector field X is $L_X = [i_X, d]$.

Note that this map has order 1 and degree 0.

Theorem 1 (Cartan's formula). $i_{[X,Y]} = [[i_X, d], i_Y]$

One thus obtains [,] as the *derived bracket of d*. See Kosmann-Schwarzbach's "Derived Brackets" for more information.

Problem. Classify all derivations of $\Omega^{\bullet}(M)$, and show that the set of such derivations has the structure of a \mathbb{Z} -graded Lie algebra.

One can extend the Lie bracket [,] on vector fields to an operator on all $C^{\infty}(\bigwedge^k T)$.

Definition 3. The Shouten bracket is the mapping

$$[,]: C^{\infty}\left(\bigwedge^{p} T\right) \times C^{\infty}\left(\bigwedge^{q} T\right) \to C^{\infty}\left(\bigwedge^{p+q-1} T\right)$$
$$(X_{1} \wedge \dots \wedge X_{p}, Y_{1} \wedge \dots \wedge Y_{q}) \mapsto \sum (-1)^{i+j} [X_{i}, Y_{i}] \wedge X_{1} \wedge \dots \wedge \hat{X}_{i} \wedge \dots \wedge X_{p} \wedge Y_{1} \wedge \dots \wedge \hat{Y}_{j} \wedge \dots \wedge Y_{q}$$
(5)

with the additional properties [X, f] = -[f, X] = X(f) and $[f, g] = 0 \forall f, g \in C^{\infty}(M)$.

Note the following properties:

- $[P,Q] = -(-1)^{(\deg P-1)(\deg Q-1)}[Q,P]$
- $[P, Q \land R] = [P, Q] \land R + (-1)^{(\deg P-1) \deg Q} Q \land [P, R]$
- $[P, [Q, R]] = [[P, Q], R] + (-1)^{(\deg P 1)(\deg Q 1)}[Q, [P, R]]$

Thus, we find that $C^{\infty}(\bigwedge T)$ has two operations: a wedge product \land , giving it the structure of a graded commutative algebra, and a bracket [,], giving it the structure of the Lie algebra. The above properties imply that it is a *Gerstenhaber algebra*.

Finally, for $P = X_1 \wedge \cdots \wedge X_p$, define $i_p = i_{X_1} \circ \cdots \circ i_{X_p}$. Note that it is a map of degree -p

Problem. Show that $[[i_P, d]i_Q] = (-1)^{(\deg P-1)(\deg Q-1)}i_{[P,Q]}$.

1.2 Geometry of Foliations

Let $\Delta \subset T$ be subbundle of the tangent bundle (*distribution*) with constant rank k.

Definition 4. An integrating foliation is a decomposition $M = \bigsqcup S$ of M into "leaves" which are locally embedded submanifolds with $TS = \Delta$.

Note that such leaves all have dimension k.

Theorem 2 (Frobenius). An integrating foliation exists $\Leftrightarrow \Delta$ is involutive, i.e. $[\Delta, \Delta] \subset [\Delta]$.

A distribution is equivalently determined by Ann $\Delta \subset T^*$ or the line det Ann $\Delta \subset \Omega^{n-k}(M)$. That is, for locally-defined 1-forms $(\theta_1, \ldots, \theta_{n-k})$ s.t. $\Delta = \bigcap_i \operatorname{Ker} \theta_i, \ \Omega = \theta_1 \wedge \cdots \wedge \theta_k$ generates a line bundle. If Δ is involutive, $i_X i_Y d\Omega = [[i_X, d], i_Y]\Omega = i_{[X,Y]}\Omega = 0$ for all X, Y s.t. $i_X \Omega = i_Y \Omega = 0$. That is, $d\Omega = \eta \wedge \Omega$ for some 1-form $\eta \in \Omega$.

Remark. More generally, let $\Delta \subset T$ be a distribution on non-constant rank spanned by an nvolutive $C^{\infty}(M)$ module $\mathcal{D} \subset C^{\infty}(T)$ at each point. Sussmann showed that such a \mathcal{D} gives M as a disjoint union of locally embedding leaves S with $TS = \Delta$ everywhere.

1.3 Symplectic Structure

Definition 5. An symplectic structure on M is a closed, non-degenerate two-form $\omega: T \to T^*$.

Let (M, ω) be a symplectic manifold: note that det $\omega \in \det T^* \otimes \det T^*$.

Problem. Show that det $\omega = Pf \ \omega \otimes Pf \ \omega$, where Pf is the *Pfaffian*.

Theorem 3 (Darboux). Locally, $\exists C^{\infty}$ functions $p_1, \ldots, p_n, q_1, \ldots, q_n$ s.t. $\{dp_i, dq_i\}$ span T^* and $\omega = \sum dp_i \wedge dq_i$. That is, (M, ω) is locally diffeomorphic to $(\mathbb{R}^{2n}, \sum dx_i \wedge dy_i)$.

Moreover, by Stokes' theorem, one finds that $\int_M \omega \wedge \cdots \wedge \omega \neq 0 \implies [\omega]^i \neq 0$ for all i.

Corollary 1. Neither S^4 nor $S^1 \times S^3$ have a symplectic structure.