
� � � � 

� � 

� � � � 

� � 

� 

� � � � 

14 Lecture 19 (Notes: K. Venkatram) 

14.1 Generalized K ahler Geometry 

Recall from earlier that a K ahler structure is a pair JJ = 
J

, Jω = 
−ω−1 

s.t. −J∗ ω 

JJ Jω = JωJJ = − 
g

g−1 
= −G. 

Definition 22. A generalized K ahler structure is a pair (JA, JB ) of generalized complex structures s.t. 
−JAJB = G is a generalized Riemannian metric. 

The usual example has type (0, n) for JA, JB . In fact, as we will show later type JA + type JB ≤ n and ≡ n 
mod 2. 

Example. 1. Can certainly apply B-field (eB JAe
−B , eB JB e

−B ) and obtain the generalized metric 
eB Ge−B . 

2. Going back to hyperk ahler structures, recall that 

(ωJ + iωK )I = g(J + iK)I = −gI(J + iK) = I∗(ωJ + iωK ) (106) 

so 1 (ω
1 
J + iωk) = σ is a holomorphic (2, 0)-form with σn = 0. Note that � β = 1 (ω−1 − iω−1) satisfies 2 2 J k


βσ = 2 (1 − iI) = P1,0, i.e. it is the projection to the (1, 0)-form β|
1,0 

= σ−1|T 1,0 .
T ∗ 

Recall that, for β a holomorphic (2, 0)-bivector field s.t. [β, β] = 0, eβ+β JI e
−β−β is a generalized complex 

structure. Thus, we have � �� �� � � �� � � � 
1 tω−1 I 1 −tω−1 I −tω−1I∗ 1 −tω−1 I −tIω−1 − tω−1I∗ 

J J j J J J= = 1 −I∗ 1 −I∗ 1 0 −I∗ 

I 2tKg−1 I −2tω−1 

= = K 
−I∗ −I∗ 

(107) 

Now, note that � �� �� � � �� � 
1 tω−1 −ω−1 1 −tω−1 tω−1ωI −ω−1 1 −tω−1 

J I J = J I J 
1 ωI 1 ωI 1 

tω−1ωI −ω−1 − t2ω−1ωI ω
−1 

= J I J J � 
ωI −tωI � 

ωJ
−1 

(108) 
tK (−1 + t2)ω−1 

= I 
ωI −tK∗ 

= 1 − t2J √
1
1 

−t

+ tJKωI2 

I −2tω−1 tK (−1 + t2)ω−1 

By a previous calculation, this is integrable, and JA = K = I is a −I∗ , JB ωI −tK∗ 

generalized K ahler structure of type (0, 0). 

Problem. Let (J, ω) be a K ahler structure, β a holomorphic Poisson structure. For Q = β + β, when is 
etQJωe

−tQ integrable for small t? 
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What is the analog of the Hodge decomposition Hk(M, C) = p+q=k H
p,q (M) for generalized K ahler 

manifolds. The key element of this decomposition in the case of ordinary K ahler structures is to show that 
Δd = ∂Δ∂ = ∂Δ∂ , where Δd = dd∗ + d∗d = (d + d∗)2, and d∗ is the adjoint of d in an appropriate metric 
define on forms. The equality of the above decomposition then follows from Hodge theory (that every 
cohomology class has a unique harmonic representative). 

14.2 Hodge Theory on Generalized K ahler Manifolds 

Recall the Born-Infeld volume: letting (ai) be an orthonormal basis for C+ in Pin(T ⊕ T ∗), we have an 
associated element −G ∈ O(n, n); letting �ψ = α(α(∗)ψ) denote the generalized Hodge star and 
�∗φ, ψ� ∈ det T ∗ the symmetric volume form, the Born-Infeld inner product on S ⊗ C = Ω∗(M, C) is 

(φ, ψ) = �∗φ, ψ� (109) 
M 

This is a Hermitian inner product. Recall also that, if we split T ⊕ T ∗ and G = 
g−1 

, then 
g 

�∗φ, ψ� = φ ∧ �ψ = (φ, ψ)volg via the usual Hodge inner product. What is the adjoint of dH ? 

Lemma 7. �dφ, ψ� = (−1)dim M �φ, ∂ψ�. 

Proof. First, note that α(φ(k)) = (−1)
1 
2 k(k−1)φ(k). then 

d(φ ∧ α(ψ)) = dφ ∧ α(ψ) + (−1)kφ ∧ dα(ψ) 
(110) 

d(α(ψp)) = (−1)
1 p(p−1)dψp = (−1)

1 
2 p(p−1)+ 1 

2 p(p+1)α(dψp) = −α(dψp)2

Thus, d(φ ∧ α(ψ)) = �dφ, ψ� + (−1)n�φ, dψ�. 

Lemma 8. We have the same for H ∧ ·. 

Corollary 8. On an even-dimensional manifold, 
M �dH φ, ψ� = 

M �φ, dH ψ�. 

Now 

h(dH φ, ψ) = �∗dH φ, ψ� = �dH φ, σ(ast)ψ� = �φ, dH σ(∗)ψ� = �∗φ, ∗dH σ(∗)ψ� (111) 

so d∗ = ∗dH ∗−1 . As in the classical case, dH + d∗ is elliptic, as is D2 = ΔdH . By Hodge theory, every H H 
twisted deRham cohomology class has a unique harmonic representative. 
To perform Hodge decomposition on generalized K ahler manifolds, note that we have two commuting 
actions on spinors. For JA, we have the maps ∂A : Uk → Uk+1 and ∂A : Uk → Uk−1, with the associated 
differential dH = ∂A + ∂A. Each Uk must decompose as eigenspaces for JB , i.e. we can obtain a set of 
spaces Ur,s which has the pair of eigenvalues (ir, is) for (JA, JB ). Between these spaces, we have horizontal 
maps given by LA, LA and vertical maps given by LB , LB , with the associated decompositions 

(T ⊕ T ∗) ⊗ C = LA ∩ LB ⊕ LA ∩ LB ⊕ ∩LA ∩ LB ⊕ LA ∩ LB 
(112) 

dH = δ+ + δ + δ+ + δ− − 

. 

Proposition 10. δ∗ and δ∗ = δ+ = −δ+ − −. 
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2 2Proof. The identity JAJB = −G corresponds to the spin decomposition e 
π JA × e 

π JB = ∗. Thus, for 
2 2φ ∈ Up,q, ∗φ = e 
π JA × e 

π JB φ = ip+qφ and 

δ∗ = (∗dH ∗−1 φ) = (ip+q−2δ+i
−p−qφ) = −δ+ (113)+ 

The other identity follows similarly. 

Corollary 9. If φ ∈ Up,q is closed (i.e. dH φ = 0) then it is Δ closed as well.


By our above decomposition of dH and the implied decomposition of d∗ , we find that
H 
1 (dH + d∗ ) = δ − and 1 (dH − d∗ ) = δ+ + δ∗ , so that 1 ΔdH = Δδ− = Δδ+ . This finally gives us our 2 H − + δ∗ 

2 H + 4 
desired decomposition 

p,qH∗ (M, C) = HΔdH (114)H 

|p+q|≤n,p+q≡n mod 2 
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