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1. Introduction. A natural class of minimal surfaces to study are the embedded mini­
mal surfaces — those which have no self­intersections as a subset of R3. Of course, every 
point of a surface immersed in R3 has a neighborhood which is embedded, so by itself 
this isn’t a very interesting restriction. However, an embedded minimal surface pro­
duced in this way is clearly extendable and thus not complete. Because of this, when 
characterizing embedded minimal surfaces, it is most interesting to restrict ourselves 
to those that are complete. There are many known examples of complete embedded 
minimal surfaces. Most of these surfaces, such as Scherk’s First and Second Surfaces 
and the Schwarz P surface, have some sort of “hole” that appears periodically, leading 
to complicated topology; until the eighties the only known examples of finite topol­
ogy were the plane, the catenoid, and the helicoid. When looking for further examples 
of complete minimal surfaces of finite topology, it is convenient to make the slightly 
stronger assumption of finite total curvature; only the plane and the catenoid were 
known in this category. With these conditions, we can apply a theorem of Osserman 
[10] to show that any such surface must be homeomorphic to a compact surface with a 
finite number of points removed; we refer to the removed points as ends. 

Thus every complete embedded minimal surfaces of finite total curvature can be 
characterized by two integers: its genus k and its number of ends r. Viewed this way, 
both the plane and the catenoid have genus 0 (the sphere); the plane has one end and the 
catenoid has two. Jorge and Meeks [8] made significant progress in proving nonexistence 
of such surfaces for a variety of k and r, but at that point the only examples known were 
still the plane and the catenoid. In 1982, Costa [2] found a complete minimal surface of 
genus 1 and three ends which seemed likely to be embedded, and Hoffman and Meeks 
proved that it was in fact embedded [6]. This quickly led to the further discovery of 
a wide assortment of related surfaces, mostly also with three ends. In this paper, we 
describe a family of complete embedded minimal surfaces with three ends and arbitrary 
positive genus which includes Costa’s surface. 

In Section 2 we present general background on complete minimal surfaces of total 
finite curvature, and in Section 3 describe the Weierstrass­Enneper Representation. In 
Section 4 we describe the state of knowledge prior to Costa’s discovery, the story of 
which is told in Section 5. In Section 6, we define the generalized Costa surface of genus 
k and sketch proofs of its properties; this section is based heavily on [5]. In Section 7, 
we describe newer examples of complete minimal surfaces of finite topology. Finally, in 
Section 8 we describe the techniques and benefits of creating physical models of minimal 
surfaces. 
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2. Background. Given a surface S, we define H to be the mean of the principal 
(maximum and minimum) curvatures at a point, and the Gaussian curvature K to be 
their product. We call a surface on which H is identically zero a minimal surface. 
For the purposes of this paper, we will assume that all surfaces are regular, connected, 
and orientable. A complete surface is one where every curve s : [0, �) S which is →
geodesic can be extended to a geodesic defined on all of R. Alternatively, a surface is 
complete if every divergent curve has unbounded length, where a divergent curve on 
S is a differentiable map α : [0,∞) → S which eventually leaves every compact subset 
of S. A surface S is said to be of finite topological type, or more simply to be of 
finite topology, if it is homeomorphic to a compact surface M of genus k with r points 
{p1, . . . , pr} removed; let M = M − {p1, . . . , pr}. We will continue to use S, k, r, M , 
and M in this way for the remainder of this essay. We define total curvature of a surface 
to be C(S) = K dA; for a minimal surface, K is nonpositive so C(S) is either a finite 
nonpositive number or −∞. The total curvature of a minimal surface is equal to the 
negative of the spherical area (counting multiple covers) of the surface under the Gauss 
map. 

3. The Weierstrass­Enneper Representation on Manifolds. Given any surface 
in R3, we can always locally introduce isothermal coordinates (u1, u2). We can then 
consider it to be a Riemann surface of one complex parameter z = u1 + u2i. We then 
consider the function g = σ G X, where X : D S is the coordinate map on a ◦ →
simply connected domain in C

◦ 
, G : S S2 is the Gauss map, and σ : S2 → C ∪ {∞} is→

stereographic projection; if S is minimal then g is meromorphic. (For the rest of this 
paper, we will refer to both g and G as “the Gauss map”, but will continue to distinguish 
between the two by capitalization.) Incredibly, it turns out out that any meromorphic 
function D C is the Gauss map of some minimal surface immersed in R3 . In fact, →
there are many minimal surfaces with g as its Gauss map: given any analytic function 
f : D C, the map X : D R3 defined by → → 

z 

X(z) = � Φ dz 
z0 

where 
Φ = (φ1, φ2, φ3) = ((1 − g 2)f, i(1 + g 2)f, 2fg) 

is a conformal minimal immersion of D into R3 with Gauss map g. This immersion is 
regular if the poles of g coincide with the zeros of f , and at each such point the order 
of the pole is exactly half the order of the zero. 

This representation is called the Weierstrass­Enneper representation; its discovery 
made it very easy to find new minimal surfaces, because all one has to do is choose 
two simple functions and integrate. However, an complete embedded minimal surface 
created in this way will be topologically equivalent to the domain it is mapped from, and 
thus will have genus zero. So in order to use the Weierstrass­Enneper Representation to 
find a minimal surface of higher genus, we have to extend it to be defined on manifolds 
other than simply connected domains in C. This can be done naturally by changing 
f dz to a holomorphic one­form η; however, this does give us one extra condition that 
we need to check to ensure that the surface is well­defined. 

Theorem 3­1 (Weierstrass­Enneper Representation Theorem, [5] Theorem 1.0). Let 
M be a Riemann surface, η a holomorphic one­form on M , and g : M → C ∪ {∞} a 
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meromorphic function. Consider the vector­valued one­form 

Φ = (φ1, φ2, φ3) = ((1 − g 2)η, i(1 + g 2)η, 2gη) 

Then � p 

X(p) = � Φ 
p0 

is a conformal minimal immersion which is well­defined on M and regular, provided 
that no component of Φ has a real period on M and that the poles of g coincide with the 
zeros of η and the order of each pole of g is half the order of the corresponding zero of 
η. g is the Gauss map of the surface. 

4. Results Prior to Costa. The most important result for the classification of com­
plete minimal surfaces of finite total curvature is the theorem of Osserman [10] which 
allows us to completely characterize the topology of such a surface by a nonnegative 
integer k and a positive integer r. 

Theorem 4­1 (Osserman, [10] Lemma 9.5). If X : M → S ⊂ R3 defines a com­
plete minimal surface, then there exists a compact 2­manifold M and a finite number of 
points p1, p2, . . . , pr on M such that M is isometric to M−{p1, p2, . . . , pr}. Moreover, 
the Gauss map g : M C (that is, the composition of X, the Gauss map N on the →
surface, and stereographic projection) extends to a meromorphic function on all of M . 

Note that r must be positive because there are no compact minimal surfaces. For the 
rest of this paper, we will refer to the underlying compact manifold of a surface as M , the 
punctured manifold as M , its coordinate map as X, and the surface itself as S. We refer 
to the image under X of a punctured neighborhood of one of the points pi in M as an 
as an end. There are three key results in this theorem. First, in the context of complete 
minimal surfaces, finite total curvature implies finite topological type. (The converse 
is now known to be almost true: it was shown in 1997 by Collin [1] based on work by 
Meeks and Rosenberg [9] that every nonplanar complete embedded minimal surface of 
finite topological type either has finite total curvature or has exactly one end, but not 
both.) Because S is complete, as q ∈ M approaches one of the deleted points pi, X(q)| |
must grow without bound. Because the Gauss map g of the surface can be extended 
to M , limq→M g(X(q)) must exist, so each end has a well­defined normal vector. (Note 
that it does not necessarily have an asymptotic plane — it can also continue to grow 
logarithmically in the direction of its normal vector.) Jorge and Meeks [8] proved the 
somewhat intuitive result that for any complete embedded minimal surface of finite total 
curvature in R3, the normal vectors on the ends of M are parallel; this makes sense, 
because otherwise the planes which the ends approach would intersect. By rotation, 
we can assume that the normal vectors on the ends all are the north and south poles of 
the sphere. That is, we can assume that the Gauss map g has a zero or a pole at each 
end of M . 

It was known that for a complete minimal surface M in Rn of finite total curvature 
C(M), C(M) ≤ 2π(χ(M)− r). For the surface of genus k with r ends we have χ(M) = 
2− 2k − r, so C(M) ≤ −4π(k + r − 1). Jorge and Meeks [8] showed that for a surface 
immersed in R3, equality holds here if and only if all of the ends are embedded. Thus, 
any minimal surface with total curvature −4π(k + r − 1) is embedded outside of a 
compact set (the image of M minus the neighborhood of the punctures). They then 
used their results to show that the plane is the only embedded complete minimal surface 
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of finite total curvature with r = 1, and that the only such surfaces with k = 0 and 
r ≤ 5 are the plane and the sphere. 

5. Discovery of the Costa Surface. In his 1982 thesis [2], Costa identified a com­
plete minimal surface homeomorphic to the torus with three points removed. The 
Costa surface is an conformal embedding of the square torus — the torus defined by 
identifying opposite sides of the unit square in the complex plane. Any map f defined 
on this torus can be considered as a map defined on the entire complex plane, which is 
the universal covering space of the torus; the lifted map will satisfy the condition that 
f(z + 1) = f(z + i) = f(z) for all z. That is, maps defined on the square torus are 
equivalent to maps defined on C with periods 1 and i; such doubly periodic functions are 
called elliptic. Every non­constant elliptic function has at least two poles (in each unit 
square); it turns out that every elliptic function is a rational combination of a function 
with two poles called the Weierstrass ℘­function and its first derivative. Thus ℘ and 
℘� are natural candidates for use in constructing a minimal surface homeomorphic to a 
punctured torus. 

Costa defined his surface by using a Weierstrass­Enneper representation of g = 
2
√

2π℘( 1 
2 ) and η = ℘(ζ)dζ; the domain used was the unit square torus with the points ℘� (ζ) 

1 removed. Costa showed that this surface had total curvature −12π.

−4π(k + r − 1), by the result of Jorge and Meeks above this implied that


the ends of the Costa surface are embedded. In order to prove that this was the first


at 0, , and i 
22

Since −12π = 

discovered complete embedded minimal surface of finite total curvature and positive 
genus, it remained only to show that the complement of the ends in the surface (a 
compact set) is embedded. 

However, while the Weierstrass­Enneper representation provides a simple way of 
demonstrating the existence of a minimal surface, it does not make it particularly easy 
to visualize it or discover many of its geometric properties. Specifically, the Weierstrass­
Enneper representation does not provide any information about whether or not the sur­
face is embedded. D. Hoffman and Meeks, as described in [3], sought out to understand 
the Costa surface; with help from J. Hoffman, they created computer images of the 
Costa surface that revealed its structure. As this was 1984, the computer work was 
not a simple matter of plugging some equations into a commercial software package; 
rather, it was a significant programming project which evolved over the course of their 
research. They saw that the Costa surface appears similar to the union of a catenoid 
with a plane through its waist circle, with two pairs of “tunnels” reminiscent of Scherk’s 
Second Surface passing between the plane and the catenoid ends in order to make it 
into one coherent surface. 

It appeared to Hoffman and Meeks that the Costa surface had a D4 symmetry 
group, and that the section of the surface in each octant of R3 was a graph over a 
plane. Using these insights, they were able to prove that it was in fact embedded. Even 
more impressively, they were quickly able to generalize their proofs to demonstrate 
the existence of a complete embedded minimal surface of finite total curvature with 
three ends of any positive genus. The Weierstrass ℘­function and its derivative ℘� used 
in Costa’s definition satisfy the differential equation ℘�2 = 4℘(℘2 − t), where t is a 

cconstant. Let us set z = ℘(ζ) and w = ℘�(ζ). Then we have g = w and η = zdζ. 
zWe see that dz = d℘(ζ) = ℘�(ζ)dζ = wdζ, so η = w dz. Thus, instead of using the 

cWeierstrass­Enneper representation g = ℘� (ζ) and η = ℘(ζ)dζ defined on C modulo the 
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clattice of integers, we can equivalently use g = w and η = z dz defined on the manifold w 
22 w2 = z(z − 1)}. Because this representation avoids the explicit {(z, w) ∈ (C ∪ {∞} |

use of ℘, it is no longer tied intrinsically to the torus and has a simple generalization to 
surfaces of higher genus, as we will show in the following section. 

6. Definition of the Costa Surfaces of Arbitrary Genus. We will demonstrate 
the existence of a complete minimal surface of finite total curvature of genus k and 3 
embedded ends, following the method of [5]. We first consider the 2­manifold defined 
by 

k+1 2M = w = z k(z − 1)}{(z, w) ∈ (C ∪ {∞})2|

This equation is inspired by the differential equation for ℘ demonstrated in Section 5. 
We can imagine this as a 2­manifold embedded in C2 or R4 (with the caveat that z and 
w can both be the point ∞ on the Riemann sphere). Considered as a covering surface 
of the z­plane, M has a branch point at z = 0, 1, and −1, where the defining equation 
becomes wk+1 = 0; each of these branch points are thus of order k. In addition, because 
there are an odd number of branch points evident from the equation, it also has a branch 
point of order k at z = ∞. By the Riemann­Hurwitz formula ([7], Theorem 4.16.3), we 

1know that the genus g of the surface is given by g = 1 − n + 2 ni, where n is the 
order w in the defining equation 0 = wk−1 − zk(z2 − 1) and ni is the order of the ith 
branch point. So n = k + 1 and ni = 4k, so g = 1− (k + 1) + 14k = k; thus M is in 2
fact a compact surface of genus k. 

We let p0 = (0, 0), p1 = (1, 0), p−1 = (−1, 0), and p∞ = (∞,∞); these are the 
branch points of the surface and are each the unique point of M with its z­coordinate. 
We remove the points p1, p−1, and p∞ from M to create M , a genus­k surface with three 

cends. Note that the branch point p0 is still in M . We let g = w (where c is a positive � �kzreal constant that will be determined later) and η = w dz = 2
w dz. (While the z −1

first form of η follows more naturally from Costa’s original definition, the second form is 
easier to work with because it has no poles on M .) We see here that the pole of g does 

pcoincide with the zero of η. The minimal surface is thus defined by X(p) = � Φ for 
p0 

p ∈ M , where 

Φ = (φ1, φ2, φ3) = ((1 − g 2)η, i(1 + g 2)η, 2gη)�� � � � � 
zk c2zk zk c2zk 2c 

= 
wk 

− 
wk+2 

dz, i + dz, dz 
wk wk+2 z2 − 1

In order to show that this in fact a conformal minimal immersion, we need to show 
that this is independent of path chosen in the integral; that is, we must show that 
� 

C 
Φ is zero for any closed path C. Studying the symmetry of M and S is very useful 

z, ¯for this. The mappings κ(z, w) = (¯ w) and λ(z, w) = (−z, ρkw) where ρ = eπi/(k+1) 

are conformal mappings of order 2 and 2k + 2 respectively which generate the dihedral 
group D2k+2. This group leaves M invariant, and fixes both p0 and p∞; κ fixes p1 and 
p−1 while λ interchanges them. These roughly correspond to the transformations of R3 ⎛ ⎞ ⎛ ⎞ 

1 0 0 cos θ sin θ 0 
K = ⎝0 −1 0 ⎠ L = ⎝− sin θ cos θ 0 ⎠ θ = 

π 

0 0 1 0 0 −1 k + 1 
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¯That is, we can show that κ∗ Φ = KΦ and λ∗ Φ = LΦ, where α∗ Ψ means the operator 
α should be applied to M before it is given to the one­form Ψ. This implies that S also 
has a D2k+2 symmetry group, generated by K and L. 

To demonstrate that Φ has no real period, we need to show that 
C 

Φ is purely 
imaginary, for C a closed curve around each of the ends and for C each element of a 

1 ithomology basis of M . First let β̃ be the loop in the z­plane defined by β̃(t) = 1 + 2e

where t ∈ [0, 2π], and let β be the lift of β̃ to M , which winds once around the end p1. 
Let −β be β followed in reverse; we note that this is the same as β ̄  β. Thus = κ ◦ 

Φ = Φ = − 
κ β 

Φ = = Φ 
β 

− 
−β 

− 
β 

κ ∗ Φ −K 
β◦

Because K preserves the first and third coordinates, this implies that �


0; that is, � 
β 

Φ is orthogonal to the (x1, x3)­plane.

peated with


φ1 = 
β 

φ3 = 
β 

�
The same argument can be re­

λ−1κλ and L−1KL in place of κ and L, which will show that �
orthogonal to a vertical plane making an angle of π with the x1­axis, so together this 

Φ is 
β 

k+1 

shows that � Φ is zero. So Φ has no real periods at the end p1. A similar argument 
β 

shows that Φ has no real periods at its other two ends. 
2c dz It is not too hard to analyze φ3 = z −1 ; in fact, φ3 = c d ln z−1 . Thus we can 2 z+1 

explicitly show that 
z − 1 
z + 1 

(6­1) 
p 

X3(p) = � φ3 = c ln 
p0 

(where z is the z­coordinate of p); this shows that X3 is independent of path. It remains 
to show that φ1 and φ2 are independent of path. It is a slightly lengthy process to show 
that their integrals are zero around a homology basis of M as long as c is chosen to be 
a specific positive real constant; see [5] for details. 

We show that the surface is regular by showing that the functions φi never all vanish. 
In fact, φ3 is only zero at p0, and φ1 is nonzero there. It is now simple to prove that 
the total curvature of the surface is −4π(k + r − 1) = −4π(k + 2), which is to say that 
the Gauss map covers the Riemann sphere k + 2 times. Ignoring the finite number of 

cpunctures, the Gauss map g = w hits each point of the Riemann sphere for exactly 
one value of w. Therefore, the multiplicity of the covering of the sphere is equal to 
the number of points of M having the same value of w. For fixed w, the equation 
wk+1 = zk(z2 − 1) is a polynomial of degree k + 2 in z, so there are k + 2 points 
(z, w) with any given value of w. Thus the Gauss map covers the Riemann sphere 
k + 2 times, so that the total curvature of the generalized Costa surface of genus k 
is −4π(k + 2) = −4π(k + r − 1). This shows both that the surface has finite total 
curvature and, by the result of Jorge and Meeks mentioned in Section 4, that the ends 
of the surface are embedded, parallel, and mutually disjoint. 

The equation 6­1 for X3(p) is especially useful for understanding the geometry of S. 
If we let ζ = z−1 , then 6­1 becomes X3(p) = c ln |ζ|; this tells us that the intersection z+1 

t is the image of the circle of radius e 
t 
cof S with the plane around the origin x3 = 

in the ζ­plane. Thus the part of M over the unit circle in the ζ­plane is sent to the 
x3­plane, the part of M over the unit disk in the ζ­plane is sent to the the half of 
the surface below the x3­plane, and the part of M over the rest of the ζ­plane is sent 
to the half of the surface above the x3­plane. We can see directly from equation 6­1 
that X3(p) → +∞ as p → p−1, that X3(p) → −∞ as p → p1, and that X3(p) → 
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as p → p∞. This implies that the ends at p1 and p−1 are catenoid­style ends whose 
X3 coordinates grow logarithmically; p∞ is a planar end asymptotic to the (x1, x2)­
plane. Because the map between ζ and z is a Möbius transformation, circles separating 
0 = ζ(p1) from ∞ = ζ(p−1) in the ζ­plane are equivalent to circles separating p1 from 
p−1 in the z­plane, with the exception of the unit circle in the ζ­plane, which is mapped 
onto the union of the imaginary line and ∞ (a circle in the Riemann sphere). Because 
each of the circles in the z­plane (not counting the exceptional one) separate one branch 
point (p1 or p−1) from the other three, they each cross over a branch cut. So their lift 
to M (that is, the set of all points of M whose z­coordinate lies on the circle) is a single 
connected simple closed curve. So the cross­section of S at x3 (for t =� 0) is a 
closed curve, though we have not yet shown that it is simple. On the other hand, the 

t 
c = e 

imaginary line contains the branch point p0, so its lift is the union of k+1 straight lines 
with one point in common; thus the intersection of S with the x3­plane is k +1 straight 
lines intersecting at the origin. 

We have already shown that the symmetry group of S contains K and L and the 
D2k+2 group generated by them; in fact, it turns out that this is the entire symmetry 
group. To describe the symmetries geometrically we use the following notation: P0 is 
the (x1, x2)­plane and Pj is the plane containing the x3 axis and the line in the (x1, x2)­
plane making an angle of (j − 1)π/(k + 1) with the positive x1­axis (for 1 ≤ j ≤ k + 1). 

k+1A sector of R3 is a component of R3 − ∪ Pj ; there are 4k + 4 sectors and D2k+2j=0 

acts transitively on them. We let lj be the line in the (x1, x2)­plane making an angle of 
π 2j+1 with the positive x1­axis, for 0 ≤ j ≤ k; then each line lj bisects the projection 2k+2 
of a sector onto the (x1, x2)­plane. Then the orientation­preserving symmetries of S 
are L2j , the rotation by 2πj radians around the x3­axis (0 ≤ j ≤ k) and L2j+1K, the k+1 
rotation by π radians around lj (0 ≤ j ≤ k). (Note that the identity is the first type 
with j = 0.) The orientation­reversing symmetries are L2(j−1)K, the reflection through 
Pj (1 ≤ j ≤ k + 1), and L2j+1, the rotation by π(2j+1) radians around the x3­axisk+1 
followed by reflection in P0. Each catenoidal end is made up of pieces of 2k + 2 of the 
sectors; both the middle plane and a neighborhood of the origin 0 = X(p0) are made up 
of all 4k + 4 sectors. As mentioned above, the intersection of S with the plane x3 = 0 
is the image of k + 1 lines with one point of each identified; in fact, it is equal to the 
union of the k +1 lines lj . The intersection of S with any other plane x3 = t is a simple 
closed curve. 

This symmetry structure can be used to show that each sector is in fact a graph 
over an appropriately chosen plane. Thus S is embedded. So S is a complete embedded 
minimal surface of finite total curvature, genus k, and 3 ends, and it has a symmetry 
group D2k+2 with 4(k +1) elements. In fact, Hoffman and Meeks showed that any such 
surface with at least 4(k + 1) elements in its symmetry group is in fact similar to this 
generalized Costa surface. 

Previously, the Costa surface was described as appear like the union of a catenoid 
and a plane with tunnels that appear like Scherk’s Second Surface. These similarities 
are reflected by the limiting behavior of the surfaces, as described in [4]. If Sk is the 
generalized Costa surface of genus k, then the sequence Sk has a subsequence that 
converges as k → ∞ to the union of the plane and the catenoid. In addition, if Ŝk is 
a normalized version of Sk such that the maximum value of K is equal to 1 and is at 
the origin, then the sequence Ŝk has a subsequence that converges to Scherk’s Second 
Surface. 
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7. Other Complete Minimal Surfaces of Finite Topology. Hoffman and Meeks 
showed, as described in [4], that each surface Sk lies in a one­parameter family Sk,x 

(x ≥ 1) of embedded minimal surfaces of genus k and finite total curvature; Sk = Sk,1. 
The surfaces with x > 1 have all three ends of “catenoid” type (that is, growing loga­
rithmically) and a symmetry group generated by k vertical reflection planes. Intuitively, 
this can be imagined as taking the “tunnels” that flow into the bottom catenoid half 
and pushing down on them until they are flowing separately into the bottom catenoidal 
plane. 

Several other families of complete embedded minimal surfaces of finite total curva­
ture are mentioned in [4], although for most of them the surface is not embedded for all 
values of x. These include four­ended examples with c ≥ 2 vertical planes of symmetry, 
one horizontal plane of symmetry, genus 2(c− 1), two flat ends and two catenoid ends; a 
one­parameter family deforming these surfaces through surfaces with four catenoid ends; 
a variant of the same surfaces with symmetric tunnels through their waist plane; and 
a series of five­ended examples. In addition, Hoffman, Karcher, and Wei constructed 
a new complete embedded minimal surface of finite topology with one end (and thus 
infinite total curvature); this is called the “helicoid with a handle”. 

8. Physical Modeling. In [3], Hoffman waxes eloquently about the value of computer 
graphics in his study of minimal surfaces. While I could never have even imagined the 
Costa surfaces without viewing computer graphics, and while the graphics I could find 
with a few seconds on Google in 2004 are vastly superior to what Hoffman could create 
with much labor in 1984, I still found it difficult to truly imagine the Costa surface just 
by looking at computer images. I decided to make physical models of the Costa surfaces. 
After experimenting with several different materials, I settled on Crayola Model Magic, 
an air­drying, flexible artificial clay­like product. 

My first attempt at creating a Costa surface started by creating the two catenoid­
like ends and trying to merge them together to form the central plane. After much trial 
and error, I ended up attaching two tubes to start to form the tunnels to each side; 
a little more massaging yielded a passable model of the Costa surface. For my second 
attempt, I wanted to highlight the symmetry properties of the surface, and specifically 
the eight octants that are mapped onto each other transitively by the symmetry group 
of the surface. I made four green and four white wedge­shaped pieces; the long edges 
formed the catenoid ends (two green and two white pieces each), while the shorter end 
split in half, with one tab going in to meet with the other seven pieces at the origin and 
the other tab spreading out to form the waist plane. This construction made it clear 
how the plane and the neighborhood of the origin were all composed of all eight pieces, 
and also showed (because each colored piece should lie entirely in one octant) where 
the directions of maximum and minimum height on the wait plane are. I plan to create 
similar models of the higher genus Costa surfaces as well. 

While the computer graphics were a good starting place, the ability to physically 
hold a Costa surface in my hand allowed several of its properties to be immediately 
visible. For example, if one colors the two sides of the surface distinct colors, the fact 
that the Gauss map covers the Riemann sphere three times is clear: you can see exactly 
three places where either color faces in any given direction (for example, one color faces 
up at the origin and at the limits of the top of the upper catenoid and the bottom of 
the lower catenoid). The fact that the surface has genus one can be seen by trying to 
link one’s fingers around the surface (without crossing any of the three infinite planes 
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or putting the fingers into the same hole from two different directions) like holding a 
donut; this can be done exactly once, so the surface has genus 1. A similar operation 
can be performed on the higher genus surfaces. 
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