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There are often curious and deep connections between engineering and mathematics. We 
tell one such story here. It starts with the engineering problem of capacity analysis of direct
sequence spread spectrum wireless networks. Using results from convergence of spectra of 
large random matrices, we obtain simple answers for a basic model of this problem, in terms of 
notions of effective bandwidths and effective interference. In the process of understanding the 
structure of our solution better, we stumble on free probability, a theory for noncommutative 
random variables. We establish a striking connection between certain basic results in this 
theory and the concept of effective interference. Using free probability as a new tool, we 
are in turn able to analyze more complex models for the original wireless communications 
problem. Our story has come a full circle. 

1 The Problem 

With the introduction of the IS95 CodeDivision MultipleAccess (CDMA) standard, the use 
of spreadspectrum as a multipleaccess technique in commercial wireless systems is growing 
rapidly in popularity. Unlike more traditional methods such as timedivision multiple access 
(TDMA) or frequencydivision multiple access (FDMA), spreadspectrum techniques are 
broadband in the sense that the entire transmission bandwidth is shared between all users at 
all times. This is done by the spreading of the users’ signals onto a bandwidth much larger 
than an individual user’s information rate. The advantages of spreadspectrum techniques 
include simpler statistical multiplexing without explicit scheduling of time or frequency slots, 
universal frequency reuse between cells, graceful degradation of quality near congestion, and 
exploitation of frequencyselective fading to avoid the harmful effects of deep fades that 
afflict narrowband systems. 
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One form of spreadspectrum is directsequence CDMA. In this multiple access method, each 
user is assigned a signature sequence on which it modulates its data. A simple channel model 
for such a system is: 

K

N y = 
� 

xksk + , (1)w ∈ � 
k=1 

where K is the number of users, xk the transmitted data symbol of user k, w ∼ N(0, σ2IN ) 
is the additive Gaussian noise in the channel, and y is the received vector. We assume that 
E[xk ] = 0, E[x2] = pk , the received power of user k. The parameter N , sometimes calledk 

the processing gain, is the ratio of the channel bandwidth and the data symbol rate and 
quantifies the amount of spreading in the system. The larger the channel bandwidth, the 
larger N can be. Geometrically, communication takes place in a signal space of dimension 
N , with each user occupying a signal direction defined by its signature sequence sk . The 
parameter N can also be thought of as the number of degrees of freedom in the system. 
The task of a receiver is to estimate the data symbol of each of the users from the received 
vector y. We assume that the receiver has knowledge of the signature sequences and received 
powers of the users. 

A natural class of receivers are the linear receivers. Focusing on user 1, the estimate x̂1 of the 
x1 = c1y, where c1 ∈ �N is the linear receiver for user transmitted symbol x1 is of the form ˆ t 

1. For example, choosing c1 = s1 yields the wellknown matchedfilter receiver; it projects 
the received signal onto the direction of the signature sequence of user 1. This is the receiver 
used in currentgeneration CDMA systems, and is simple in the sense that the receiver needs 
only keep track of the signature sequence of user 1 and not the others. However, one can 
expect that better performance can be attained by taking advantage of the knowledge of the 
signature sequences and received powers of other users as well. 

A commonly used measure to evaluate the performance of linear receivers is the output 
signaltointerference ratio: 

(c1
t s1)

2 
p1

SIR1 := 
t t 2(c1c1)σ2 + 

�
i=1 (c1si) pi 

This is simply the ratio of the variance of user 1’s signal to the variance of noise plus 
interference from other users, measured at the output of the linear receiver. It is not too 
difficult to show that the optimal receiver which maximizes the output SIR is the minimum 
meansquare error (MMSE) receiver which minimizes E[(x̂1 − x1)

2]. This is the classic least 
squares problem and has a wellknown solution. The MMSE receiver and its SIR performance 
is given by: 

c1 = (SDSt + σ2I)−1 s1 

tSIR1 = p1s1(SDSt + σ2I)−1 s1 (2) 

where 
S := [s2, . . . , sK ] , D := diag (p2, . . . , pK ) . (3) 



The MMSE receiver is an example of a multiuser receiver which, in contrast to the con
ventional matched filter, exploits the information about the other users to mitigate their 
interference. 

The capacity analysis problem is this: given users each with its own target SIR requirement, 
find the mix of users that can be admissible under the MMSE receiver. This problem is 
currently relevant in the design of futuregeneration wireless systems. The capability of 
multiuser receivers needs to be better understo od to assess whether the performance gain 
over the conventional receiver warrants the additional complexity in implementation. 

2 The Solution 

Although (2) gives a formula for the SIR of the MMSE receiver, the complicated dependence 
on the signature sequences and received powers of the users makes it difficult to be used 
directly for capacity analysis. Moreover, the performance certainly depends on which specific 
sequences are used. We bypass these drawbacks by instead using a random signature sequence 
model. The entries of si’s are modeled as i.i.d. zeromean random variables, with variance 
normalized to be 1/N , and are also independent across users. This model provides analytical 
tractability, and it is often a reasonable approximation in practice as the wireless multipath 
channel typically randomizes the sequences of the users. Moreover, many CDMA systems 
use pseudorandom spreading sequences. It should also be noted that the random sequence 
model is used only for performance analysis purpose; from the point of view of the receiver, 
the assumption of perfect knowledge of (the realization of) the signature sequences is still 
retained. In practice, this information is obtained through an adaptive tracking algorithm. 

In this model, SIR1 is a random variable, being a function of the random sequences. The 
following is the key result, showing that in a large system, SIR1 converges to a deterministic 
constant. To simplify the notation, we set p1 = 1 without loss of generality. 

Theorem 1 [1] Let N, K →∞ such that K α, and assume that the empirical distribution 
N →

of the users’ powers converges to a limiting distribution F . Then SIR1 converges in probability 
to β∗, where β∗ is the unique solution to the fixedpoint equation: 

1 
β∗ = 

σ2 + α 
� ∞

I(p, β∗)dF (p)
0 

where 
p

I(p, x) ≡ 
1 + px 

Here, α is the system loading in terms of number of users per degree of freedom. Heuristically, 
the result says that in a large system, 

1 
SIR1 ≈ 

σ2 + 1 
�K I(pk , SIR1)N k=2 
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Although in general this fixedpoint equation has no closedform solution, it can be shown 
that the fixed point can be computed numerically by simply iterating from any initial point. 
More importantly, if user 1 has a target SIR requirement β, then it follows from the mono
tonicity of the fixedpoint equation that its SIR requirement is satisfied asymptotically if 
and only if 

1 
.	 (4)β ≥ 

σ2 + 1 
�K I(pk , β)

N k=2 

This condition can be checked explicitly. 

It is natural to define I(p, β) as the effective interference of an interferer with received power 
p on a user with a target SIR β. This summarizes succinctly the effect of an interferer. It 
is interesting to contrast this to the corresponding result for the matched filter receiver [1]: 
the effective interference under the matched filter is simply Imf (p) = p. Note that under the 
matched filter, the effect of an interferer is proportional to its received power. In contrast, 
under the MMSE receiver, the effect is highly nonlinear in the received power, and ceiling out 
at . This is a testimony to the interference suppression capability of the MMSE receiver. 

β 

We can apply this result to analyze the capacity of a powercontrolled system under the 
MMSE receiver. Consider a set of users belonging to J classes, with target SIR requirement 
of βj for users in class j. Moreover, suppose we can control the received powers of the 
individual users, but subject to a received power constraint of p̄j for users in class j. Then it 
can be shown that αj users per degree of freedom in class j can be simultaneously supportable 
under the MMSE receiver if and only if: 

J
βj	 βj σ

2 
�

min .
� 

αj 
1 + βj 

≤ 
1≤j≤J 

�
1 − 

p̄jj=1 

The set of class mixes (α1, . . . , αJ ) of users that can be simultaneously supportable is the 
capacity region of the system. The above equation says that the capacity region admits a 
simple description via a single linear constraint. When there are no power constraints, the 
right hand side simplifies to 1. 

It is now natural to define the effective bandwidth of a user with target SIR requirement of 
β: 

β 
e(β) = . 

1 + β 

This is the fraction of a degree of freedom occupied by the user. To compute the admissi
bility of a set of users, one only needs to add up the effective bandwidths of the individual 
users. The additivity of effective bandwidths follows from the decoupling of the aggregate 
interference effect into the effective interference of the individual interferers. 

Two curious questions arise at this point: 

•	 Why does the SIR converge to a deterministic limit independent of the random signa
ture sequences? 

•	 Why does the interfering effects of the users decouple in such a simple way? 



We investigate these two questions in the following sections. 

3 Random Matrices 

Recall that the SIR of user 1 (with unit received power) is given by: 

tSIR1 = s1(SDSt + σ2I)−1 s1 (5) 

where S and D are defined in eqn. (3). Observe that S depends only on the signature 
sequences of the interferers and is hence independent of s1. Direct computation yields: 

1 
E[SIR1|S, D] = Tr 

�
SDSt + σ2

�−1 
. 

N 

Moreover, it can be shown that the conditional variance goes to zero like 1/N . Hence, 

1 
SIR1 − Tr 

�
SDSt + σ2

�−1 P 
0. (6)

N 
→ 

We can write: 
1 1 

Tr 
�
SDSt + σ2I

�−1 
= 

� ∞ 

dGN(λ) (7)
N 0 λ + σ2 

where λ has the (random) empirical eigenvalue distribution of SDSt . Thus, the convergence 
of the SIR hinges on the convergence of the spectrum GN . This problem has been solved by 
[2, 3], where they show that the limit exists and moreover does not depend on the distribution 
of the individual elements of S. The limiting spectrum is described by a functional fixed
point equation for its Steltjes transform. The Steltjes transform of a distribution G is defined 
to be: � 

1 
m(z) := dG(λ)

λ − z 

The functional fixedpoint equation for the Steltjes transform m∗(z) of the limiting spectrum 
G∗ of SDSt is given by: 

1 
m(z) = 

τdF (τ) 
(8) 

−z + α 
� 

1+τm(z) 

where F is the limiting spectrum of D. 

This seems like a complicated characterization of the limiting spectrum. However, we observe 
from (6) and (7) that what we need to characterize the limiting SIR is precisely the Steltjes 
transform of the limiting spectrum of SDSt evaluated at z = −σ2 . Theorem 1 now follows. 

4 Free Probability 

The effective interference interpretation follows directly from the random matrix result (8). 
Let us then take a deeper look at the structure of this equation from a different perspective. 



�

Consider the scenario when there are two groups of interferers C1 and C2, one in which the 
interferers have common received power p and one in which the interferers have common 
received power q respectively. Suppose there are K1 users in group C1 and K2 users in group 
C2, with K1/N = α1 and K2/N = α2. The key random matrix SDSt can be written as an 
outer sum: 

t tSDSt = p
� 

sisi + q
� 

sisi ≡ U1 + U2. 
i∈C1 i∈C2 

The asymptotic interfering effect of each group Ci, when present in isolation, depends only 
on the spectrum of the random matrix Ui. How the overall interfering effect of the two 
groups can be decoupled into the effects of the individual groups is then a question of how 
the spectrum of the matrix U1 + U2 depends on the individual spectra of the matrices U1 

and U2. This leads to a more general question: if we are given the spectra of two random 
matrices A and B, what can we say about the spectrum of the sum A + B? 

For deterministic matrices A and B, one cannot in general determine the eigenvalues of 
A + B from those of A and of B alone, as they depend on the eigenvectors of A and B as 
well. However, it turns out that for large random matrices A and B satisfying a property 
called freeness, the limiting spectrum of A+B can indeed be determined from the individual 
spectra of A and B. This is a central result in free probability theory, which we very briefly 
introduce now. For more details, please consult [4] or [5]. 

Classical probability theory is concerned with commutative random variables. Free prob
ability, on the other hand, deals with noncommutative ones. More formally, a (non
commutative) probability space (A, ϕ) is an algebra A over C with an unit element 1 and 
endowed with a linear functional, called the trace, ϕ : A → C, ϕ(1) = 1. Elements of A are 
called (noncommutative) random variables. Classical probability theory is obtained when 
the algebra A consists of scalar random variables and the functional ϕ is the standard ex
pectation operator. The focus of the theory however is on random variables which do not 
commute. 

The distribution of a random variable X ∈ A is specified by the moments ϕ(Xk ), for k ≥ 1. 
The distribution defined in this form allow us to compute the expectation of any function 
of the random variable X that can be approximated by polynomials. Similarly, the joint 
distribution of a collection of random variables X1, . . . , Xm ∈ A is specified by all the joint 
moments ϕ(Xi1 . . . Xip ), p ≥ 1. 

The central notion in classical probability theory is independence. In the notations introduced 
above, two scalar random variables X, Y are independent if ϕ(Xk Y l) = ϕ(Xk )ϕ(Y l) for all 
k, l. The analogous notion in free probability theory is freeness. 

Definition 2 Let X and Y be two random variables. Let A1 be the subalgebra generated 
by X and the unit 1 and A2 be the subalgebra generated by Y and the unit 1 respectively, 
i.e. they consist of polynomials of X and of Y respectively. The random variables X and Y 
are free if ϕ(Z1 . . . Zm) = 0 whenever ϕ(Zk ) = 0 for all k = 1, . . . , m and Zk i(k) where ∈ A
consecutive indices i(k) = i(k + 1) are distinct. 

For independent random variables, the joint distribution can be specified completely by the 



marginal distributions. For free random variables, the same result can be proved, directly 
from definition. In particular, if X and Y are free, then the moments ϕ((X +Y )n) of X +Y 
can be completely specified by the moments of X and the moments of Y . The distribution is 
naturally called the free convolution of the two marginal distributions. Classical convolution 
can be computed via transforms: the log moment generating function of the distribution of 
X + Y is the sum of the log moment generating functions of the individual distributions. 
For free convolution, the appropriate transform is called the Rtransform. This is defined 
via the Steltjes transform. 

Given a random variable X, let 

� 
1 

� 

mX (z) = E
X − z 

be the Stieltjes transform of its distribution. Let m−1 be the inverse of mX . The RtransformX 

is defined as: 
1 

R(β) := + m−1 
X (β). 

β 

Theorem 3 If X and Y are two free random variables, then RA+B = RA + RB . 

A good example of noncommutative random variables are random matrices. Let A = MN 

be the algebra of complex N by N random matrices whose entries are scalar random variables 
defined on some underlying common probability space. The trace is defined as: 

1 
ϕN (X) := E [TrX] . 

N 

For any N by N random Hermitian matrix X ∈ MN with random eigenvalues λ1, . . . λN , the 
rth moment of X in the noncommutative probability space (MN , ϕN ) is given by 

� 
N

1 1 rϕN (X
r ) = E[TrXr ] = E 

� 
λi 

� 

N N 
i=1 

If we let FX (·) be the expected empirical distribution of the eigenvalues of X: 

1 
FX (λ) := E [ ]

N 
|{i : λi ≤ λ}|

then the moments of the distribution FX are precisely the moments of X as a noncommutative 
random variable. 

The deep connection between random matrices and free probability is first made by Voiculescu 
[6], who showed that in a lot of cases of interest, large random matrices become asymptot
ically free. This answers the question we posed earlier: the limiting spectra of the sum of 
two large random matrices is the free convolution of the limiting spectra of the individual 
matrices, if they become asymptotically free. 



Returning to our specific problem, it can be shown as a consequence of Voiculescu’s results 
that the matrices U1 = sisi

t and U2 = sis
t
i are in fact asymptotically free as 

N, K →∞, K/N → α. . 
p 
�

i∈Ci 

�
i∈C2 

The Rtransforms can be computed explicitly for this problem: 

p q
RU1(β) = α1 , RU2(β) = α2 ,

1 + pβ 1 + qβ 

and 
RU1+U2(β) = RU1(β) + RU2(β). 

What is the connection of this to the notion of effective interference? Observe that the 
Rtransform satisfies: 

1 
m(z) = . 

z + R[m(z)]−
Putting in z = −σ2 and noting that m(−σ2) is the limiting SIR, we conclude that at 
target SIR requirement of β, RUi (β), i = 1, 2, is the effective interference of group Ci when 
considered in isolation, and RU1+U2(β) is the limiting aggregate interference of the two groups 
when both are present. The decoupling of effective interference is nothing but the 
additivity of the Rtransforms of free random matrices. 

5 Back to Multiuser Receivers 

The previous section reinterprets the structure of the fixedpoint equation in Theorem 1 in 
terms of notions from free probability. The proof of Theorem 1 itself does not require free 
probability, as the structure of the relevant random matrix SDSt is a classical one for which 
a limit theorem already exists. However, the analysis of more sophisticated CDMA models 
[7, 8] led to nonclassical random matrix structure, for which new limit theorems had to be 
proved. Free probability is a valuable tool for solving these problems. We discuss one such 
problem here [8]. 

One detrimental effect of a wireless link is the random fading of the channel due to con
structive and destructive interference between multiple signal paths from the transmitter 
to the receiver. A countermeasure to alleviate this problem is the use of multiple antennas 
at the receiver. Provided that the antennas are placed sufficiently far apart, the received 
signals at the antennas fade independently and the probability is high that at least one of 
the antennas receives a strong copy of the transmitted signal. The following is a model of a 
direct sequence CDMA system with 2 receive antennas: 

K

y(l) = 
� 

γk (l)xk sk + w(l) ∈ C N , l = 1, 2. 
k=1 

where as before, xk , sk are the transmitted symbol and signature sequence of the kth user 
respectively, y(l) is the received signal at antenna l, and γk (l) is the random channel gain 
from user k to an antenna l. 



As in the basic model, we can consider the MMSE estimator for transmitted symbol x1, 
based now on y(1) and y(2), the received signals at both of the antennas. In place of SDSt 

for the basic model, the key random matrix for this problem is S̄S̄†, where 
� 

SB1 

�
S̄ = 

SB2 

and S = [s2 . . . sk ] and Bl = diag(γ2(l), . . . , γK (l)). 

¯There is strong dependency between entries in the random matrix S, due to the repetition of 
the signature sequences at the two receive antennas. Existing results on spectral convergence 

¯ ¯ ¯do not apply. However, we observe that SS† and S†S̄ have the same nonzero eigenvalues, 
and the latter can be written as a sum of two matrices: 

S̄†S̄ = B1
†StSB1 + B†StSB22

We have the following theorem. 

Theorem 4 [1] If B1, B2 are independent and zero mean, then the matrices B1
†StSB1 and 

B2
†StSB2 are asymptotically free as N, K →∞, K/N = α. 

Moreover, it can be shown that if S1 and S2 are two independent matrices, each having the 
same distribution as S, then B1

†S1
t S1B1 and B2

†S2
t S2B2 are also asymptotically free. The 

implication is that the limiting spectrum of S̄tS̄ is the same as if independent copies of the 
signature sequences were received at the different antennas. For this latter “independent 
sequence” model, existing random matrix results can be applied and the performance of the 
MMSE receiver can be analyzed. More details can be found in [9] in these proceedings. The 
main point to be made here is that the important notion is freeness and not independence: 

¯although there is strong dependence between the entries of the matrix S, the randomness in 
D1 and D2 is enough to make the components free. This result translates into the engineering 
conclusion that there is asymptotically no loss of degrees of freedom for communication even 
though the signature sequences are repeated at each of the receive antennas. 

6 Conclusions 

In this paper, we develop interesting connections between the engineering problem of capac
ity analysis of multiuser receivers on the one hand, and random matrices and free probability 
theory on the other. The connections are unexpected and deep. Is there anything funda
mental relating the least square estimation problem and free probability, or is the connection 
purely coincidental? The reader is encouraged to look further. 
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