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Abstract—This paper presents upper bounds on the bit-error 
rate (BER) of optimum combining in wireless systems with 
multiple cochannel interferers in a Rayleigh fading environment. 
We present closed-form expressions for the upper bound on 
the bit-error rate with optimum combining, for any number of 
antennas and interferers, with coherent detection of BPSK and 
QAM signals, and differential detection of DPSK. We also present 
bounds on the performance gain of optimum combining over 
maximal ratio combining. These bounds are asymptotically tight 
with decreasing BER, and results show that the asymptotic gain 
is within 2 dB of the gain as determined by computer simulation 
for a variety of cases at a ��0� BER. The closed-form expressions 
for the bound permit rapid calculation of the improvement with 
optimum combining for any number of interferers and antennas, 
as compared with the CPU hours previously required by Monte 
Carlo simulation. Thus these bounds allow calculation of the 
performance of optimum combining under a variety of conditions 
where it was not possible previously, including analysis of the 
outage probability with shadow fading and the combined effect 
of adaptive arrays and dynamic channel assignment in mobile 
radio systems. 

Index Terms— Bit-error rate, optimum combining, Rayleigh 
fading, smart antennas. 

I. INTRODUCTION 

A NTENNA arrays with optimum combining combat multi-
path fading of the desired signal and suppress interfering 

signals, thereby increasing both the performance and capacity 
of wireless systems. With optimum combining, the received 
signals are weighted and combined to maximize the signal-to-
interference-plus-noise ratio (SINR) at the receiver. Optimum 
combining yields superior performance over maximal ratio 
combining, whereby the signals are combined to maximize 
signal-to-noise ratio, in interference-limited systems. However, 
while with maximal ratio combining the bit-error rate can 
be expressed in closed form [1], with optimum combining 
a closed-form expression is available only with one interferer 
[2], [3]. With multiple interferers, Monte Carlo simulation has 
been used [3]–[5], but this requires on the order of CPU hours 
even with just a few interferers. Thus the improvement of 
optimum combining has only been studied for a few simple 
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Fig. 1. Block diagram of an � -element adaptive array. 

cases, and detailed comparisons (e.g., in terms of outage 
probability) have not been done. 

In [6], we showed that, with antenna elements, the 
received signals can be combined to eliminate 
interferers in the output signal while obtaining an 
diversity improvement, i.e., the performance of maximal ratio 
combining with antennas and no interference. However, 
this “zero-forcing” solution gives far lower output SINR than 
optimum combining in most cases of interest and cannot be 
used when . 

In this paper we present a closed-form expression for the up
per bound on the bit-error rate (BER) with optimum combining 
in wireless systems. We assume flat fading across the channel 
and independent Rayleigh fading of the desired and interfering 
signals at each antenna.1 Equations are presented for the 
upper bound on the BER for coherent detection of quadrature 
amplitude modulated (QAM) and binary phase-shift-keyed 
(BPSK) signals, and for differential detection of differential 
phase-shift-keyed (DPSK) signals. From these equations, a 
lower bound on the improvement of optimum combining over 
maximal ratio combining is derived. 

In Section II we derive the upper bound on the BER. In 
Section III we compare the upper bound to Monte Carlo 
simulation results. A summary and conclusions are presented 
in Section IV. 

II. UPPER BOUND DERIVATION 

Fig. 1 shows a block diagram of an -element adaptive 
array. The complex baseband signal received by the th 
antenna element in the th symbol interval is multiplied 
by a controllable complex weight and the weighted signals 
are summed to form the array output signal . 

1 As shown in [7], the gain of optimum combining is not significantly 
degraded with fading correlation up to about 0.5. Thus our bounds, based on 
independent fading, are reasonably accurate and useful even in environments 
with fading correlation up to this level. 
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With optimum combining, the weights are chosen to maxi
mize the output SINR, which also minimizes the mean-square 
error (MSE), which is given by [8] 

(1)MSE 

where is the received interference-plus-noise correlation 
matrix given by 

(2) 

is the noise power, is the identity matrix, and 
are the desired and th interfering signal propagation 

vectors, respectively, and the superscript denotes complex 
conjugate transpose. Here we have assumed the same average 
received power for the desired signal at each antenna (that 
is, microdiversity rather than macrodiversity) and that the 
noise and interfering signals are uncorrelated, and without 
loss of generality, have normalized the received signal power, 
averaged over the fading, to . Note that the MSE varies at 
the fading rate. 

For coherent detection of BPSK or QAM, the BER is 
bounded by [9] 

(3) 

where now the expected value is taken over the fading

parameters of the desired and interfering signals, and
 is the

variance of the BPSK or QAM symbol levels (e.g.,

and
 for BPSK and quaternary phase-shift keying (QPSK), 
respectively). For differential detection of DPSK, assuming 
Gaussian noise and interference,2 the BER is given by [1] 

(4) 

Thus the BER expression for both cases differs only by a 
constant, and we will now consider the term . 
As shown in the Appendix, this term can be upper-bounded by 

(5) 

where denotes the determinant of , and is the 
th eigenvalue of . 
Since (5) is the key inequality in our bound (and is the only 

inequality we use in determining the bound for differential 
detection of DPSK), let us examine its accuracy. The bound 
is tight if , and since the ’s are proportional 
to the interference signal powers, the bound is tight for 
large received SINR, i.e., low BER’s. Although for all cases 

and thus BER for 
the BER as given by the bound may exceed 
small received SINR, occasionally BER’s greater than 

, 
. Thus with 

may 
be averaged into the average BER, reducing the tightness of 

2 Since the stronger the interference, the more that optimum combining 
suppresses it, with the Gaussian assumption we overestimate the probability 
of strong interference. Note that this is consistent with the derivation of an 
upper bound on the BER. 

the bound. Also, note that with only noise at the receiver, 
, where is the variance of the noise normalized to 

the received desired signal power, and from (4) and (5) 

(6) 

where is the received SINR, while the actual BER is 
[1]. Thus even without interference, the bound 

differs from the actual BER, and this difference increases as 
the received SINR decreases. 

Let us consider the case of interference only. In this case, 
, which is given by (2), may also be expressed as 

(7) 

where , 
is the th element of , the sum is extended over 

all permutations of the ’s, is the th element of 
the permutation of the ’s, the “

permutations (i.e., an even number of swapping of


” sign is assigned for even 
’s in 

the permutation), and the “ ” sign for odd permutations. Now 

(8) 

is the average power of the th interferer normalized 
to the desired signal power, and 
where 

(9) 

Similarly, from (7), it can be shown that 

(10) 

where the sum is over all sets of positive integers and 
that exist such that , with . 
For example, when , there are 6 sets of such 
that (see Table I). All sets are of the form 

, e.g., for , except for the 
set for . 

is an integer coefficient corresponding to the th set 
with antennas. Note that is obtained by summing the 
coefficients ( ’s) for similar terms in . can 
be determined as shown below. 

Since , and when , 
(10) can also be expressed as 

(11) 
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TABLE I 
�� �VALUES OF �� FOR � � �  TO � 

where now . 
To determine the ’s, first note that if 

then , and (11) becomes 

(12) 

’s and the ’s can be seen to be closely 
related. From [6], 
where the 

for , and thus the 
’s are the coefficients of the th-order polynomial in , 

. This result is not only 
useful when all interferers have equal power, but also serves 
as a consistency check on our calculated values of . 

The values of were generated using a computer 
program to examine every permutation in (7) for given . The 
number of each type of term was calculated to 
determine . Tables I and II list these values for 
Note that only 

– . 
and terms exist for , and and 

terms also exist for . Values for for higher 
can also be easily calculated. However, since the amount 

of computer time to generate the values of increases 
exponentially with , our program could only generate these 
values in a reasonable amount of computer time for up to 

(where a hundred CPU hours on a SPARCstation20 
would be required). 

From (3), the upper bound on the BER with coherent 
detection of BPSK or QAM is now given by 

(13) 

TABLE II 
�� �VALUES OF �� FOR � � �  AND � 

and from (4), the upper bound on the BER with differential 
detection of DPSK is given by 

(14) 

For the case of noise with interferers, consider the noise as 
an infinite number of weak interferers with total power equal 
to the noise. That is, let 

(15) 

and let . Then, , and 

(16) 

for . Therefore, with noise, the BER bound is the same 
as in (13) and (14), but with including the noise. In this 
case, if we define the received desired signal-to-noise ratio 
as and the th interferer signal-to-noise ratio as 
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, then (14) becomes [similarly for (13)] 

(17) 

Since is the bound with maximal ratio combining, the 
term in the brackets is the improvement of optimum combining 
over maximal ratio combining based on the BER bound. 
Defining the gain of optimum combining as the reduction in 
the required for a given BER, from (17), this gain in decibels 
is given by 

Gain (dB) 

(18) 

This gain is therefore independent of the desired signal 
power (because the bound is asymptotically tight as ). 
However, this is the gain of the BER bound with optimum 
combining over the BER bound with maximal ratio combining. 
Since the required for a given BER with maximal ratio 
combining is less than the bound, the true gain may differ 
from (18) and to obtain a bound on the gain, the gain in (18) 
must be reduced accordingly. For example, with differential 
detection of DPSK, to obtain a bound the gain given in (18) 
is reduced by the factor . Note that as , 
this factor reduces to one and the gain approaches (18). Thus 
we will refer to (18) as the asymptotic gain. 

III. COMPARISON TO EXACT THEORY AND SIMULATION 

In this section, we compare the bound to theoretical results 
for and simulation results for . 

Fig. 2 compares theoretical results (from [1]–[3]) for the 
gain to the asymptotic gain (18) versus BER with coherent 
detection of BPSK. Results are generated for and 
and 

, 
3 and 10 dB. In all cases the gain monotonically de

creases to the asymptotic gain as the BER decreases. The gain 
approaches the asymptotic gain more slowly with decreasing 
BER for larger and also, at low BER’s, the accuracy of the 
asymptotic gain decreases with higher . Thus the accuracy 
of the asymptotic gain decreases as the required for a given 
BER with optimum combining decreases, as predicted by the 
approximation in Section II. 

Fig. 3 compares theoretical and Monte Carlo simulation [5] 
results for the gain to the asymptotic gain with and 

, , where all 
interferers have equal power, for coherent detection of BPSK 

, and 6. Results are plotted versus 

Fig. 2. Gain versus BER for coherent detection of BPSK—comparison of 
analytical results to the asymptotic gain. 

Fig. 3. Gain with � � �  for 1, 2, and 6 equal-power interferers versus 
signal-to-noise ratio of each interferer—comparison of analytical and Monte 
Carlo simulation results with coherent detection of BPSK [5] to the asymptotic 
gain. 

at a BER.3 In all cases, the asymptotic gain has the 
same shape as the gain and is within 1.7 dB for , 

., and 0.4 dB for Since optimum 
combining gives the largest gain when the interference power 
is concentrated in one interferer and the least gain when the 
interference power is equally divided among many interferers, 

and 

1.0 dB for 

represent the best and worst cases for the 
gain in an interference-limited cellular system. Thus from the 
results in Fig. 3, we would expect the asymptotic gain to be 
within 0.4–1.7 dB of the actual gain for all cases in cellular 
systems with . 

3 This BER was used because the results in [5] were obtained for this BER. 
As shown in [5], the gain does not change significantly for BER’s between 
��
0� and ��0� , the range of interest in most mobile radio systems. 
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Fig. 4. Gain versus � with two and six equal power interfer-
ers—comparison of Monte Carlo simulation results with coherent detection 
of BPSK [3] to the asymptotic gain. 

Now, consider the lower bound on the gain obtained from 
the BER bound (17), as compared to the asymptotic gain. 
Without interference, differential detection of DPSK with 
maximal ratio combining and requires 13.3 dB 
(theoretically [10]) for a BER, while the BER bound 
(17) gives 13.5 dB. Thus the lower bound on the gain 
(from (17)) at a 10 BER is 0.2 dB less than the asymptotic 
gain for any interference scenario—in particular, the lower 
bound on the gain is 0.2 dB less than the results shown in 
Fig. 3. Similarly, coherent detection of BPSK with maximal 
ratio combining and requires 11.1 dB for a 10 
BER, while the BER bound (13) gives 15.0 dB. Thus the 
bound is most accurate with differential detection of DPSK 
and low BER’s. 

Fig. 4 compares Monte Carlo simulation results [3] for the 
gain to the asymptotic gain for and 
versus 

. Results are plotted 
with 3 dB for all interferers and coherent 

detection of BPSK at a 10 BER. Again the asymptotic 
gain has the same shape as the simulation results. The cases 
include both many more interferers than antennas and many 
more antennas than interferers, but in all cases the asymptotic 
gain is within 1.8 dB of simulation results. 

IV. CONCLUSIONS 

In this paper we have presented upper bounds on the bit-
error rate (BER) of optimum combining in wireless systems 
with multiple cochannel interferers in a Rayleigh fading envi
ronment. We presented closed-form expressions for the upper 
bound on the bit-error rate with optimum combining, for any 
number of antennas and interferers, with coherent detection of 
BPSK and QAM signals, and differential detection of DPSK. 
We also presented bounds on the performance gain of optimum 
combining over maximal ratio combining and showed that 
these bounds are asymptotically tight with decreasing BER. 
Results showed that the asymptotic gain is within 2 dB of 
the gain as determined by computer simulation for a variety 

of cases at a 10 BER. These cases include interference 
scenarios that cover the range of worst to best cases for the 
gain of optimum combining in cellular systems with . 
The bound is most accurate with differential detection of 
DPSK and high SINR, corresponding to low BER and a 
few antennas. Because of the 2-dB accuracy, the bound is 
most useful where the optimum combining improvement is 
the largest, which is the case of most interest. The closed-
form expression for the bound permits rapid calculation of 
the improvement with optimum combining for any number 
of interferers and antennas, as compared with the CPU hours 
previously required by Monte Carlo simulation. These bounds 
allow calculation of the performance of optimum combining 
under a variety of conditions where it was not possible 
previously, including analysis of the outage probability with 
shadow fading and the combined effect of adaptive arrays and 
dynamic channel assignment in mobile radio systems. 

APPENDIX 

Diagonalizing by a unitary transformation , we obtain 

(19) 

where denotes an matrix with nonzero 
elements only on the diagonal, or 

(20) 

and 

(21) 

Let 

(22) 

Then 

(23) 

and 

(24) 

Since with independent, Rayleigh fading at each antenna, 
the elements of are independent and identically distributed 
(i.i.d.) complex Gaussian random variables, the elements of 

are also i.i.d. complex Gaussian random variables with the 
same mean and variance. Furthermore, the ’s are indepen
dent of the ’s. Thus we can average over the desired and 
interfering signal vectors separately, i.e., 

(25) 
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Since the ’s are complex Gaussian random variables with 
zero mean and unit variance 

(26) 

and 

(27) 

’s are nonnegative Since the 

(28) 

and, therefore, 

(29) 

where denotes the determinant of . 
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