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15 Lecture 20 (Notes: K. Venkatram) 

15.1 Generalized Complex Branes (of rank 1) 

In complex geometry, we have special submanifolds, i.e. complex submanifolds φ : S M s.t.→
J(TS) ⊂ TS, i.e. TS ⊂ TM is a complex subspace (for examplex, points in a manifold, or algebraic 
subvarieties). In symplectic geometry, there are several kinds of special submanifolds: isotropic 
(TS ⊂ TSω), coisotropic (TSω ⊂ TS), and Lagrangian (TS = TSω ⇔ φ∗ω = 0). 

Example. 1. If f : (M,ω) (M,ω) is a diffeomorphism with f∗ω = ω (i.e. a symplectomorphism), →
then φ : Γf → M × M satisfies φ∗(π1 

∗ω − π2 
∗ω) = 0, i.e. Γf is Lagrangian. 

2. For any manfold M , T ∗M is symplectic, with ω = dpi ∧ dxi, for {xi} a coordinate chart on M and 
{pi} coordinates for the 1-form. Then the fibers (xi = 0) are Lagrangian, as are the zero sections 
(pi = 0). Aimilarly, the graph of any 1-form α = αidx

i ∈ Ω1(M) is Lagrangian 
⇔ f∗ω = dαi ∧ dxi = 0 ⇔ dα = 0. 

Lagrangians and complex submanifolds are important in physics since they are the D-branes in A- and 
B-models. However, for a generalized complex manifold, we don’t yet have such a good notion of subobject. 
Now, associated to any submanifold S M , we can form → 

0 TS TM NS 0 (115)→ → → → 

and hence 

0 N∗S T ∗M T ∗S 0 (116)→ → → → 

where N ∗S = {ξ ∈ T ∗M |ξ(TS) = 0} is the conormal bundle. Therefore, we have a natural maximal 
isotropic subbundle TS ⊕ N∗S ⊂ TM ⊕ T ∗M . If there is ambient flux, i.e. (M,H), then as we defined 
before, (f : S → M,F ∈ Ω2(S)) gives us a topological brane when f∗H = dF . In this case, we similarly 
have τS,F = f ΓF ⊂ TM ⊕ T ∗M s.t.∗

f∗ΩF = {f∗v + ξ ∈ TS ⊕ T ∗M |v + f∗ξ ∈ ΓF } (117) 

This gives us an exact sequence 

0 N∗S τS,F TS 0 (118)→ → → → 

, and we call it a generalized complex brane when JτS,F ⊂ τS,F . 
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15.1.1 General Properties of Generalized Complex Branes 

•	 (f : S → (M,H), F ∈ Ω2(S)) has generalized pullback map eF f∗ : Ω∗(M) � ρ �→ eF f∗ρ ∈ Ω∗(S) s.t. 

deF f∗ρ = dF ∧ e F f∗ρ + e F f∗dρ = e F f∗(dρ + H ∧ ρ) = e F f∗dH ρ (119)


Thus, we obtain a map on cohomology H∗ (M, R) H∗ (S, R).
H H→ 

Let ψ be the pure spinor line in ∗ 
T ∗M S defining τM,S Then ψ = �e−F det (N∗)� and Jτ ⊂ τ• 

implies that 
|


0 = (Jx)ψ = [J, x] ψ = J(x ψ) + x J ψ∀x ∈ τ (120)
· · · ·


Thus, Jψ = (ik)ψ: since ψ is real, k = 0, and ψ ∈ U0 .


•	 Gerbe interpretation: for G = (Lij ,mij , θijk) a gerbe, (�ij , Bi) a connection, if we can find (Li, �i)

on S s.t. F (�i) − F (�j ) = F (�ij ), then F (�i) − Bi = F is the gloabl 2-form on S we described.


• Action by B-fields: eB � T ⊕ T ∗, (S, F + B). 

Example. Examples of generalized complex branes: 

1. Complex Case: f : (S, F ) (M,J)(H = 0). Then → 

τS,F = {v + ξ ∈ TS ⊕ T ∗M |iV F = f∗ξ}
JτS,F = τS,F ⇔ J(TS) ⊂ TS and − J∗Fv = FJv ⇔ S is a complex submanifold and F has type (1, 1) 

(121) 

Thus, we interpret F = F (�) as the curvature of a unitary connection on a holomorphic line bundle

L, giving us the complex brane (S, L, �).


2. Symplectic Case: For H = 0, F = 0, we have � �� � � � 
−ω−1 TS TS J� = 

ω N∗S 
= 

N∗S 
⇔ ω(TS) = N∗S and ω−1(N∗S) = TS ⇔ TS ⊂ TSω and TSω ⊂ TS 

(122) 

i.e. iff S is Lagrangian. For F = 0, things are more interesting. Choose locally an extension of F to

Ω2(M). Then Jω fixes τS,F ⇔

�
eF Jωe

−F fixed τS,0 ⇔
�	 �� � � � 
−ω−1F −ω−1 TS 

= 
TS 

(123)
ω + Fω−1F Fω−1 N∗S N ∗S 

That is, we must have 

•	 ω−1N∗S ⊂ TS, i.e. S is coisotropic 

•	 F (TSω) ⊂ N∗S, i.e. F vanishes on the characteristic foliation C, i.e. locally

F = π∗{, π : S S/C.
→ 

•	 ω−1F � TS s.t. (ω + Fω−1F )TS ⊂ N∗S), i.e. on TS/TSω , (1 + ω−1Fω−1F ) = 0, i.e.

(ω−1F )2 = −1. Thus, TS/TSω inherits a complex structure.


Note that F + iω defines a form of type (2, 0) on TS/TSω w.r.t. I = ω−1F since 

I∗(F + iω) = Fω−1(F + iω) = −ω + iF = i(F + iω) = (F + iω)I (124) 

and F + iω is closed. Thus, F + iω defines a holomorphic symplectic structure on SC, which therefore

must be 4k-dimensional. This is precisely the geometry discovered by Kapustin and Orlov as the

most general rank 1 A-brane in a symplectic manifold.
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Example. Let (g, I, J) be a hyper-K ahler manifold, and consider the complex structure ωI . 

Example. If S = M , then the conditions are (ω−1F )2 = −1, i.e. F + iω is a holomorphic symplectic 
structure. For example, (M, g, I, J) hyperk ahler with ω = ωk, F = ωJ , ω

−1F = ω−1ωk = (gJ)−1gk = −I.J 
This is an example of a space-filling rank 1 A-brane used by Kapustin-Witten in their study of the 
geometric Langlands program. 

15.1.2 Branes for Other Generalized Complex Manifolds � � 
I Q

Consider a complex structure I, deformed by a holomorphic bivector β: Q = β + β, J = is a −I∗ 

generalized complex strucutre, e.g. CP 2 . 

0-Branes: Before deformation, all the points were branes. Now, only the points on β = 0 are. 

2-Branes: Branes must be complex curves where β = 0 or (β + iω)-Langrangian where β = 0. That is, � β = 0 is 
a brane, as is any curve on which β + iω = β−1 vanishes. In particular, any previous complex curve is 
still a brane. 

Problem. Are there 2-branes in CPβ 
2 which are not complex curves in CP 2? What are the space-filling 

branes on CPβ 
2? 
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