14 Lecture 19 (Notes: K. Venkatram)

14.1 Generalized K ahler Geometry

Recall from earlier that a K ahler structure is a pair $\mathbb{J}_{J}=\left(\begin{array}{cc}J & \\ & -J^{*}\end{array}\right), \mathbb{J}_{\omega}=\left(\begin{array}{ll} & \left.\begin{array}{ll}-\omega^{-1} \\ \omega & \end{array}\right) \text { s.t. } \text {. }\end{array}\right.$ $\mathbb{J}_{J} \mathbb{J}_{\omega}=\mathbb{J}_{\omega} \mathbb{J}_{J}=-\left(\begin{array}{ll} & g^{-1} \\ g & \end{array}\right)=-G$.
Definition 22. A generalized K ahler structure is a pair $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$ of generalized complex structures s.t. $-\mathbb{J}_{A} \mathbb{J}_{B}=G$ is a generalized Riemannian metric.

The usual example has type $(0, n)$ for $\mathbb{J}_{A}, \mathbb{J}_{B}$. In fact, as we will show later type $\mathbb{J}_{A}+$ type $\mathbb{J}_{B} \leq n$ and $\equiv n$ $\bmod 2$.

Example. 1. Can certainly apply B-field $\left(e^{B} \mathbb{J}_{A} e^{-B}, e^{B} \mathbb{J}_{B} e^{-B}\right)$ and obtain the generalized metric $e^{B} G e^{-B}$.
2. Going back to hyperk ahler structures, recall that

$$
\begin{equation*}
\left(\omega_{J}+i \omega_{K}\right) I=g(J+i K) I=-g I(J+i K)=I^{*}\left(\omega_{J}+i \omega_{K}\right) \tag{106}
\end{equation*}
$$

so $\frac{1}{2}\left(\omega_{J}+i \omega_{k}\right)=\sigma$ is a holomorphic (2,0)-form with $\sigma^{n} \neq 0$. Note that $\beta=\frac{1}{2}\left(\omega_{J}^{-1}-i \omega_{k}^{-1}\right)$ satisfies $\beta \sigma=\frac{1}{2}(1-i I)=P_{1,0}$, i.e. it is the projection to the $(1,0)$-form $\left.\beta\right|_{T_{1,0}^{*}}=\left.\sigma^{-1}\right|_{T^{1,0}}$.

Recall that, for β a holomorphic (2,0)-bivector field s.t. $[\beta, \beta]=0, e^{\beta+\bar{\beta}} \mathbb{J}_{I} e^{-\beta-\bar{\beta}}$ is a generalized complex structure. Thus, we have

$$
\begin{align*}
\left(\begin{array}{cc}
1 & t \omega_{J}^{-1} \\
& 1
\end{array}\right)\left(\begin{array}{cc}
I & \\
& -I^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & -t \omega_{J}^{-1} \\
& 1
\end{array}\right) & =\left(\begin{array}{cc}
I & -t \omega_{j}^{-1} I^{*} \\
& -I^{*}
\end{array}\right)\left(\begin{array}{cc}
1 & -t \omega_{J}^{-1} \\
& 1
\end{array}\right)=\left(\begin{array}{cc}
I & -t I \omega_{J}^{-1}-t \omega_{J}^{-1} I^{*} \\
0 & -I^{*}
\end{array}\right) \\
& =\left(\begin{array}{cc}
I & 2 t K g^{-1} \\
& -I^{*}
\end{array}\right)=\left(\begin{array}{cc}
I & -2 t \omega_{K}^{-1} \\
& -I^{*}
\end{array}\right) \tag{107}
\end{align*}
$$

Now, note that

$$
\begin{align*}
\left(\begin{array}{cc}
1 & t \omega_{J}^{-1} \\
& 1
\end{array}\right)\left(\begin{array}{ll}
& -\omega_{I}^{-1} \\
\omega_{I} &
\end{array}\right)\left(\begin{array}{cc}
1 & -t \omega_{J}^{-1} \\
& 1
\end{array}\right) & =\left(\begin{array}{cc}
t \omega_{J}^{-1} \omega_{I} & -\omega_{I}^{-1} \\
\omega_{I} &
\end{array}\right)\left(\begin{array}{cc}
1 & -t \omega_{J}^{-1} \\
1
\end{array}\right) \\
& =\left(\begin{array}{cc}
t \omega_{J}^{-1} \omega_{I} & -\omega_{I}^{-1}-t^{2} \omega_{J}^{-1} \omega_{I} \omega_{J}^{-1} \\
\omega_{I} & -t \omega_{I} \omega_{J}^{-1}
\end{array}\right) \tag{108}\\
& =\left(\begin{array}{cc}
t K & \left(-1+t^{2}\right) \omega_{I}^{-1} \\
\omega_{I} & -t K^{*}
\end{array}\right) \\
& =\sqrt{1-t^{2} \mathbb{J}_{\frac{1}{\sqrt{1-t^{2}}} \omega_{I}}+t \mathbb{J}_{K}}
\end{align*}
$$

By a previous calculation, this is integrable, and $\mathbb{J}_{A}=\left(\begin{array}{cc}I & -2 t \omega_{K}^{-1} \\ & -I^{*}\end{array}\right), \mathbb{J}_{B}=\left(\begin{array}{cc}t K & \left(-1+t^{2}\right) \omega_{I}^{-1} \\ \omega_{I} & -t K^{*}\end{array}\right)$ is a generalized K ahler structure of type $(0,0)$.
Problem. Let (J, ω) be a K ahler structure, β a holomorphic Poisson structure. For $Q=\beta+\bar{\beta}$, when is $e^{t Q} \mathbb{J}_{\omega} e^{-t Q}$ integrable for small t ?

What is the analog of the Hodge decomposition $H^{k}(M, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(M)$ for generalized K ahler manifolds. The key element of this decomposition in the case of ordinary K ahler structures is to show that $\Delta_{d}=\partial \Delta_{\partial}=\partial \Delta_{\bar{\partial}}$, where $\Delta_{d}=d d^{*}+d^{*} d=\left(d+d^{*}\right)^{2}$, and d^{*} is the adjoint of d in an appropriate metric define on forms. The equality of the above decomposition then follows from Hodge theory (that every cohomology class has a unique harmonic representative).

14.2 Hodge Theory on Generalized K ahler Manifolds

Recall the Born-Infeld volume: letting $\left(a_{i}\right)$ be an orthonormal basis for C_{+}in $\operatorname{Pin}\left(T \oplus T^{*}\right)$, we have an associated element $-G \in O(n, n)$; letting $\star \psi=\alpha(\alpha(*) \psi)$ denote the generalized Hodge star and $\langle * \phi, \psi\rangle \in \operatorname{det} T^{*}$ the symmetric volume form, the Born-Infeld inner product on $S \otimes \mathbb{C}=\Omega^{*}(M, \mathbb{C})$ is

$$
\begin{equation*}
(\phi, \psi)=\int_{M}\langle * \phi, \bar{\psi}\rangle \tag{109}
\end{equation*}
$$

This is a Hermitian inner product. Recall also that, if we split $T \oplus T^{*}$ and $G=\left(g^{g^{-1}}\right)$, then $\langle * \phi, \psi\rangle=\phi \wedge \star \psi=(\phi, \psi) \operatorname{vol}_{g}$ via the usual Hodge inner product. What is the adjoint of d_{H} ?

Lemma 7. $\langle d \phi, \psi\rangle=(-1)^{\operatorname{dim} M}\langle\phi, \partial \psi\rangle$.
Proof. First, note that $\alpha\left(\phi^{(k)}\right)=(-1)^{\frac{1}{2} k(k-1)} \phi^{(k)}$. then

$$
\begin{align*}
d(\phi \wedge \alpha(\psi)) & =d \phi \wedge \alpha(\psi)+(-1)^{k} \phi \wedge d \alpha(\psi) \\
d\left(\alpha\left(\psi^{p}\right)\right) & =(-1)^{\frac{1}{2} p(p-1)} d \psi^{p}=(-1)^{\frac{1}{2} p(p-1)+\frac{1}{2} p(p+1)} \alpha\left(d \psi^{p}\right)=-\alpha\left(d \psi^{p}\right) \tag{110}
\end{align*}
$$

Thus, $d(\phi \wedge \alpha(\psi))=\langle d \phi, \psi\rangle+(-1)^{n}\langle\phi, d \psi\rangle$.
Lemma 8. We have the same for $H \wedge$ •.
Corollary 8. On an even-dimensional manifold, $\int_{M}\left\langle d_{H} \phi, \psi\right\rangle=\int_{M}\left\langle\phi, d_{H} \psi\right\rangle$.
Now

$$
\begin{equation*}
h\left(d_{H} \phi, \psi\right)=\int\left\langle * d_{H} \phi, \psi\right\rangle=\int\left\langle d_{H} \phi, \sigma(a s t) \psi\right\rangle=\int\left\langle\phi, d_{H} \sigma(*) \psi\right\rangle=\int\left\langle * \phi, * d_{H} \sigma(*) \psi\right\rangle \tag{111}
\end{equation*}
$$

so $d_{H}^{*}=* d_{H} *^{-1}$. As in the classical case, $d_{H}+d_{H}^{*}$ is elliptic, as is $D^{2}=\Delta_{d_{H}}$. By Hodge theory, every twisted deRham cohomology class has a unique harmonic representative.
To perform Hodge decomposition on generalized K ahler manifolds, note that we have two commuting actions on spinors. For \mathbb{J}_{A}, we have the maps $\partial_{A}: \mathcal{U}_{k} \rightarrow \mathcal{U}_{k+1}$ and $\bar{\partial}_{A}: \mathcal{U}_{k} \rightarrow \mathcal{U}_{k-1}$, with the associated differential $d_{H}=\partial_{A}+\bar{\partial}_{A}$. Each \mathcal{U}_{k} must decompose as eigenspaces for \mathbb{J}_{B}, i.e. we can obtain a set of spaces $\mathcal{U}_{r, s}$ which has the pair of eigenvalues $(i r, i s)$ for $\left(\mathbb{J}_{A}, \mathbb{J}_{B}\right)$. Between these spaces, we have horizontal maps given by $L_{A}, \overline{L_{A}}$ and vertical maps given by $L_{B}, \overline{L_{B}}$, with the associated decompositions

$$
\begin{align*}
\left(T \oplus T^{*}\right) \otimes \mathbb{C} & =L_{A} \cap L_{B} \oplus L_{A} \cap \overline{L_{B}} \oplus \cap L_{A} \cap L_{B} \oplus \overline{L_{A}} \cap \overline{L_{B}} \tag{112}\\
d_{H} & =\delta_{+}+\delta_{-}+\overline{\delta_{+}}+\overline{\delta_{-}}
\end{align*}
$$

Proposition 10. $\delta_{+}^{*}=-\bar{\delta}_{+}$and $\delta_{-}^{*}=\bar{\delta}_{-}$.

Proof. The identity $\mathbb{J}_{A} \mathbb{J}_{B}=-G$ corresponds to the spin decomposition $e^{\frac{\pi}{2} \mathbb{J}_{A}} \times e^{\frac{\pi}{2} \mathbb{J}_{B}}=*$. Thus, for $\phi \in \mathcal{U}^{p, q}, * \phi=e^{\frac{\pi}{2} \mathbb{J}_{A}} \times e^{\frac{\pi}{2} \mathbb{J}_{B}} \phi=i^{p+q} \phi$ and

$$
\begin{equation*}
\delta_{+}^{*}=\left(* d_{H} *^{-1} \phi\right)=\left(i^{p+q-2} \bar{\delta}_{+} i^{-p-q} \phi\right)=-\bar{\delta}_{+} \tag{113}
\end{equation*}
$$

The other identity follows similarly.
Corollary 9. If $\phi \in \mathcal{U}^{p, q}$ is closed (i.e. $d_{H} \phi=0$) then it is Δ closed as well.
By our above decomposition of d_{H} and the implied decomposition of d_{H}^{*}, we find that $\frac{1}{2}\left(d_{H}+d_{H}^{*}\right)=\delta_{-}+\delta_{-}^{*}$ and $\frac{1}{2}\left(d_{H}-d_{H}^{*}\right)=\delta_{+}+\delta_{+}^{*}$, so that $\frac{1}{4} \Delta_{d_{H}}=\Delta_{\delta_{-}}=\Delta_{\delta_{+}}$. This finally gives us our desired decomposition

$$
\begin{equation*}
H_{H}^{*}(M, \mathbb{C})=\bigoplus_{|p+q| \leq n, p+q \equiv n} \mathcal{H}_{\Delta_{d_{H}}}^{p, q} \tag{114}
\end{equation*}
$$

