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Abstract

In this paper, we introduce minimal surfaces as isotropic curves in C
3. Given such a

isotropic curve, we can define the adjoint surface and the family of associate minimal
surfaces to a minimal surface that is the real part of the isotropic curve. We study
the behavior of asymptotic lines and curvature lines in a family of associate surfaces,
specifically the asymptotic lines of a minimal surface are the curvature lines of its
adjoint surface, and vice versa.

In the second part of the paper, we describe the Björling’s problem. Given a real-
analytic curve and a real-analytic vector field along the curve, Björling’s problem is to
find a minimal surface that includes the curve such that its unit normal field coincides
with the given vector field. We shows that the Björling’s problem always has a unique
solution. We will use some examples to demonstrate how to construct minimal surface
using the results from the Björling’s problem. Some symmetry properties can be
derived from the solution to the Björling’s problem. For example, straight lines are
lines of rotational symmetry, and planar geodesics are lines of mirror symmetry in a
minimal surface. These results are useful in solving the Schwarzian chain problem,
which is to find a minimal surface that spanned into a frame that consists of finitely
many straight lines and planes.
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Chapter 1

Introduction

Minimal surface, such as soap film, has zero curvature at every point. It has at-

tracted the attention for both mathematicians and natural scientists for different

reasons. Mathematicians are interested in studying minimal surfaces that have cer-

tain properties, such as completedness and finite total curvature, while scientists are

more inclined to periodic minimal surfaces observed in crystals or biosystems such as

lipid bilayers.

Since a surface surrounded by a boundary is minimal if it is an area minimizer,

early mathematician search minimal surface by solving the Lagrange variational prob-

lem, which leads to a partial differential equation for such area-minimizing surface.

However, in Chapter 2, we will discuss how to describe minimal surfaces using the

Weierstrass-Enneper representation, which can generate minimal surfaces given an

arbitrary holomorphic “Weierstrass function“. Such powerful tool allows us to choose

different functions to generate minimal surfaces. The representation also gives rise to

ideas such as isotropic curve, adjoint surfaces and associate family of surfaces. Cur-

vature lines and asymptotic lines can also be expressed in the form of the Weierstrass

function.

Chapter 3 is about “Björling’s Problem“, which is to find a minimal surface that

coincides with a given real-analytic curve and a real-analytic normal field along the

curve. We will show that it is simple to write down a unique solution that solves

Björling’s problem with Weierstrass-Enneper representation. In Chapter 4 we will
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study the Björling’s problem further to show that straight lines and planar curves

have interested symmetry properties in minimal surfaces. This provides the funda-

mentals to solve the Schwarzian chain problem, which is to find a minimal surface

that is spanned into certain frame consisting finitely many straight lines and planes.

These minimal surfaces are particularly interesting to scientists, since the “frame“ can

serve as a building block to bigger minimal surfaces using reflexive and translational

symmetry.

Computer graphics gives visualization to minimal surface, and thus is a very useful

tool in studying minimal surface. In the last chapter, we will briefly describe how to

use computer programs such as Maple and Surface Evolver to study minimal surface.

Chapters 2 to 4 are based on [4], which provides a comprehensive account of

minimal surface. The Maple procedures in Section 5.1 are discussed in [5]. For more

information about the program Surface Evolver, reader are referred to the program

manual [2].
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Chapter 2

The Adjoint Surface and the

Family of Associate Minimal

Surfaces

The Weierstrass-Enneper representation provides a powerful tool to generate minimal

surfaces. In this chapter, we will show that Weierstrass-Enneper representation is

nothing but expressing a minimal surface X as the real part of some isotropic curve

f in C
3. Furthermore, the imaginary part of the isotropic curve is also a minimal

surface, which is called the “adjoint surface“ of X. We can also show that for every

minimal surface X, there exists a one parameter associate family of minimal surfaces

which includes X and its adjoint surface. We will finish this chapter by studying the

behavior of asymptotic lines and curvature lines in the associate family, and some

examples of minimal surfaces.

2.1 Weierstrass-Ennerper Representations

We start by stating the Weierstrass-Enneper representations of minimal surfaces.

Theorem 2.1.1 (Weierstrass-Ennerper Representation I). For every noncon-
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stant minimal surface

X(w) = (x(w), y(w), z(w)), w ∈ Ω ⊂ C

defined on a simply connected domain Ω, there are a holomorphic function µ and a

meromorphic function ν in Ω with µ 6≡ 0, ν 6≡ 0 such that µν2 is holomorphic in Ω,

and that

x(w) = <
∫ w

w0

1
2
µ(1 − ν2) dζ

y(w) = <
∫ w

w0

i
2
µ(1 + ν2) dζ

z(w) = <
∫ w

w0

µν dζ

(2.1)

holds for w,w0 ∈ Ω.

Conversely, two functions µ and ν as above define by means of 2.1 a minimal

surface X : Ω → R
3 provided that Ω is simply connected.

If we introduce a function

F(w) =
µ(w)

ν ′(w)
(2.2)

then we have another representation of minimal surfaces:

Theorem 2.1.2 (Weierstrass-Ennerper Representation II). Let F(w) be a

holomorphic function in a simply connected domain Ω of C, F 6≡ 0 and set

Φ(w) = ((1 − w2)F(w), i(1 + w2)F(w), 2wF(w)). (2.3)

Then

X(w) = <

∫ w

w0

Φ(w) dw, w ∈ Ω (2.4)

defines a non-constant minimal surface X : Ω → R
3.

2.2 Adjoint Surface

It is natural to ask what will happen if we consider the imaginary part of the argu-

ments in the Weierstrass-Ennerper representation. Let X(u, v) = (x(u, v), y(u, v), z(u, v)
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be a minimal surface defined on a simply connected domain Ω ∈ R ∼= C with

∆X = 0 (2.5)

‖Xu‖
2 = ‖Xv‖

2, 〈Xu, Xv〉 = 0, (u, v) ∈ Ω. (2.6)

Definition 2.2.1. A surface X∗(u, v) = (x∗(u, v), y∗(u, v), z∗(u, v)) is said to be an

adjoint surface to X(u, v) on Ω if the following Cauchy-Riemann equations

Xu = X∗

v , Xv = −X∗

u (2.7)

hold in Ω.

It is immediate that

∆X∗ = 0, ‖X∗

u‖
2 = ‖X∗

v‖
2, 〈X∗

u, X∗

v 〉 = 0 (2.8)

and thus X∗ is also a minimal surface.

Consider a mapping

f(w) = X(u, v) + iX∗(u, v), w = u + iv ∈ Ω, (2.9)

then f is a holomorphic mapping of Ω into C
3 with components

f(w) = (f 1(w), f 2(w), f 3(w))

f j(w) = xj(w) + i(x∗)j(w)
(2.10)

for j = 1, 2, 3.

If we define the complex derivative of f by

f ′ =
df

dw
= Xu + iX∗

u = Xu − iXv, (2.11)

then we have

〈f ′, f ′〉 = ‖Xu‖
2 − ‖Xv‖

2 − 2i 〈Xu, Xv〉 = 0 (2.12)
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We say that the holomorphic curve f is a isotropic curve since it satisfies 〈f ′, f ′〉 = 0.

We obtain the following result:

Proposition 2.2.2. Let X : Ω → R
3 be a minimal surface defined on a simply

connected parameter domain Ω ⊂ C, and X∗ be the adjoint surface of X, then the

holomorphic curve f : Ω → C
3 defined by

f(w) = X(w) + iX∗(w), w ∈ Ω (2.13)

is an isotropic curve.

Conversely, if f : Ω → C
3 is an isotropic curve, then

X(u, v) = <f(w), X∗(u, v) = =f(w), , w = u + iv (2.14)

defineds two minimal surface.

Corollary 2.2.3. We say X∗(u, v), w = u + iv ∈ Ω is an adjoint surface to some

X(u, v), u + iv ∈ Ω if there exists an isotropic curve f : Ω → C
3 such that the Eq.(

2.14) is satisfied.

2.3 Associate Minimal Surfaces

We have shown that minimal surfaces can ben represented by the real parts of isotropic

curves in C
3. We can now modify the isotropic curves slightly to give rise to a family

of minimal surfaces that were discovered by Bonnet.

Given a isotropic curve f(w) = X(w) + iX∗(w) where w = u + iv ∈ Ω and

〈f ′(w), f ′(w)〉 = 0, we can define another holomorphic function

g(w, θ) = e−iθf(w), w ∈ Ω. (2.15)
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It is easy to see that g(w, θ) is an isotropic curve, and

Z(w, θ) = <e−iθf(w) = X(w) cos θ + X∗(w) sin θ (2.16)

defines a one-parameter family of minimal surfaces such that

Z(w, 0) = X(w), Z(w,
π

2
) = X∗(w). (2.17)

Since

Zu = Xu cos θ − Xv sin θ, Zv = Xv cos θ + Xu sin θ, (2.18)

we have

‖Zu‖
2 = ‖Zv‖

2 = ‖Xu‖
2 = ‖Xv‖

2 (2.19)

and thus

〈dZ(·, θ), dZ(·, θ)〉 = 〈dX, dX〉 . (2.20)

Therefore, all associate minimal surfaces to a given minimal surface have the same

first fundamental form, i.e. they are isometric to each other.

If we denote f ′ = Φ = (Φ1, Φ2, Φ3), then we have from Eq. (??) that

Z(w, θ) = <

∫ w

w0

e−iθΦ(w)dw. (2.21)

In the Weierstrass-Ennerper representation, we then have a “Weierstrass function“,

F̃(w, θ), for the family given by

F̃(w, θ) = e−iθF(w). (2.22)

In other words, if F(w) is the Weierstrass function to a minimal surface X, then

iF(w) is the Weierstrass function to the corresponding adjoint surface.
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2.4 Behavior of Asymptotic Lines and Curvature

Lines in a Family of Associate Minimal Sur-

faces

Let ω(t) = (α(t), β(t)) be a C1 curve in Ω, t ∈ [−ε, ε], then

• ω(t) is an asymptotic line of X if and only if

eα̇2 + 2fα̇β̇ + gβ̇2 = 0. (2.23)

• ω(t) is a line of curvature of X if and only if

(eF − fE)α̇2 + (Eg − Ge)α̇β̇ + (gF − fG)β̇2 = 0 (2.24)

In an isothermal parametrization, we have e = −g and E = G, thus the asymptotic

lines are described by

e(α̇2 − β̇2) + 2fα̇β̇ = 0 (2.25)

and the curvature lines are characterized by

f(α̇2 − β̇2) − 2eα̇β̇ = 0 (2.26)

If we introduce a complex valued quadratic form Ξ(ẇ):

Ξ(ẇ) = l(w)(α̇ + iβ̇)2, l(w) = e(w) − if(w) = 〈f ′′(w), N(w)〉 , (2.27)

then the asymptotic lines and the curvature lines are given by

<{Ξ(ẇ)} = 0 and ={Ξ(ẇ)} = 0 (2.28)

or equivalently

<{l(w)(dw)2} = 0 and ={l(w)(dw)2} = 0 (2.29)
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Now if we consider a holomorphic function

l(θ) = e(θ) − if(θ) = 〈g′′(·, θ), N〉 (2.30)

which characterizes the asymptotic lines and the curvature lines of the associate

minimal surface Z(·, θ). Since g′′(w, θ) = e−iθf ′′(w), we have

l(θ) = e−iθl(0) = [e cos θ − f sin θ] − i[e sin θ + f cos θ] (2.31)

where l(0) = l = e − if is the characteristic function for X = Z(·, 0). If we set

ξ = e(α̇2 − β̇2) + 2fα̇β̇,

η = −f(α̇2 β̇2) + 2eα̇β̇,
(2.32)

then we have

l(0)(α̇ + iβ̇)2 = ξ + iη

l(π
2
)(α̇ + iβ̇)2 = η − iξ

(2.33)

Since X = Z(·, 0) and X∗ = Z(·, π
2
), we showed that the asymptotic lines of X are

the curvature lines of X∗, and the curvature lines of X are asymptotic lines of X∗.

We can now express the results of this section in terms of the function F(w) in

the Weierstrass-Ennerper Representation. In doing so, we would like to express the

characteristic function l(w) = 〈N, f ′′〉 = e − if in terms of the functions µ, ν and F

in the representation.

Consider an isotropic curve f : Ω → C
3 that is related to a minimal surface

X(w), w ∈ Ω by the formula

X(w) = <{f(w)}. (2.34)

We obtain from the first Weierstrass-Ennerper representation that

f ′ = Xu − iXv =

(

1

2
µ(1 − ν2),

i

2
µ(1 + ν2), µν

)

. (2.35)
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ν

Ω X N Ω*σ

Figure 2-1: The map ν

If we set g = (−ν, iν, 1), we obtain

f ′′ = Xuu − iXuv =
µ′

µ
f ′ + µν ′g (2.36)

From Eq. (2.11), let Φ = (Φ1, Φ2, Φ3) = f ′, then we have

Xu = <Φ, Xv = =Φ. (2.37)

Then we can obtain

Xu ∧ Xv = =(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2) (2.38)

and consequently

N =
2

‖Φ‖2
=(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2) =

1

1 + ‖ν‖2
(2<ν, 2=ν, ‖ν‖2 − 1). (2.39)

It is easy to see that 〈N, g〉 = −1 and 〈N, f ′〉 = 0. Combining Eqs. (2.36) and

(2.39), we have

l = e − if = 〈N, f ′′〉 = −µν ′. (2.40)

By comparing the representation formulas in Eqs. (2.1) and (2.3), we note that

one representation can go over into another one if we set µ(w) = 2F(w) and ν(w) = w

and we then have three ways to characterize asymptotic lines and curvature lines, as

shown in Table 2.1.
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Table 2.1: Characterization of Asymptotic Lines and Curvature Lines in Different
Representation of Minimal Surfaces

Asymptotic Lines Curvature Lines Remarks
<l(w)(dw)2 = 0 =l(w)(dw)2 = 0 l = e − if

<{µ(γ)ν ′(γ)γ̇2} = 0 ={µ(γ)ν ′(γ)γ̇2} = 0 γ(t) = α(t) + iβ(t)
<F(w)(dw)2 = 0 =F(w)(dw)2 = 0

2.5 Catenoid and Helicoid

Catenoid is obtained by rotating a catenary about the z-axis in R
3. A catenary has

the form

x = α cosh

(

z − z0

α

)

(2.41)

for z ∈ R, and z0, α are arbitrary constants with α 6= 0. If we set z0 = 0, then the

catenoid X(u, v) can be parametrized by

x(u, v) = α cosh u cos v

y(u, v) = −α cosh u, sin v

z(u, v) = αu

(2.42)

with −∞ < u < ∞ and 0 ≤ v < 2π. By the following formulas

cosh(u + iv) = cosh u cos v + i sinh u sin v

sinh(u + iv) = sinh u cos v + i cosh u sin v
(2.43)

we find that the catenoid can be written as X(w) = <f(w) if we set the isotropic

curve f to be

f(w) = (α cosh w, αi sinh w, αw) (2.44)

In order to find the Weierstrass function F(ω) of the catenoid such that

x = α + <
∫ ω

1
(1 − ω2)F(ω) dω

y = <
∫ ω

1
i(1 + ω2)F(ω) dω

z = <
∫ ω

1
2ωF(ω) dω

(2.45)
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(a) (b)

(c) (d)

(e) (f)

Figure 2-2: The bending process from catenoid to helicoid
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we introduce a new variable ω = e−w = e−u−iv. We know that ω can be represented

in polar form ω = reiθ. Then log ω = log r + iθ = −u − iv. Thus the representation

of catenoid in Eq. (2.42) can be written as

x =
α

2

(

1

r
+ r

)

cos θ = <
α

2

(

1

ω
+ ω

)

y =
α

2

(

1

r
+ r

)

sin θ = <
iα

2

(

1

ω
− ω

)

z = −α log r = −<α log ω.

(2.46)

Comparing the expression for z in Eq. (2.42) and (2.46), we have

−
d

dω
α log ω = 2ωF(ω) ⇒ F(ω) = −

α

2ω2
(2.47)

From Eq. (2.44), we obtain the expression for the adjoint surface X∗(w) = =f(w)

of the catenoid:

x∗(u, v) = α sinh u sin v

y∗(u, v) = α sinh u cos v

z∗(u, v) = αv.

(2.48)

If we write

X∗ = αY (v) + sinh uZ(v) (2.49)

with

Y (v) = (0, 0, v), Z(v) = (sin v, cos v, 0), (2.50)

we see that for every v ∈ R, the curve X∗(·, v) is a straight line which meets the

z-axis perpendicularly. If we fix u 6= 0, then X∗(u, ·) describes a helix. Therefore the

surface X∗ is called a helicoid, the adjoint of the catenoid X.
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2.6 Scherk’s Second Surface

Scherk’s second surfaces Y (ω) are defined by

x = α + <
∫ ω

1
(1 − ω2)F(ω) dω

y = <
∫ ω

1
i(1 + ω2)F(ω) dω

z = <
∫ ω

1
2ωF(ω) dω

(2.51)

with the Weierstrass function

F(ω) =
−(α − iβ)

2ω2
(2.52)

where α, β ∈ R, α2 + β2 6= 0. Thus, Scherk’s second surface is an associate surface

of the catenoid. Specifically, for α = 0 or β = 0, we obtain a helicoid or a catenoid

respectively. If we represent ω by e−w = e−u−iv, then the Scherk’s second surface can

be expressed in a parameterized form

x = α cosh u cos v + β sinh u sin v

y = −α cosh u sin v + β sinh u cos v

z = αu + βv + γ.

(2.53)

If we represent a catenoid by

Xcat(w) = (cosh u cos v,− cosh u sin v, u) (2.54)

and a helicoid

Xhel(w) = (sinh u sin v, sinh u cos v, v) (2.55)

with γ = 0, then we can write

X(w) = c[cos θXcat(w) + sin θXhel(w)] (2.56)
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where α = c cos θ, β = c sin θ and c =
√

α2 + β2. This clearly shows that the Scherk’s

second surface is nothing but an associate surface of the catenoid.

2.7 The Enneper Surface

A minimal surface X(w), w ∈ C with a Weierstrass representation

F(w) ≡ 1 (2.57)

is called an Enneper Surface. Using the Weierstrass-Enneper representation, we

have

X(w) = <

(

w −
w3

3
, iw +

iw3

3
, w2

)

. (2.58)

Thus the components of X(u, v) are given by

x = u − 1
3
u3 + uv2

y = −v − u2v + 1
3
v3

z = u2 − v2

(2.59)

where w = u + iv ∈ C.

The associate surfaces of the Enneper surface, Z(w, θ), is given by

Z(w, θ) = <

{

e−iθ

(

w −
w3

3

)

, ie−iθ

(

w +
w3

3

)

, e−iθw2

}

. (2.60)

We will show that the trace of the Enneper surface is congruent to the traces of its

associate surfaces. Let us define a set of new cartesian coordinates ξ, η, z which is a

rotation of the set x, y, z about the z-axis with an angle − θ
2
:

ξ + iη = e−
iθ

2 (x + iy). (2.61)
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(a) (b)

(c) (d)

(e) (f)

Figure 2-3: The Enneper Surface and it’s associate minimal surface
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Thus the new coordinates of the associate surface will be

η(w) + iη(w) = e−iθ/2[<(e−iθw) + i<(ie−iθw)]

+e−iθ/2
[

<
(

−1
3
e−iθw3

)

+ i<
(

ie−iθ w3

3

)] (2.62)

If we denote ζ = e−iθ/2w, then Eq. (2.62) becomes

ξ + iη = <(ζ −
1

3
ζ3) + i<i(η +

1

3
η3). (2.63)

Rearranging, we have

ξ = <(ζ − 1
3
ζ3)

η = <i(ζ + 1
3
ζ3)

z = <ζ2

(2.64)

which is identical to Eq. (2.58) with a change of variables.
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Chapter 3

Björling’s Problem

Given a real-analytic curve c : I → R
3 with ċ(t) 6= 0, and a real-analytic vector field

n : I → R
3 along c such that ‖n(t)‖ ≡ 1 and 〈ċ(t), n(t)〉 ≡ 0, the Björling’s problem

concerns about whether one can find a minimal surface X : Ω → R
3 with I ⊂ Ω such

that

• X(u, 0) = c(u)

• N(u, 0) = n(u)

3.1 Solution to the Björling’s Problem

Theorem 3.1.1. For any prescribed real-anlytic strip S = {c(t), n(t) : t ∈ I}, the

corresponding Björling problem has exactly one solution X(u, v) given by

X(u, v) = <

{

c(w) − i

∫ w

w0

n(w) ∧ ċ(w) dw

}

(3.1)

where w = u+ iv ∈ Ω, u0 ∈ I, and Ω a simply connected domain with I ⊂ Ω in which

the power series expansions of both c and n are convergent.

In Eq. (3.1), we determine holomorphic extensions c(u + iv) and n(u + iv) of the

real-analytic functions c(t) and n(t), t ∈ I, to a suitable simply connected domain Ω
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that contains I and then determine the line integral

∫ w

u0

n(w) ∧ c′(w) dw

where c′(w) is the complex derivative of the holomorphic function c(w).

Proof. Let us first prove the uniqueness of the solution. Suppose X(u, v) is a solution

of Björling’s problem, defined in the simply connected domain Ω, and let X∗ : Ω → R
3

be an adjoint surface to X with X∗(u0, 0) = 0 and u0 ∈ I. Then the function

f(w) = X(u, v) + iX∗(u, v), w = u + iv ∈ Ω (3.2)

is an isotropic curve with X = <f , and

f ′ = Xu + ix∗

u = Xu − iXv. (3.3)

Since Xv = N ∧ Xu, we have

f ′ = Xu − iN ∧ Xu (3.4)

which means

f ′(u) = ċ(u) − in(u) ∧ ċ(u). (3.5)

Integrating both sides,

f(u) = c(u) − i

∫ u

u0

n(t) ∧ ċ(t) dt (3.6)

for all u ∈ I. Since both sides are holomorphic function of w, then both sides must

agree on the whole plane, thus

f(w) = c(w) − i

∫ w

u0

n(w) ∧ ċ(w) dw (3.7)

for w ∈ Ω. Therefore any possible solution to X must be in the form of Eq. (3.1),
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which show the uniqueness.

Now we will show that Eq. (3.1) is the solution to Björling’s problem. Consider

the holomorphic curve f : Ω → C
3 defined in Eq. (3.7). For w ∈ I,

<f ′(w) = ċ(w), =f ′(w) = −n(w) ∧ ċ(w). (3.8)

Since ċ(w) is orthogonal to ċ(w) ∧ n(w), we have

〈f ′(w), f ′(w)〉 = 0

for all w ∈ I, and thus for all w ∈ Ω. Therefore X(u, v) = <f(w) is a minimal

surface. Since c(w), n(w) and c′(w) are real for w ∈ I,

X(u, 0) = <f(u) = c(u) (3.9)

and

Xu(u, 0) − iXv(u, 0) = f ′(u) = ċ(u) − in(u) ∧ ċ(u) (3.10)

for u ∈ I. Moreover,

Xv(u, 0) = N(u, 0) ∧ Xu(u, 0) (3.11)

Since

〈Xu(u, 0), Xv(u, 0)〉 = 0, 〈n(u), ċ(u)〉 = 0, ‖N(u, 0)‖ = ‖n(u)‖ = 1, (3.12)

we have

N(u, 0) = n(u) (3.13)

Proposition 3.1.2. If the curve c(t) is contained in the xz-plane, c(t) = (ξ(t), 0, ζ(t)),

with a unit normal vector field N(t), then the solution to Björling’s problem is given
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by

X(u, v) =

(

<ξ(w),=

∫ w

0

√

ξ′(w)2 + ζ ′(w)2 dw,<ζ(w)

)

(3.14)

Proof. Since c′(t) = (ξ′(t), 0, ζ ′(t)), the unit normal is

N =
(−ζ ′, 0, ξ′)
√

ξ′2 + ζ ′2
(3.15)

Then N ∧ c′ = (0,
√

ξ′2 + ζ ′2, 0). Hence

<

(

c − i

∫

N ∧ c′
)

=

(

<ξ,=

∫

√

ξ′2 + ζ ′2 dw,<ζ

)

. (3.16)

3.2 Catalan Surface

A Catalan surface is obtained by solving the Björling’s problem to find a minimal

surface that contains a cycloid such that the surface normal conincides with the

cycloid’s principal normal vector. A cycloid is the curve generated by a point P on

the circumference of a circle with center C rolling along a straight line.

A cycloid on the x − z plane can be written as

c(t) = (1 − cos t, 0, t − sin t). (3.17)

Let the Catalan surface be X(u, v). Then by Eq. (3.14), we have

x(u, v) = <(1 − cos z) z(u, v) = <(z − sin z)

= 1 − cos u cosh v = u − sin u cosh v
(3.18)

To compute y(u, v), we have ċ(w) = (sin w, 0, 1 − cos w) and

sin2 w + (1 − cos w)2 = 4 sin2 w

2
. (3.19)
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(a) A cycloid (b) A cycloid contained in a Catalan’s
surface

Figure 3-1: A Catalan’s surface solve the Björling’s problem of a cycloid

Thus
∫

√

sin2 w + (1 − cos w)2 dw = −4 cos
w

2
(3.20)

Since =(−4 cos w
2
) = 4 sin u

2
sinh v2, we come to the espression of the Catalan’s surface:

X(u, v) =
(

1 − cos u cosh v, 4 sin
u

2
sinh v2, u − sin u cosh v

)

(3.21)

From Eq. (3.21), we infer that our Catalan surface is

X(u, v) = <f(w) (3.22)

where the isotropic curve f(w) is given by

f(w) =

(

1 − cosh(iw), 4i cosh

(

iw

2

)

, w + i sinh(iw)

)

(3.23)
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Therefore, the adjoint surface X∗(u, v) of Catalan’s surface is given by

x∗ = sin u sinh v

y∗ = 4 cos u
2
cosh v

2

z∗ = v − cos u sinh v.

(3.24)

3.3 Henneberg Surface

The Henneberg surface is obtained by solving the Björling’s problem for the Neil’s

parabola

2x3 = 9z2 (3.25)

which can be parameterized by

c(t) = (x(t), 0, z(t))

= (cosh(2t), 0,− sinh t + 1
3
sinh(3t)).

(3.26)

By using Eq. (3.14), we have

x(u, v) = <(cosh(2w) − 1) z(u, v) = <(− sinh w + 1
3
sinh(3w))

= −1 + cosh 2u cos 2v = sinh u cos v + 1
3
sinh 3u cos 3v

(3.27)

To obtain y(u, v), first note that ċ(w) = (2 sinh 2w, 0,− cosh w + cosh 3w), thus

=
∫
√

ξ′(w)2 + ζ ′(w)2 dw

= =
∫

√

2 cosh2 2w − 4 + cosh2 w − 2 cosh w cosh 3w + cosh2 3w dw

= =
∫

sinh 3w + sinh w dw

= =
(

1
3
cosh 3w + cosh w

)

= 1
3
sinh 3u sin 3v + sinh u sin v

(3.28)
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(a) Neil’s parabola (b) A Neil’s parabola contained in a Hen-
neberg surface

Figure 3-2: A Henneberg surface solve the Björling’s problem of a Neil’s parabola

Therefore, the Henneberg surface has a representation

x = −1 + cosh 2u cos 2v

y = − sinh u sin v − 1
3
sinh 3u sin 3v

z = sinh u cos v + 1
3
sinh 3u cos 3v.

(3.29)

The isotropic curve f(w) that gives rise to the Henneberg surface X(u,v) with

X(u, v) = <f(w)

is given by

f(w) =

(

−1 + cosh 2w, i cosh w +
i

3
cosh 3w, sinh w +

1

3
sinh 3w

)

. (3.30)

33



Thus the adjoint surface X∗ to X is given by

x∗ = sinh 2u sin 2v

y∗ = cosh u cos v + 1
3
cosh 3u sin 3v

z∗ = − cosh u sin v + 1
3
cosh 3u sin 3v.

(3.31)

We would like to show that the Henneberg surface is not orientable. Consider the

Eq. (3.29), we can see that

X(u, v) = X(−u, v + π)

Xu(u, v) = −Xu(−u, v + π)

Xv(u, v) = Xv(−u, v + π)

(3.32)

for all u + iv ∈ C. The curve

ω(t) = (2t − 1, π(t −
1

4
)), 0 ≤ t ≤ 1 (3.33)

joins some point (u, v) with (−u, v + π). Then the curve ξ(t) = X(ω(t)), 0 ≤ t ≤ 1

is a closed regular loop on Henneberg’s surface. But since N(ω(0)) = −N(ω(1)), so

we will return to the initial point if we move around the loop ξ(t), but the surface

normal N(ω(0)) will change to its opposite. This shows that the Henneberg’s surface

is a one-sided surface.
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Chapter 4

More Applications of Björling’s

Problem

The solution to Björling’s problem can be used to show some symmetry properties of

minimal surface. In this chapter, we will show that straight lines and planar curves

are lines of rotational symmetry and or mirror symmetry respectively. We will also

discuss briefly about the Schwarzian chain problem, which is to find a minimal surface

that are bounded by straight arcs and planar curves.

4.1 Symmetry of Minimal Surface

The solution to the Björling’s problem also reveals some of the symmetry principles

of minimal surfaces. We start with the following corollory of Theorem 3.1.1:

Corollary 4.1.1. Let X(u, v) be the solution to the Björling’s problem given by Eq.

(3.1), then we have

X(u,−v) = <

{

c(w) + i

∫ w

w0

n(w) ∧ ċ(w) dw

}

, w = u + iv. (4.1)

Proof. Let X̃(u, v) = X(u,−v). Then X̃(u, v) is a minimal surface with the normal
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Ñ(u, v) = −N(u,−v). Therefore, X̃(u, v) solves the Björling’s problem for the strip

S̃ = {(c(t),−n(t)) : t ∈ I}

and thus

X(u,−v) = <

{

c(w) + i

∫ w

w0

n(w) ∧ ċ(w)

}

.

Proposition 4.1.2. Let X(u, v) = (x(u, v), y(u, v), z(u, v)), w = u + iv ∈ Ω be a

nonconstant minimal surface whose domain of definition Ω contains some interval I

that lies on the real axis.

1. If, for all u ∈ I, the points X(u, 0) are contained in the x-axis, then we have

x(u,−v) = x(u, v)

y(u,−v) = −y(u, v)

z(u,−v) = −z(u, v)

(4.2)

2. If the curve Σ = {X(u, 0) : u ∈ I} is contained in the xy-plane E, and if the

surface X intersects E orthogonally at Σ, i.e. the normal field N(u, 0) is also

contained in the xy-plane, then it follows that

x(u,−v) = x(u, v)

y(u,−v) = y(u, v)

z(u,−v) = −z(u, v).

(4.3)

We call such Σ a plane curve.

Proof. 1. Let c(u) = (c1(u), 0, 0), n(u) = (0, n2(u), n3(u)), then

n(u) ∧ ċ(u) = (0, ċ1(u)n3(u),−ċ1(u)n2(u)).

2. We have

c(u) = (c1(u), c2(u), 0), n(u) = (n1(u), n2(u), 0), (4.4)
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and thus

n(u) ∧ ċ(u) = (0, 0, n1(u)ċ2(u),−n2(u)ċ1(u)). (4.5)

Thus, we have proved the following theorem:

Theorem 4.1.3 (H. A. Schwarz). 1. Every straight line contained in a minimal

surface is an axis of symmetry of the surface.

2. If a minimal surface intersects some plane E perpendicularly, then E is a plane

of symmetry of the surface.

4.2 Straight Lines and Plane Curves in Minimal

Surfaces

In this section we will prove that straight lines and plane curves are asymptotic lines

and curvature lines respectively on a regular surface.

Theorem 4.2.1. Let X : Ω ⊂ C → R
3 be a C3 regular surface, ω(t), t ∈ I ⊂ R be a

C3-curve in Ω, w = u+ iv ∈ Ω. Then c(t) = X(ω(t)) is a regular curve in the surface

X, and

1. The curve c is both a geodesic and asymptotic line if and only if it is a straight

line.

2. Let c be a geodesic. Then c is a line of curvature if and only if it is a planar

curve.

Proof. Let the parameter t coincides with the arc length s. Denote {T (s),S(s),R(s)

be a moving orthogonal frame along c(s), where T (s) is the tangent vector, R(s) =

N(ω(s)) is the surface normal, and S(s) = R(s)∧T (s) is the side normal. MOrevoer,

let N (s) be the principal normal and B(s) = T (s) ∧ N (s) be the binormal vector

along the curve c(s).
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The vector Ṫ satisfies the relation

Ṫ = κgS + κnR (4.6)

which is explained in the Appendix A.

1. If c is both a geodesic and asymptotic line, then κg = 0 and κn = 0. Then Eq.

(A.2) gives Ṫ = 0, which means that c(s) is a straight line. Conversely, if c(s)

is a straight line, then Ṫ (s) ≡ 0, which implies that κg(s) ≡ 0 and κn(s) ≡ 0.

2. If c(s) is a geodesic, then κg = 0 and Ṫ will be parallel to R. Since Ṫ = κN ,

we have N (s) = ±R(s). For a planar curve, the vectors T (s) and N (s) are on

the same plane for all s, thus Ḃ ≡ 0. Now

Ḃ = Ṫ ∧ N + T ∧ Ṅ = κN ∧N + T ∧ Ṅ (4.7)

or

Ḃ = T ∧ Ṙ (4.8)

Since Ṙ(s) lies on the tangent plane Tω(s)X, we have

Ṙ = γ1T + γ2S (4.9)

and thus

Ḃ = γ2R (4.10)

Therefore, Ḃ ≡ 0 if and only if γ2 ≡ 0, or Ṙ(s) = γ1(s)T (s). Therefore c(s) is

a planar curve if and only if c(s) is a line of curvature.

Combining the results from Chapter 2, we have the following proposition:

Proposition 4.2.2. Let X : Ω ⊂ C → R
3 be a nonconstant regular minimal surface

and X∗ : Ω → R
3 be an adjoint minimal surface of X. Both X and X∗ has the
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same normal mapping N : Ω → S2. Let also that ω : I ⊂ R → Ω be a C3-curve

with ω̇(t) 6= 0. Then c = X ◦ ω and c∗ = X∗ ◦ ω are two C3-curve in X and X∗

respectively. Moreover, c and c∗ has the same spherical image γ = N ◦ ω.

1. Let c(t) be contained in some straight line L. Then c(t) is both an geodesic and

asymptotic line in X, and thus γ(I) is contained in some great circle C in S2.

Moreover, c∗ is a planar geodesic of X∗.

2. If c(t) is a planar geodesic in X, or it is contained in the orthogonal intersection

of X with some plane E, then γ(I) lies in a great circle in S2. The curve c∗ is

a straight arc, thus geodesic asymptotic, in X∗.

4.3 Schwarzian Chain Problem

Let X : Ω0 → R
3 be a nonconstant minimal surface, and Ω be a simply connected

subdomain such that Ω̄ ⊂ Ω0. Suppose also that the Gauss map N : Ω → S2

is injective, and the boundary of X(Ω) consists of finitely many straight lines and

planar geodesics, i.e. orthogonal intersections of X with planes. In other words, the

minimal surface is spanned into a frame C = {Li, Ej}, i = 1, . . . ,m, j = 1, . . . , n where

Li’s are straight lines and Ej’s are planes. The set C is called a Schwarzian Chain ,

and we say that the surface X is a minimal surface that solves the Schwarzian chain

problem for the chain C. Note that X is perpendicular to all planar parts of the chain

C. In this section, we will show how to construct the Weierstrass function F(w) of

the surface X given a chain C.

Now consider the map

Ω
X(u,v)
−→ X

N
−→ S2 σ

−→ Ω∗ (4.11)

Since straight lines and planar curve are geodesics in X, they will be mapped to great

circles by the Gauss map N : Ω → S2. Now consider the meromorphic function ν in
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the Weierstrass-Enneper Representation

ω = ν(w), ω ∈ Ω∗, w ∈ Ω. (4.12)

The map is biholomorphic since

1. N(w) is not the north pole;

2. N is injective.

As stereographic projection maps circles on S2 to circles in Ω0. Therefore, the image of

straight lines and planar curves in the Schwarzian chain C under the map ν : Ω → Ω∗

consists of circular arcs. Since the map ν is biholomorphic, we define τ = ν−1 such

that τ(ω) = w. Therefore we can find a function F(ω) such that

X(w) = Y (τ(ω)) = <
∫ ω

ω0

Φ(ω) dω

Φ = [(1 − ω2)F(ω), i(1 + ω2)F(ω), 2ωF(ω)]
(4.13)

Define the function l(w) = e(w) − if(w) which characterizes asymptotic lines and

curvature lines and

p(w) =

∫ w

w0

√

l(w) dw (4.14)

for some fixed w0 ∈ Ω. Since p′(w) =
√

l(w), then the map

ζ = p(w) (4.15)

is a conformal mapping of Ω onto some domain Ω∗∗ in the ζ-plane. Note that

dζ = p′(w) =
√

l(w)(dw)2. (4.16)

As asymptotic lines are given by <l(w)(dw)2 = 0, and =l(w)(dw)2 = 0 characterizes

the curvature line, so the ζ images of asymptotic lines intersect the real axis at an

angle π/4 or 3π/4, and the curvature lines are straight lines that are parallel to either

the real axis or the imaginary axis.
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For the minimal surface X : Ω̄ → R
3 that solves a Schwarzian chain C that consists

of asymptotic and curvature lines, the map ζ = p(w) maps Ω onto some polygonal

domain Ω∗∗ in ζ-plane.

If we compose τ : Ω∗ → Ω∗∗ with the map p : Ω → Ω∗∗, then the map q = p ◦ τ :

Ω∗ → Ω∗∗ is conformal. Then

q(w) = p(τ(ω)) =
∫ ω

ω0

√

l(τ(ω))τ ′(ω) dω

=
∫ ω

ω0

√

−µ(τ(ω))ν ′(τ(ω))τ ′(ω)2 dω

=
∫ ω

ω0

√

−2F(ω) dω

.

(4.17)

Therefore

F(ω) =
1

2

(

dq(ω)

dω

)2

(4.18)

From our assumptions, the map τ : Ω∗ → Ω is 1-1. If we choose a branch in Ω

such that the map p : Ω → Ω∗∗ is 1-1, then q = p ◦ τ is a biholomocphic bijective

mapping of Ω∗ into Ω∗∗, and the extension of the mapping into Ω̄∗maps the vertices

of the circular polygonal domain in Ω∗ into the vertices of the polygonal domain Ω∗∗.

Therefore we have found a method to solve the Schwarzian chain problem by explicit

formulas.
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Chapter 5

Exploring Minimal Surfaces Using

Computer Programs

Computer programs provides visualization of minimal surfaces, and thus are useful

in understanding some of the concepts in the minimal surface theory. In this chapter,

we will show how to use Maple to draw minimal surfaces using the Weierstrass-

Enneper representations. Another program called ”Evolver” can be used to solve the

Schwarzian chain problem using the area-minimizing principle.

5.1 Maple and Minimal Surfaces

This section is based on [5] which provides an excellent descriptin of how to use Maple

to illustrate concepts about minimal surfaces.

According to Eq. (2.1), we can construct minimal surfaces if we have a holomor-

phic function µ and a meromorphic function ν to generate minimal surfaces. On the

other hand, a holomorphic function F can also be used to serve the same purpose by

Eq. (2.3).

We begin by opening a blank Maple worksheet and type in

> with(plots): with(linalg):

We will make sure that Maple understands the difference between complex vari-

ables z and real variables u and v by entering
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> assume(u, real); additionally (v,real); additionally (t,real); is(u, real);

is(v, real);

true

true

The following sub-procedure returns the complex integrals of the Weierstrass-

Enneper representation:

> Weierz := proc(F)

local Z1, Z2, Z3, Z;

Z1 := int(F(1-z^2), z);

Z2 := int (I * F * (1+z^2), z);

Z3 := int (2 F z , z);

Z := [Z1, Z2, Z3];

end:

Below is a procedure in Maple to generate minimal surfaces using µ and ν. The

two functions are called f and g respectively in the procedure. There is a variable

called a in the procedure, which is used to simplified the expression by changing the

variable z to ez if we set a = 1, and z to e−iz/2 when z = 2. When a is set to any

value other than 1 or 2, then the procedures would not use any substitution for z.

Weierfg := proc(f, g, a)

local Z1, Z2, X1, X2, X3, Z3, X;

Z1 := int(f*(1-g^2), z);

Z2 := int(I * f* (1+g^2), z);

Z3 := int(2*f*g, z);

if a=1 then Z1 := subs(z = exp(z), Z1); Z2 := subs (z = exp(z), Z2); Z3

:= subs(z = exp(z), Z3) fi;

if a=2 then Z1 := subs(z = exp(-I*z/2), Z1);

Z2 := subs(z = exp(-I*z/2), Z2); Z3 := subs(z = exp(-I*z/2), Z3) fi;

X1 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z1))))), trig), trig), trig);
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X2 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z2))))), trig), trig), trig);

X3 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z3))))), trig), trig), trig);

X := [X1, X2, X3];

end:

Similarly the procedure Weier is written for the Weierstrass-Enneper representa-

tion II:

Weier := proc(F,a)

local Z1,Z2,X1,X2,X3,Z3,X;

Z1 := int(F*(1-z^2),z);

Z2 := int(I*F*(1+z^2), z);

Z3 := int(2*F*z,z);

if a=1 then Z1 := subs(z = exp(z), Z1); Z2 := subs (z = exp(z), Z2); Z3

:= subs(z = exp(z), Z3) fi;

if a=2 then Z1 := subs(z = exp(-I*z/2), Z1); Z2 := subs(z = exp(-I*z/2),

Z2); Z3 := subs(z = exp(-I*z/2), Z3) fi;

X1 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z1))))), trig), trig), trig);

X2 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z2))))), trig), trig), trig);

X3 := simplify(convert(simplify ( Re(evalc(subs(z = u+I*v,

expand(simplify(Z3))))), trig), trig), trig);

X := [X1, X2, X3];

end:

With the two procedures Weierfg and Weier, we can plot minimal surfaces easily

by choosing appropriate functions. For example, since we know that F = 1
2z2 for

catenoid and F = i
2z2 for helicoid, we can plot these two surfaces by typing the

following in the Maple prompt:

> Weier(1/2*z^2), 1);
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[− cos(v) cosh(u),− sin(v) cosh(u), u]

> plot3d(Weier(1/(2*z^2), 1), u=-1..1, v=0..2*Pi);

Figure 5-1: F(z) = 1
2z2

For the helicoid, we need a little more steps. The maple function simplify has

trouble in simplifying arctan(sin(v), cos(v)) to v. So when we use the procedure for

the helicoid’s Weierstrass function F(z) = i
2z2 , one will get

> Weier(I/(2*z^2), 1);

[sin(v) sinh(u),− cos(v) sinh(u),− arctan(sin(v), cos(v))]

Thus when we plot the helicoid, we have to manually change the expression

arctan(sin(v), cos(v)) to v, and then use the function plot3d to plot the result:

> plot3d([sin(v)*sinh(u), -cos(v)*sinh(u), -v], u=-1..1, v=0..2*Pi);

To obtain the graphs for the associate family of the catenoid, we can use exp(I*t)

* 1/(2*z^2),1; for the Weierstrass function, and then choose a value for t when
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Figure 5-2: F(z) = i
2z2

plotting the function. For example,

> Weier(exp(I*t)*1/(2*z^2),1);

[(− cos(t) ∗ cos(v) ∗ cosh(u)2 − cos(t) ∗ cos(v) ∗ cosh(u) ∗ sinh(u)

+ sin(t) ∗ sin(v) ∗ cosh(u)2 + sin(t) ∗ sin(v) ∗ cosh(u) ∗ sinh(u)

− sin(t) ∗ sin(v))/(cosh(u) + sinh(u)),−(sin(t) ∗ cos(v) ∗ cosh(u)2

+ sin(t) ∗ cos(v) ∗ cosh(u) ∗ sinh(u) − sin(t) ∗ cos(v)

+ cos(t) ∗ sin(v) ∗ cosh(u)2 + cos(t) ∗ sin(v) ∗ cosh(u) ∗ sinh(u))/(cosh(u) + sinh(u)),

cos(t) ∗ u − sin(t) ∗ arctan(sin(v), cos(v))]

> plot3d(subs(t=Pi/4, [(-cos(t)*cos(v)*cosh(u)^2 -cos(t)*cos(v)*cosh(u)*sinh(u)

+sin(t)*sin(v)*cosh(u)^2 +sin(t)*sin(v)*cosh(u)*sinh(u)

-sin(t)*sin(v))/(cosh(u) +sinh(u)), -(sin(t)*cos(v)*cosh(u)^2

+sin(t)*cos(v)*cosh(u)*sinh(u) -sin(t)*cos(v)

+cos(t)*sin(v)*cosh(u)^2 +cos(t)*sin(v)*cosh(u)*sinh(u))/(cosh(u)
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+sinh(u)), cos(t)*u -sin(t)*v]), u=-1..1, v=0..2*Pi);

Figure 5-3: F(z) = eiπ/4 1
2z2

Maple also has a feature that can display sequence of figures, such that we can

visualize the bending process of the catenoid into helicoid by displaying a sequence of

graphs with the above Weierstrass function. To do that, we substitute the parameter

t by pi
2

i
30

, and plot the sequence of figures from i = 0 to i = 30. That is equivalent

of changing t from 0 to π/2, i.e. changing the catenoid to its adjoint surface. The

sub-figures in Figure 2-2 are included in this sequence.

> display([seq(plot3d([ -cos(Pi/2*i/30)*cos(v)*cosh(u)

+ sin(Pi/2*i/30)*sin(v)*sinh(u),

-sin(v)*cos(Pi/2*i/30)*cosh(u)-cos(v)*sin(Pi/2*i/30)*sinh(u),

cos(Pi/2*i/30)*u-sin(Pi/2*i/30)*v], u=-1..1, v=0..2*Pi), i=0..30)],

insequence=true);

Besides catenoid and helicoid, we can now create other minimal surfaces by the

two Maple procedures. For example, the Weierstrass function F(z) = i
z3 produces

the following surface:
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Weier(I/z^3,2);

[1/2 ∗ sin(u) cosh(v) − 1/2 sin(u) sinh(v) + arctan(− sin(u/2),

cos(u/2)), 1/2 cos(u) cosh(v) − 1/2 cos(u) sinh(v) − v/2,

2(cosh(v/2) − sinh(v/2)) sin(u/2)]

Since the expression contains arctan(− sin(u/2), cos(u/2)), we change that to

−u/2, and plot the surface using the function plot3d:

> plot3d( [-u/2+1/2*sin(u)*cosh(v)-1/2*sin(u)*sinh(v),

-1/2*v+1/2*cos(u)*cosh(v)-1/2*cos(u)*sinh(v),

2*(cosh(1/2*v)-sinh(1/2*v))*sin(1/2*u)] ,

u=0..6*Pi, v=-1..1, grid=[80,15],

scaling=constrained, orientation=[50,79],shading=XYZ, style=patch);

Figure 5-4: F(z) = i
z3

We can also plot the sequence of its associate surfaces. First we find out the

representation of the associate surfaces by

> Weier(exp(I*t)*I/z^3,2);
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[1/2 ∗ sin(t) ∗ cos(u) ∗ cosh(v) − 1/2 ∗ sin(t) ∗ cos(u) ∗ sinh(v)

+1/2 ∗ cos(t) ∗ sin(u) ∗ cosh(v) − 1/2 ∗ cos(t) ∗ sin(u) ∗ sinh(v)

+1/2 ∗ sin(t) ∗ v + cos(t) ∗ arctan(−sin(1/2 ∗ u), cos(1/2 ∗ u)),

1/2 ∗ cos(t) ∗ cos(u) ∗ cosh(v) − 1/2 ∗ cos(t) ∗ cos(u) ∗ sinh(v)

−1/2 ∗ sin(t) ∗ sin(u) ∗ cosh(v) + 1/2 ∗ sin(t) ∗ sin(u) ∗ sinh(v)

−1/2 ∗ cos(t) ∗ v + sin(t) ∗ arctan(−sin(1/2 ∗ u), cos(1/2 ∗ u)),

2 ∗ (cosh(1/2 ∗ v) − sinh(1/2 ∗ v)) ∗ (sin(t) ∗ cos(1/2 ∗ u)

+cos(t) ∗ sin(1/2 ∗ u))]

After fixing the arctan and substituting t = π
2

i
30

, we can enter

> display([seq(plot3d( [1/2*sin(1/60*Pi*i)*cos(u)*cosh(v)

-1/2*sin(1/60*Pi*i)*cos(u)*sinh(v)+

1/2*cos(1/60*Pi*i)*sin(u)*cosh(v)-1/2*cos(1/60*Pi*i)*sin(u)*sinh(v)+

1/2*sin(1/60*Pi*i)*v-cos(1/60*Pi*i)*u/2,

1/2*cos(1/60*Pi*i)*cos(u)*cosh(v)-1/2*cos(1/60*Pi*i)*cos(u)*sinh(v)-

1/2*sin(1/60*Pi*i)*sin(u)*cosh(v)+1/2*sin(1/60*Pi*i)*sin(u)*sinh(v)

-1/2*cos(1/60*Pi*i)*v-sin(1/60*Pi*i)*u/2,

2*(cosh(1/2*v)-sinh(1/2*v))*(sin(1/60*Pi*i)*cos(1/2*u)

+cos(1/60*Pi*i)*sin(1/2*u))],

u=-0..6*Pi, v=-1..1), i=0..30)], insequence=true);

Figures 5-5 to 5-17 are generated using the same method.

5.2 Maple and Björling’s Problem

Based on the solution to Björling’s problem in Eq. (3.14), we can use Maple to find

the minimal surface that solves Björling’s problem if the curve c(t) is lying in the

xz-plane. The Maple procedure is as below:

> with(plots):with(linalg):

> assume(u,real);additionally(v,real); additionally(t,real); is(u,real);

is(v,real);
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Figure 5-5: F(z) = 2z

true

true

> Bjor := proc(alpha, a)

local Z1, Z2, X1, X2, X3, Z3, X;

Z1 := subs(t=z, alpha[1]);

Z2 := int(sqrt(diff(subs(t=z, alpha[1]), z)^2 + diff(subs(t=z,alpha[3]),z)^2),z);

Z3 := subs(t=z, alpha[3]);

if a=1 then

Z1 := subs(z=exp(z), Z1);

Z2 := subs(z=exp(z), Z2);

Z3 := subs(z=exp(z), Z3) fi;

if a=2 then

Z1 := subs(z=exp(-I*z/2), Z1);

Z2 := subs(z=exp(-I*z/2), Z2);

Z3 := subs(z=exp(-I*z/2), Z3) fi;
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Figure 5-6: F(z) = ln z

X1 := simplify(convert(simplify(Re(evalc(subs(z=u+I*v, expand(simplify(Z1))))),

trig), trig), trig);

X2 := simplify(convert(simplify(Im(evalc(subs(z=u+I*v, expand(simplify(Z2))))),

trig), trig), trig);

X3 := simplify(convert(simplify(Re(evalc(subs(z=u+I*v, expand(simplify(Z3))))),

trig), trig), trig);

X := [X1, X2, X3];

end:

Some examples are already shown in chapter 3, such as Catalan surface and Hen-

neberg surface. Here we will give more examples.

The following procedure solves Björling’s problem for a parabola parametrized as

(t, 0, t2).

> para := Bjor([t, 0, t^2], 1):

> para1:= plot3d(para, u=-1..1, v=0..2*Pi, grid=[15, 35]):

> para2:= spacecurve([t,0,t^2], t=-3..3, color=black, thickness=4):
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Figure 5-7: F(z) = 1
z

> display({para1, para2}):

Similarly, we can solve Björling’s problem for other curves using similar proce-

dures.

5.3 Surface Evolver

Surface Evolver is a powerful program written by K. Brakke. One of the function of

the program is to minimize the area of a surface with a given boundary. Since an

area-minimizer is a minimal surface, this program provides a way to generate minimal

surface in a convenient way. Particularly it is useful to to solve the Schwarzian chain

problem, since the boundary of such a problem is easy to be entered to the program.

Surface Evolver can also minimize other specified energies over the surface, and it

employs a gradient descend method. More information can be found in [2] and [1].

In this section, we will contend ourselves by showing some surfaces that are gen-

erated using the Surface Evolver program.
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Figure 5-8: F(z) = z2

Figure 5-9: F(z) = sin z
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Figure 5-10: F(z) = z4

Figure 5-11: F(z) = 1
z4
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Figure 5-12: Trinoid: f(z) − 1
(z3

−1)2
, g(z) = z2

Figure 5-13: F(z) = i( 1
z

+ 1
z2 −

1
z3 )

Figure 5-14: f(z) = 1
z2 , g(z) = 1

z2
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Figure 5-15: f(z) = 1
z2 , g(z) = 1

z3

Figure 5-16: f(z) = z, g(z) = z3

Figure 5-17: f(z) = i(z+1)2

z4 , g(z) = z2(z−1)
z+1
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Figure 5-18: A minimal surface solving the Björling’s problem for a parabola z = x2.

Figure 5-19: A minimal surface solving the Björling’s problem for a z = ln(x).
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Figure 5-20: Schwarz’ D Surface

Figure 5-21: Schwarz’ P Surface
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Appendix A

Some Basic Differential Geometry

In this appendix we will review some of the basic theory in differential geometry about

asymptotic lines, curvature lines and geodesics. Readers are referred to [3] for more

detailed study.

A.1 Geodesic Curvature and Normal Curvature

Let ω : I ⊂ R → Ω ⊂ C be a regular curve parametrized by arc length s, and X(u, v)

be a regular surface where w = u + iv ∈ Ω. Then c(s) = X(ω(s)) is a regular curve

in the surface X. Denote T (s) to be the tangent vector ω̇(s), R(s) to be the surface

normal N(ω(s)), and S(s) = R(s)∧T (s) be the side normal along the curve ω, then

we have a moving orthogonal frame

{T (s),S(s),R(s)} (A.1)

along the curve ω(s).

We can also define another frame {T (s),N (s),B(s)} where Ṫ (s) = κ(s)N (s), κ(s) =

‖Ṫ (s)‖ and B(s) = T (s)∧N (s). The vector N (s) is called the principal normal vec-

tor, and B(s) is called the binormal vector.

Since the curve c is parameterized by arc length, we have 〈T , T 〉 = 0 and thus
〈

T , Ṫ
〉

= 0. Since {T (s),S(s),R(s)} form an orthogonal basis, we know that Ṫ (s)
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can be written as a linear combination of S and R:

Ṫ = κgS + κnR (A.2)

where kappag is the geodesic curvature and κn is the normal curvature.

The definition of κn in Eq. (A.2) coincides with the definition given in [3]1.

Moreover, c(s) is said to be a asymptotic line if κ(s) = 0 for all s ∈ I.

The value κg in Eq. (A.2) can be used to define geodesics.

Definition A.1.1. The curve c(s) is a geodesic if the covariant derivative of c′(s),

Dc′(s)/ds vanishes for all s ∈ I.

The covariant derivative of c′(s) can be defined as the projection of dc/dt onto the

tangent plane, and c′(s) = T (s). Let θ be the angle between N and R, then

cosθ = 〈N ,R〉 .

Since Ṫ lies on the plane spanned by R and S and R is perpendicular to the

tangent plane, we have

DT (s)

ds
= 0 ⇔

〈

Ṫ ,S
〉

= 0 ⇔ κg = 0 (A.3)

1See page 141 in [3]
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