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Abstract 

We investigate the use of multiple transmitting and�or receiving antennas 

for single user communications over the additive Gaussian channel with and 

without fading. We derive formulas for the capacities and error exponents of 

such channels, and describe computational procedures to evaluate such for-

mulas. We show that the potential gains of such multi-antenna systems over 

single-antenna systems is rather large under independence assumptions for the 

fades and noises at di�erent receiving antennas. 

1 Introduction 

We will consider a single user Gaussian channel with multiple transmitting and�or 

receiving antennas. We will denote the number of transmitting antennas by t and the 

numb e r of receiving antennas by r. We will exclusively deal with a linear model in 

which the received vector y 2 C 

r depends on the transmitted vector x 2 C 

t via 

y � Hx + n �1� 

where H is a r � t complex matrix and n is zero-mean complex Gaussian noise with 

independent, equal variance real and imaginary parts. We assume E �nny� � Ir, that 

is, the noises corrupting the di�erent receivers are independent. The transmitter is 

constrained in its total power to P , 

E�xyx� � P: 

Equivalently, since xyx � tr�xxy�, and expectation and trace commute, 

tr�E�xxy�� � P: �2� 

� Rm. 2C-174, Lucent T echnologies, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ, 

USA 07974, 
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This second form of the p o wer constraint will prove more useful in the upcoming 

discussion. 

We will consider several scenarios for the matrix H: 

1.	 H is deterministic. 

2.	 H is a random matrix �for which w e shall use the notation H�, chosen according 

to a probability distribution, and each use of the channel corresponds to an 

independent realization of H. 

3.	 H is a random matrix, but is �xed once it is chosen. 

The main focus of this paper in on the last two of these cases. The �rst case is 

included so as to expose the techniques used in the later cases in a more familiar 

context. In the cases when H is random, we will assume that its entries form an 

i.i.d. Gaussian collection with zero-mean, independent real and imaginary parts, each 

with variance 1�2. Equivalently, each entry of H has uniform phase and Rayleigh 

magnitude. This choice models a Rayleigh fading environment with enough separation 

within the receiving antennas and the transmitting antennas such that the fades for 

each transmitting-receiving antenna pair are independent. In all cases, we will assume 

that the realization of H is known to the receiver, or, equivalently, the channel output 

consists of the pair �y; H�, and the distribution of H is known at the transmitter. 

2 Preliminaries 

A complex random vector x 2 C 

n is said to b e Gaussian if the real random vector h i 

^ ^
x 2 R2n consisting of its real and imaginary parts, x � 

Re�x� , is Gaussian. Thus,


Im�x� 

to specify the distribution of a complex Gaussian random vector x, it is necessary to 

specify the expectation and covariance of x̂, namely, �	 � 

x� 2 R
2n and E �^ x���^ x��yE �^	 x , E �^ x , E �^ 2 R

2n�2n : 

We will say that a complex Gaussian random vector x is circularly symmetric if the 

covariance of the corresponding x̂ has the structure �	 � �	 � 1 Re�Q� , Im�Q� 

x , E �^ x , E �^E	 �^ x���^ x��y � �3� 

2	

Im�Q� Re�Q� 

for some Hermitian non-negative de�nite Q 2 C 

n�n . Note that the real part of an 

Hermitian matrix is symmetric and the imaginary part of an Hermitian matrix is 

anti-symmetric and thus the matrix appearing in �3� is real and symmetric. In this �	 � 

case E �x,E �x���x,E �x��y � Q, and thus, a circularly symmetric complex Gaussian �	 � 

random vector x is speci�ed by prescribing E�x� and E �x , E �x���x , E �x��y . 
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For any z 2 C 

n and A 2 C 

n�m de�ne � � �	 � 

Re�z� ^ Re�A� , Im�A� 

ẑ � and A �	 : 

Im�z�	 Im�A� Re�A� h i	 h i 

Re�A� , Im�A�^Lemma 1. The mappings z ! ẑ � 

Re�z� and A ! A �	 have the
Im�z�	 Im�A� Re�A� 

following properties: 

^ ^ ^C � AB �� C � AB �4a� 

^ ^ ^C � A + B �� C � A + B �4b� 

^C � Ay �� C	̂ � Ay �4c� 

^C � A,1 �� C � Â,1 �4d� 

^det� A� � j det�A�j 

2 � det�AAy�	 �4e� 

xz � x + y �� ẑ � ^ + ŷ �4f� 

^y � Ax ��	 ŷ � Ax̂ �4g� 

Re�xyy� � x̂yŷ:	 �4h� 

Proof. The properties �4a�, �4b� and �4c� are immediate. �4d� follows from �4a� and 

^the fact that In 

� I2n. �4e� follows from �� � � �� ��  �� 

A 0^det� A� � det 

I iI
Â

I , iI 

� det	 � det�A� det�A��: 

0 I 0 I Im�A� A� 

�4f�, �4g� and �4h� are immediate. 

Û 2 R2n�2nCorollary 1. U 2 C 

n�n is unitary if and only if is orthonormal. 

^ ^Proof. U 

yU � In 

�� �U �y Û � In 

� I2n. 

Q 2 R2n�2nCorollary 2. If Q 2 C 

n�n is non-negative de�nite then so is 

^ . 

Proof. Given x � �x1 

; : : : ; x 2n�
y 2 R2n , let z � �x1 

+ jx n+1; : : : ; x n 

+ jx 2n�
y 2 C 

n , so 

that x � ẑ. Then by �4g� and �4h� 

xy Q̂x  � Re�zyQz� � zyQz � 0: 

The probability density �with respect to the standard Lebesgue measure on C 

n � 

of a circularly symmetric complex Gaussian with mean � and covariance Q is given 
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by , � 

��;Q�x� � det��Q�,1�2 exp ,� x̂, ^ Q,1 � x̂, ^^ ��y ^ �� , � 

� det��Q �,1 exp ,�x , ��yQ,1�x , �� 

where the second equality follows from �4d���4h�. The di�erential entropy of a com-

plex Gaussian x with covariance Q is given by 

H��Q� � E �Q 

�, log �Q�x�� 

yQ,1� log det��Q � + �log e� E�x x� 

� log det��Q � + �log e� tr�E �xxy�Q,1� 

� log det��Q � + �log e� tr�I� 

� log det�� eQ �: 

For us, the importance of the circularly symmetric complex Gaussians is due to the 

following lemma: circularly symmetric complex Gaussians are entropy maximizers. 

Lemma 2. Suppose the complex random vector x 2 C 

n is zero-mean and satis�es 

�E�xxy� � Q, i.e., E �xixj 

� � Qij 

, 1 � i; j � n. Then the entropy of x satis�es 

H�x� � log det�� eQ � with equality if and only if x is a circularly symmetric complex 

Gaussian with 

yE�xx � � Q R 

Proof. Let p b e any density function satisfying 

C 

n 

p�x�xix
� 

j 

dx � Qij 

, 1 � i; j � n. 

Let , � 

�Q�x� � det��Q �,1 exp ,xyQ,1 x : R 

�Observe that �Q�x�xixj 

dx � Qij 

, and that log �Q�x� is a linear combination of 

C 

n 

�the terms xixj 

. Thus E�Q 

�log �Q�x�� � Ep�log �Q�x��. Then, Z Z 

H�p� ,H ��Q� � , p�x� log p�x� dx + �Q�x� log �Q�x� dx 

C 

n C 

n Z Z 

� , p�x� log p�x� dx + p�x� log �Q�x� dx 

C 

n C 

n Z 

�Q�x� 

� p�x� log dx 

p�x� 

� 0; 

C 

n 

with equality only if p � �Q. Thus H�p� � H ��Q�. 

Lemma 3. If x 2 C 

n is a circularly symmetric complex Gaussian then so is y � Ax 

for any A 2 C 

m�n . 
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Proof. We may assume x is zero-mean. Let Q � E�xxy�. Then y is zero-mean, 

ŷ � Âx̂, and 

^ x^ ^ ^ ^Ây � 

1 ^E�ŷŷy� � A E�^xy�Ay � 

1 AQ 

2 

K
2 

where K � AQAy. 

Lemma 4. If x and y are independent circularly symmetric complex Gaussians, then 

z � x + y is a circularly symmetric complex Gaussian. 

z 
^y ^Proof. Let A � E�xxy� and B � E�yy 

y�. Then E�^z � � 

1 C with C � A + B.
2 

3 The Gaussian channel with fixed transfer function 

We will start by reminding ourselves the case of deterministic H. The results of this 

section can be inferred from �1, Ch. 8� 

3.1 Capacity 

We will �rst derive an expression for the capacity C�H ; P � of this channel. To that 

end, we will maximize the average mutual information I�x; y� b e t ween the input and 

the output of the channel over the choice of the distribution of x. 

By the singular value decomposition theorem, any matrix H 2 C 

r�t can be written 

as 

yH � UDV 

where U 2 C 

r�r and V 2 C 

t�t are unitary, and D 2 Rr�t is non-negative and diagonal. 

In fact, the diagonal entries of D are the non-negative square roots of the eigenvalues 

of HH 

y, the columns of U are the eigenvectors of HH 

y and the columns of V are the 

eigenvectors of HyH. Thus, we can write �1� as 

y � UDV 

yx + n: 

~ ~ ~Let y~ � U 

yy, x � V 

yx, n � U 

yn. Note that U and V are invertible, n has the same 

distribution as n and, E�x x� � E �xyx�. Thus, the original channel is equivalent to 
~y ~

the channel 

~ ~y~ � Dx + n �5� 

~


~ ~


where n is zero-mean, Gaussian, with independent, identically distributed real and 

imaginary parts and E �nny� � Ir. Since H is of rank at most minfr; t g, at most 

1�2
minfr; t g of the singular values of it are non-zero. Denoting these by � , i �i 

1; : : : ; minfr; t g, w e can write �5� component-wise, to get 

1�2 

y~i 

� � x~i 

+ ~ni; 1 � i � minfr; t g;i 
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and the rest of the components of ~

n. We th us see that ~

y �if any� are equal to the corresponding components 

of ~ yi 

for i � minft; rg is independent of the transmitted signal and 

that x~i 

for i � minft; rg don't play any role. To maximize the mutual information, 

we need to choose fx~i 

: 1 � i � minfr; t gg to b e independent, with each x~i 

having 

independent Gaussian, zero-mean real and imaginary parts. The variances need to 

b e chosen via �water-�lling" as 

1 �� , �,1�+E �Re� x~i�
2� � E �Im� x~i�

2 � � 

2 

i 

where � is chosen to meet the p o wer constraint. Here, a+ denotes maxf0; a g. The 

p o wer P and the maximal mutual information can thus be parametrized as X
 ,X 

ln���i� 

�+ 

�+,


� , �,1 

iP ��� � ; C��� �
 : 

i i 

Remark 1 �Reciprocity�. Since the non-zero eigenvalues of HyH are the same as those 

of HH 

y, we see that the capacities of channels corresponding to H and Hy are the 

same. 

Example 1. Take Hij 

� 1 for all i; j. We can write H as 

p
1�r 

2
 3
 h
 i 

t : : : 

p
1�t

p p
1

�,64 

75


.
.
. p
1�r 

H � �r t 

and we thus see that in the singular value decomposition of H the diagonal matrix 

D will have only one non-zero entry, 

p
rt . �We also see that the �rst column of U is p

1�r�1; : : : ; 1�y and the �rst column of V is 

p
1�t�1; : : : ; 1�y.� Thus, 

C � log�1 + r tP �: 

The x � V 
~ �x that achieves this capacity satis�es E�xixj 

� � P �t for all i; j, i.e., the 

transmitters are all sending the same signal. Note that, even though each transmitter 

is sending a power of P �t , since their signals add coherently at the receiver, the power 

received at each receiver is Pt . Since each receiver sees the same signal and the noises 

at the receivers are uncorrelated the overall signal to noise ratio is P rt . 

Example 2. Take r � t � n and H � In. Then 

C � n log�1 + P �n � 

�For x that achieves this capacity E�xixj 

� � �ij 

P �n , i.e, the components of x are i.i.d. 

However, it is incorrect to infer from this conclusion that to achieve capacity one has 

to do independent coding for each transmitter. It is true that the capacity of this 
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channel can be achieved by splitting the incoming data stream into t streams, coding 

and modulating these schemes separately, and then sending the t modulated signals 

over the di�erent transmitters. But, suppose Nt bits are going to b e transmitted, 

and we will either separate them into t groups of N bits each and use each group to 

select one of 2N signals for each transmitter, or, we will use all all Nt bits to select 

one of 2Nt signal vectors. The second of these alternatives will yield a probability o f 

error much smaller than the �rst, at the expense of much greater complexity. Indeed, 

the log of the error probability in the two cases will di�er by a factor of t. �See the 

error exponents of parallel channels in �1, pp. 149�150�.� 

3.2 Alternative Derivation of the Capacity 

The mutual information I�x; y� can b e written as 

I�x; y� � H�y� ,H �yjx� � H�y� ,H �n�; 

and thus maximizing I�x; y� is equivalent to maximizing H�y�. Note that if x satis�es 

E�xyx� � P , so does x , E �x�, so we can restrict our attention to zero-mean x. 

Furthermore, if x is zero-mean with covariance E�xxy� � Q, then y is zero-mean 

with covariance E�yy 

y� � H QH 

y + Ir, and by Lemma 2 among such y the entropy 

is largest when y is circularly symmetric complex Gaussian, which is the case when 

x is circularly symmetric complex Gaussian �Lemmas 3 and 4�. So, we can further 

restrict our attention to circularly symmetric complex Gaussian x. In this case the 

mutual information is given by 

I�x; y� � log det�Ir 

+ H QH 

y� � log det�It 

+ QHyH� 

where the second equality follows from the determinant identity det�I +AB� � det�I + 

BA �, and it only remains to choose Q to maximize this quantity subject to the 

constraints tr�Q� � P and that Q is non-negative de�nite. The quantity log det�I + 

H QH 

y� will occur in this document frequently enough that we will let 

y���Q; H� � log det�I + H QH 

to denote it. Since HyH is Hermitian it can b e diagonalized, HyH � U 

y�U , with 

unitary U and non-negative diagonal � � diag��1 

; : : : ; � t�. Applying the determinant 

identity again we see that 

det�Ir 

+ H QH 

y� � det�It 

+ � 

1�2UQU 

y�1�2 �: 

~Observe that Q � UQU 

y is non-negative de�nite when and only when Q is, and that 

~tr� 

~Q� � tr�Q�; thus the maximization over Q can b e carried equally well over Q. 
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Note also that for any non-negative de�nite matrix A, det�A� � 

Q
i 

Aii, th us Y 

1�2 Q�1�2 � � 

~det�Ir 

+ � ~ �1 + Qii�i� 

i 

~ ~with equality when Q is diagonal. Thus we see that the maximizing Q is diagonal, 

and the optimal diagonal entries can be found via �water-�lling" to be ,
� , �,1 

�+~Qii 

� i 

; i � 1 ; : : : ; t P ~where � is chosen to satisfy i 

Qii 

� P . The corresponding maximum mutual infor-

mation is given by X, �+ 

log���i� 

i 

as before. 

3.3 Error Exponents 

Knowing the capacity of a channel is not always su�cient. One may b e interested 

in knowing how hard it is to get close to this capacity. Error exponents provide a 

partial answer to this question by giving an upper bound to the probability o f error 

achievable by block codes of a given length n and rate R. The upper bound is known 

as the random coding bound and is given by 

P�error� � exp�,nEr 

�R��; 

where the random coding exponent Er�R� is given by 

Er�R� � max E0��� , �R; 

0���1 

where, in turn, E0��� is given by the supremum over all input distributions qx 

satis-

fying the energy constraint of 

E

Z �Z 

�1+� 

0 

��; qx� � , log qx�x�p�yjx�1��1+�� dx dy: 

, � 

In our case p�yjx� � det��I r�
,1 exp ,�y ,x�y�y ,x� . If we c hoose qx 

as the Gaussian 

distribution �Q 

we get �after some algebra� , � 

yE0 

��; Q� � � log det�Ir 

+ �1 + ��,1 H QH � � �� �1 + ��,1 �Q; H : 
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The maximization of E0 

over Q is thus same same problem as maximizing the mutual 

information, and we get E0 

��� � �C�P� �1 + ��; H �. 

To choose qx 

as Gaussian is not optimal, and a distribution concentrated on a 

�thin spherical shell" will give better results as in �1, x7.3�|nonetheless, the above 

expression is a convenient lower bound to E0 

and thus yields an upper bound to the 

probability of error. 

4 The Gaussian Channel with Rayleigh Fading 

Suppose now that the matrix H is not �xed, but is a random matrix H independent 

of both x and n. The realization of H of H is assumed to be known at the receiver, 

but not at the transmitter. The channel is thus with input x and output �y; H� � 

�Hx + n; H�. We will assume that the entries of H are independent and each 

entry is zero-mean, Gaussian, with independent real and imaginary parts, each with 

variance 1�2. Equivalently, each entry of H has uniformly distributed phase and 

Rayleigh distributed magnitude, with expected magnitude square equal to unity. This 

is intended to model a Rayleigh fading channel with enough physical separation within 

the transmitting and the receiving antennas to achieve independence in the entries of 

H. We will �rst show that such an H is invariant under unitary transformations. 

Lemma 5. Suppose H 2 C 

r�t is a complex Gaussian matrix with independent iden-

tically distributed entries, each e n try with independent real and imaginary parts with 

zero-mean and equal variance. Then for any unitary U 2 C 

r�r , and V 2 C 

t�t , the 

distribution of U HV 

y is the same as the distribution H. 

Proof. It su�ces to show that G � U H has the same distribution as H. The lemma 

then follows from an application of this to Gy . Since columns of H are independent, 

the columns of G are independent also. It remains to check that each column of 

G has the same distribution as that of H. Since the columns of H are circularly 

symmetric complex Gaussian vectors, so are those of G. If gj 

and hj 

are the jth 

column of G and H respectively, then 

E�gj 

gj 

y� � U E �hj 

h
y�U 

y � E �hj 

h
y�j j 

where the last equality holds because E �hj 

h
y� i s a m ultiple of the identity matrix. j 

In this section we will assume that the channel is memoryless: for each use of 

the channel an independent realization of H is drawn. In this case we are on famil-

iar ground and the capacity can b e computed as the maximum mutual information. 

However, the results that follow are valid verbatim for channels for which H is gen-

erated by an ergodic process: as long as the receiver observes the H process only the 

�rst order statistics are needed to determine channel capacity. 
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4.1 Capacity 

Since the receiver knows the realization of H, the channel output is the pair �y; H� � 

�Hx + n; H�. The mutual information between input and output is then , � I x; � y; H� � I�x; H� + I�x; yjH� 

� I�x; yjH� 

� EH 

�I�x; yjH � H��: 

We know from the previous section that if x is constrained to have covariance Q, 

the choice of x that maximizes I�x; yjH � H� is the circularly symmetric complex 

Gaussian of covariance Q, and ��Q; H� � log det�Ir 

+ H QH 

y� is the corresponding 

maximal mutual information. We thus need to maximize � � 

��Q� � E ���Q; H�� � E log det�Ir 

+ HQHy� 

over the choice of non-negative de�nite Q subject to tr�Q� � P . 

Since Q is non-negative de�nite, we can write it as Q � UDU 

y where U is unitary 

and D is non-negative and diagonal. With this substitution � , �� 

��Q� � E log det Ir 

+ � HU �D�HU �y 

By Lemma 5 the distribution of HU is the same as that of H, and thus ��Q� � 

��D�. We can thus restrict our attention to non-negative diagonal Q. Given any 

such Q and any permutation matrix �, consider Q� � �Q�y. Since H� has the 

same distribution as H, ��Q� � � ��Q�. Note that for any H, the mapping Q 7! 

Ir 

+ H QH 

y is linear and preserves positive de�niteness. Since log det is concave on 

the set of positive de�nite matrices, Q 7! ��Q; H� � log det�Ir 

+ H QH 

y� is concave. 

It then follows that Q 7! ��Q� is concave. Thus 

X1 ~Q � Q� 

t! 

� 

~Q� � ��Q� and tr� 

~satis�es �� 

~ Q� � tr�Q�. Note that Q is a multiple of the identity 

matrix and we conclude that the optimal Q must b e of the form �I  . It is clear that 

the maximum is achieved when � is the largest possible, namely P �t . To summarize, 

we have shown the following: 

Theorem 1. The capacity of the channel is achieved when x is a circularly symmet-

ric complex Gaussian with zero-mean and covariance �P �t �It. The capacity is given � , �� 

yby E log det Ir 

+ � P �t �HH . 

Note that for �xed r, by the law of large numbers 

1 HH 

y ! Ir 

almost surely as 

t 
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t gets large. Thus, the capacity in the limit of large t equals 

r log�1 + P �: �6� 

4.2 Evaluation of the Capacity � , �� 

yAlthough the expectation E log det Ir 

+ � P �t �HH is easy to evaluate for either 

r � 1 or t � 1 , its evaluation gets rather involved for r and t larger than 1. We will 

now show how to do this evaluation. Note that , � , � 

ydet Ir 

+ � P �t �HH � det It 

+ � P �t �HyH 

and de�ne � 

HH 

y r � t 

W � 

HyH r � t; 

n � maxfr; t g and m � minfr; t g. Then W is an m�m random non-negative de�nite 

matrix and thus has real, non-negative eigenvalues. We can write the capacity in 

terms of the eigenvalues �1; : : : ; �m 

of W : � m 

� X , � E log 1 + � P �t ��i 

�7� 

i�1 

The distribution law of W is called the Wishart distribution with parameters m, n 

and the joint density of the ordered eigenvalues is known to b e �see e.g. �2� or �3, 

p. 37�� Y YP 

p�;ordered��1 

; : : : ; � m� � K,1 e, i 

�i �n,m ��i 

, �j 

�2; �1 

� � � � � �m 

� 0m;n i 

i i�j 

where Km;n 

is a normalizing factor. The unordered eigenvalues then have the density Y YP 

p���1; : : : ; � m� � � m!Km;n�
,1 e, i 

�i �n,m ��i 

, �j 

�2:i 

i i�j 

The expectation we wish to compute � m 

� m X , � X � , �� E log 1 + � P �t ��i 

� E log 1 + � P �t ��i 

i�1 i�1 � , �� 

� m E log 1 + � P �t ��1 
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depends only on the distribution of one of the unordered eigenvalues. To compute 

the density of �1 

we only need to integrate out the �2; : : : ; � m: Z
Z


p�1 

��1� � � � � p���1; : : : ; � m� d�2 

� � � d�m:


To that end, note that 

Q
i�j 

��i 

, �j 

� is the determinant o f a V andermonde matrix
32 

1 : : : 1 

�1 

: : : �m 

. . . . . . 

�m,1 

1 

: : : �m,1 

m 

D��1; : : : ; � m� � 

6664


7775


and we can write p� 

as Y
�2,


m!Km;n�
,1 det �n,m e,�i :ip���1; : : : ; � m� � � D��1 

: : : ; � m� 

i 

With row operations we can transform D��1; : : : ; � m� in to 32 

' 1 

��1� : : : ' 1��m� 

~D��1; : : : ; � m� �
64


. .
. .
. . 

' m��1� : : : ' m��m� 

75


where ' 1; : : : ; ' m 

is the result of applying the Gram�Schmidt orthogonalization pro-

cedure to the sequence 

�m,11; �; �2; : : : ; 

in the space of real valued functions with inner product Z
 1 

hf ; g i � f ���g����n,m e,� d�: 

0 R
 1 

' i���' j 

����n,me,� d� � �ij 

.Thus The determinant of D then equals �modulo 

0 

~multiplicative constants picked up from the row operations� the determinant of D, 

which in turn, by the de�nition of the determinant, equals YXYX�,


~ �,1�per��� ~ �,1�p er� ��D��1; : : : ; � m� � D�i;i 

�det ' �i 

��i� 

� i � i 

12 



i 

where the summation is over all permutations of f1; : : : ; m g, and per��� is 0 or 1 

depending on the permutation � being even or odd. Thus X Y 

�,1�per���+per��� ��i��
n,m e,�i :p���1; : : : ; � m� � Cm;n 

' �i 

��i�' �i


�;� 

i


Integrating over �2; : : : ; � m 

we get X Y 

�,1�per���+per��� ' ��1 

��n,m e,�1p�1 

��1� � Cm;n �1 

��1�' �1 1 

��i 

�i 

�;� 
i�2 

m X 

� Cm;n�m , 1�! ' i��1�
2 �n,m e,�1 

1 

i�1 

m X1 

e,�1� ' i��1�
2�n,m 

1 m 

i�1 

where the second equality follows from the fact that if �i 

� �i 

for i � 2 then �1 

� �1 

also �since both � and � are permutations of f1; : : : ; m g� and thus � � �, and the last 

equality follows from the fact that ' i��1�
2�n,m e,�1 integrates to unity and thus Cm;n1 

must equal 1�m!. Observe now that the Gram�Schmidt orthonormalization yields 

h i1�2 

k! Ln,m���; k � 0 ; : : : ; m , 1' k+1��� � 

�k+n,m�! 

k 

where Ln,m�x� � 

1 exxm,n dk 

�e,xxn,m+k� is the associated Laguerre polynomial of k k! dxk 

order k. �See �4, x8.90,8.97�.� 

To summarize: 

Theorem 2. The capacity of the channel with t transmitters and r receivers under 

p o wer constraint P equals 

Z 1 

m,1 X 

k! 

� �2
Ln,m �n,mlog�1 + P ��t� 

�k+n,m�! 

k 

��� e,� d� �8� 

0 k�0 

where m � minfr; t g and n � maxfr; t g, and Lij 

are the associated Laguerre polyno-

mials. 

Figure 1 shows the value of the integral in �8� for 1 � r; t � 20 and P � 20dB. 

Example 3. Consider t � 1 . In this case m � 1 and n � r. Noting that Ln,m��� � 1,0 

an application of �8� yields the capacity as Z 

1 

1 

log�1 + P� ��r,1 e,� du: �9� 

,�r� 0 

13 
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Figure 1: Capacity �in nats� vs. r and t for P � 20dB

The values of this integral are tabulated in Table 1 for 1 � r � 10 and P from 0dB

to 35dB in 5dB increments. See also Figure 2. Note that as r gets large, so does the

capacity. For large r, the capacity is asymptotic to log�1+Pr�, in the sense that the

di�erence goes to zero.

Example 4. Consider r � 1. As in the previous example, applying �8� yields the

capacity as

1

,�t�

Z 1

0

log
,
1 + P��t

�
�t,1e,� du: �10�

As noted in �6�, the capacity approaches log�1+P � as t gets large. The values of the

capacity are shown in Table 2 for various values of t and P . See also Figure 3.

Example 5. Consider r � t. In this case n � m � r, and an application of �8� yields

the capacity as

Z 1

0

log�1 + P��r�
r,1X
k�0

Lk���
2e,� d�; �11�

where Lk � L0
k is the Laguerre polynomial of order k.

Figure 4 shows this capacity for various values of r and P . It is clear from the

�gure that the capacity is very well approximated by a linear function of r. Indeed,

14



@P 

r @ 

0dB 5dB 10dB 15dB 20dB 25dB 30dB 35dB 

1 0.5963 1.1894 2.0146 3.0015 4.0785 5.1988 6.3379 7.4845 

2 1.0000 1.8133 2.8132 3.9066 5.0377 6.1824 7.3315 8.4822 

3 1.2982 2.2146 3.2732 4.3922 5.5329 6.6808 7.8310 8.9820 

4 1.5321 2.5057 3.5913 4.7204 5.8646 7.0136 8.1642 9.3153 

5 1.7236 2.7327 3.8333 4.9679 6.1138 7.2634 8.4141 9.5652 

6 1.8853 2.9183 4.0285 5.1663 6.3133 7.4632 8.6141 9.7652 

7 2.0250 3.0752 4.1919 5.3319 6.4796 7.6298 8.7807 9.9319 

8 2.1479 3.2110 4.3324 5.4740 6.6222 7.7726 8.9235 10.075 

9 2.2576 3.3306 4.4556 5.5985 6.7471 7.8975 9.0485 10.200 

10 2.3565 3.4375 4.5654 5.7091 6.8580 8.0086 9.1596 10.311 

The capacity in nats of a multiple receiver, single transmitter fading channel. 

The path gain from the transmitter to any receiver has uniform phase and 

Rayleigh amplitude of unit mean square. The gains to di�erent receivers are 

independent. The number of receivers is r, and P is the signal to noise ratio. 

Table 1: Values of the integral in �9� 

C 

3020100 

r 

40 

6 

8 

10 

12 

4 

50 

0 

2 

The value of the capacity �in nats� as found from �9� vs. r for 0dB � P � 35dB 

in 5dB increments. 

Figure 2: Capacity vs. r for t � 1 and various values of P . 
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@ 

@t 

P 0dB 5dB 10dB 15dB 20dB 25dB 30dB 35dB 

1 0.5963 1.1894 2.0146 3.0015 4.0785 5.1988 6.3379 7.4845 

2 0.6387 1.2947 2.1947 3.2411 4.3540 5.4923 6.6394 7.7893 

3 0.6552 1.3354 2.2608 3.3236 4.4441 5.5854 6.7334 7.8837 

4 0.6640 1.3570 2.2947 3.3646 4.4882 5.6305 6.7789 7.9293 

5 0.6695 1.3702 2.3152 3.3891 4.5142 5.6571 6.8057 7.9561 

6 0.6733 1.3793 2.3289 3.4053 4.5314 5.6746 6.8233 7.9738 

7 0.6760 1.3858 2.3388 3.4169 4.5436 5.6870 6.8358 7.9863 

8 0.6781 1.3907 2.3462 3.4255 4.5527 5.6963 6.8451 7.9956 

9 0.6797 1.3946 2.3519 3.4322 4.5598 5.7034 6.8523 8.0028 

10 0.6810 1.3977 2.3565 3.4375 4.5654 5.7091 6.8580 8.0086 

t and P 

C 

The capacity in nats of a multiple transmitter, single receiver fading channel. 

The path gain from any transmitter to the receiver has uniform phase and 

Rayleigh amplitude with unit mean square. The fades for each path gain is 

independent. The number of transmitters is is the signal to noise ratio. 

Table 2: Values of the integral in �10�. 

6420 

t 

8 

8 

6 

4 

2 

10 12 

0 

The value of the capacity �in nats� as found from �10� vs. t for 0dB � P � 35dB 

in 5dB increments. 

Figure 3: Capacity vs. t for r � 1 and various values of P . 
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The value of the capacity �in nats� as found from �11� vs. r for 0dB � P � 35dB 

in 5dB increments. 

Figure 4: Capacity vs. r for r � t and various values of P . 

�rst rewrite �7� as Z 1 
� Pm 

� 

1 

C � E log 1 + � m dF 

m 

W ��� 

t0 

where FA�x� is the empirical distribution of the eigenvalues of an m � m Hermitian 

matrix A: 

F 

A�x� � 

the numb e r of eigenvalues of A less than x 

: 

m 

A v ery general result from the theory of random matrices �see, e.g., �5�� says that for 

W de�ned as above, as n � maxfr; t g and m � minfr; t g are increased with n�m 

approaching a limit � � 1, 8 � 

2
1 

� 

q, �, �1 

dF 

m 

W ��� 

�+ , 1 1 , 

�
, for � 2 ��,; � +��! 

� �12� 

d� 

:0 otherwise, 

with �� 

� � 

p
� � 1�2 . Thus, in the limit of large r and t, r �� �, 

�C 1 

Z �+ 

� Pm 

� ��+! log 1 + � , 1 1 , d�: �13� 

m 2� �
, 

t � � 

17 



For the case under consideration, m � n � r � t, for which �, 

� 0, �+ 

� 4, and r
Z 4 1 1 1 

C � r log�1 + P� � 

� 

, d� 

� 40 

which is linear in r as observed before from the �gure. 

Remark 2. The result from the theory of random matrices used in Example 5 applies 

to random matrices that are not necessarily Gaussian. For equation �13� to hold it is 

su�cient for H to have i.i.d. entries of unit variance. 

Remark 3. The reciprocity property that we observed for deterministic H does not 

hold for random H: Compare Examples 3 and 4 where the corresponding H's are 

transposes of each other. In Example 3, capacity increases without bound as r gets 

large, whereas in Example 4 the capacity is bounded from above. 

Nonetheless, interchanging r and t does not change the matrix W , and the ca-

pacity depends only on P �t and the eigenvalues of W . Thus, if C�r; t; P � denotes the 

capacity o f a c hannel with r receivers, t transmitters and total transmitter power P , 

then 

C�a; b; P b� � C�b; a; P a�: 

Remark 4. In the computation preceding Theorem 2 we obtained the density of one of 

the unordered eigenvalues of the complex Wishart matrix W . Using the identity �19� 

in the appendix we can �nd the joint density o f a n y n umb e r k of unordered eigenvalues 

of W : 

k
�m , k�! Y�,

�n,m e,�i 

k�
yDk��1; : : : ; � k� i��1; : : : ; � k� � det Dk��1; : : : ; �p�1 

;:::;�k m! 

i�1 

where 32 

64 

' 1 

��1� : : : ' 1 

��k� 

. . . .
. . 

' m��1 

� : : : ' m��k� 

75


Dk��1; : : : ; � k� � : 

4.3 Error Exponents 

As we did in the case of deterministic H we can compute the error exponent in the 

case of fading channel. To that end, note �rst that �Z 

�1+� 

qx�x�p�y;H x�1��1+�� dx 

ZZ 

E0 

��; qx� � , log j dy dH: 

18 



Since H is independent of x, p�y;H jx� � pH 

�H�p�yjx; H� and thus ��Z �Z 

�1+� 

x; H�1��1+�� dxE0 

��; qx� � , log E qx�x�p�yj dy : 

Note that , � 

p�yjx; H� � det��I r�
,1 exp ,�y , Hx �y�y , Hx � : 

and for qx 

� �Q, the Gaussian distribution with covariance Q, w e can use the results 

for the deterministic H case to conclude � � 

E0 

��; �Q� � , log E det�Ir 

+ �1 + ��,1 HQHy�,� : 

Noting that A ! det�A�,� is a convex function, the argument w e used previously to 

show that Q � � P �t �It 

maximizes the mutual information applies to maximizing E0 

as well, and we obtain � � � ,�� 

P 

E0 

��� � , log E det Ir 

+ HH 

y : �14� 

t�1 + �� 

To e�ciently compute E0 

, one would represent the Wishart eigenvalue density a s 

a Vandermonde determinant, �just as in the previous section�, and orthonormalize 

the monomials 1; � ; � 

2; : : : ; � 

m,1, with respect to the inner product Z 1 
� � ,� 

hf ; g i � f ���g����n,m 1 + 

P � e,� d�: 

t�1+�� 

0 

The multiplicative factor picked up in the orthonormalization is the value of the 

expectation in �14�. 

As before, the restriction of qx 

to Gaussian distributions is suboptimal, but this 

choice leads to simpler expressions. 

5 Non-ergodic channels 

We had remarked at the beginning of the previous section that the maximum mutual 

information has the meaning of capacity when the channel is memoryless, i.e., when 

each use of the channel employs an independent realization of H. This is not the 

only case when the maximum mutual information is the capacity of the channel. In 

particular, if the process that generates H is ergodic, then too, we can achieve rates 

arbitrarily close to the maximum mutual information. 

In contrast, for the case in which H is chosen randomly at the beginning of all time 

and is held �xed for all the uses of the channel, the maximum mutual information is in 

19




general not equal to the channel capacity. In this section we will focus on such a case 

when the entries of H are i.i.d., zero-mean circularly symmetric complex Gaussians 

with E �jhij 

j2� � 1, the same distribution we have analyzed in the previous section. 

5.1 Capacity 

In the case described above, the Shannon capacity of the channel is zero: however 

small the rate we attempt to communicate at, there is a non-zero probability that 

the realized H is incapable of supporting it no matter how long we take our code 

length. On the other hand one can talk about a tradeo� b e t ween outage probability 

and supportable rate. Namely, given a rate R, and power P , one can �nd Pout 

�R;P  � 

such that for any rate less than R and any � there exists a code satisfying the power 

constraint P for which the error probability is less than � for all but a set of H whose 

total probability is less than Pout 

�R;P  �: , � 

Pout 

�R;P  � � inf P ��Q; H� � R �15� 

Q:Q�0 

tr�Q��P 

where 

��Q; H� � log det�Ir 

+ HQHy�: 

This approach is taken in �6� in a similar problem. 

In this section, as in the previous section we will take the distribution of H 

to b e such that the entries of H are independent zero-mean Gaussians, each with 

independent real and imaginary parts with variance 1�2. 

Example 6. Consider t � 1 . In this case, it is clear that the Q � P is optimal. The 

outage probability is then , � , � P log det�Ir 

+ HP Hy� � R � P log�1 + P HyH� � R 

Since HyH is a �2 random variable with 2r degrees of freedom and mean r, we can 

compute the outage probability a s , � 

� r; �eR , 1��P 

Pout 

�R;P  � � ; �16� 

,�r� R x
where ��a; x� is the incomplete gamma function 

0 

ua,1e,u du. Let ��P ; � � be the 

value of R that satis�es 

P���P; H� � R� � �: �17� 

Figure 5 shows ��P ; � � a s a function of r for various values of � and P . 
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��P ; � � vs. r at t � 1 for various values of P and �. Recall that ��P ; � � is the 

highest rate for which the outage probability is less than �. Each set of curves 

correspond to the P indicated below it. Within each set the curves correspond, 

,4in descending order, to � � 10 

,1 , 10 

,2 , 10 

,3 , 10 . 

Figure 5: The �-capacity for t � 1 a s de�ned by �17�. 
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Note that by Lemma 5 the distribution of HU is the same as that of H for unitary 

U . Thus, we can conclude that 

��UQU 

y; H� 

has the same distribution as ��Q; H�. By choosing U to diagonalize Q we can restrict 

our attention to diagonal Q. 

The symmetry in the problem suggests the following conjecture. 

Conjecture. The optimal Q is of the form 

P 

diag�1; : : : ; 1; 0; : : : ; 0� 

k 

| �z � | �z � 

k ones t , k zeros 

for some k � 1 ; : : : ; t . The value of k depends on the rate: higher the rate �i.e., higher 

the outage probability�, smaller the k. 

As one shares the power equally between more transmitters, the expectation of � 

increases, but the tails of its distribution decay faster. To minimize the probability 

of outage, one has to maximize the probability mass of � that lies to the right o f t h e 

rate of interest. If one is interested in achieving rates higher than the expectation of 

�, then it makes sense to use a small number of transmitters to take advantage of the 

1 

2 

slow decay of the tails of the distribution of �. Of course, the corresponding outage 

probability will still be large �larger than , say�. 

Example 7. Consider r � 1. With the conjecture above, it su�ces to compute , , � � P � �P �t �It; H � R for all values of t; if the actual number of transmitters is, say, 

� , then the outage probability will be the minimum of the probabilities for t � 1 ; : : : ; � . 

yAs in Example 6 we see that HH is a �2 statistic with 2t degrees of freedom and 

mean t, thus , , � � ��t; t�eR , 1��P � P � �P �t �It; H � R � : 

,�t� 

Figure 6 shows this distribution for various values of t and P . It is clear from the 

�gure that large t performs better at low R and small t performs better at high R, in 

keeping with the conjecture. As in Example 3, let ��P ; � � be the value of R satisfying , , � � P � �P �t �It; H � R � �: �18� 

Figure 7 shows ��P ; � � vs. t for various values of P and �. For the small � values 

considered in the �gure, using all available transmitters is always better than using 

a subset. 
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Figure 6: Distribution of � �P �t �It; H for r � 1. 
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Figure 7: The �-capacity for r � 1 , as de�ned by �18�. 
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6 Multiaccess Channels 

Consider now a numb e r of transmitters, say M , each with t transmitting antennas, 

and each subject to a power constraint P . There is a single receiver with r antennas. 

The received signal y is given by 3
2


y
 � � H1 

: : : HM 

�
64


x1 

. .
. 

xM 

75


+ n


where xm 

is the signal transmitted by the mth transmitter, n is Gaussian noise as 

in �1�, and Hm, m � 1 ; : : : ;M are r�t complex matrices. We assume that the receiver 

knows all the Hm's, and that these have independent circularly symmetric complex 

Gaussian entries of zero mean and unit variance. The multiuser capacity for this 

communication scenario can be evaluated easily by exploting the nature of the solution 

to the single user scenario discussed above. Namely, since the capacity achieving 

distribution for the single user scenario yields an i.i.d. solution for each a n tenna, that 

the users in the multiuser scenario cannot cooperate becomes immaterial. A rate 

vector �R1; : : : ; R M 

� will be achievable if 

m X


R�i� 

� C�r; mt; mP �; for all m � 1 ; : : : ;M 

i�1 

where �R�1�; : : : ; R �M �� is the ordering of the rate vector from the largest to the small-

est, and C�a; b; P � is the single user a receiver b transmitter capacity under p o wer 

constraint P . 

7 Conclusion 

The use of multiple antennas will greatly increase the achievable rates on fading 

channels if the channel parameters can b e estimated at the receiver and if the path 

gains b e t ween di�erent antenna pairs behave independently. The second of these 

requirements can be met with relative ease and is somewhat technical in nature. The 

�rst requirement is a rather tall order, and can be justi�ed in certain communication 

scenarios and not in others. Since the original writing of this monograph in late 1994 

and early 1995, there has been some work in which the assumption of the availability 

of channel state information is replaced with the assumption of a slowly varying 

channel, see e.g., �7�. 
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Appendix 

Theorem. Given m functions ' 1; : : : ; ' m, orthonormal with respect to F , i.e., Z 

' i���' j 

��� dF ��� � �ij 

; 

let 2 3 

' 1 

��1� : : : ' 1��k� 

Dk��1; : : : ; � k� � 

6 4 

. . . 

. . . 

7 5 

' m��1� : : : ' m��k� 

and Ak��1 

; : : : ; � k� � Dk��1; : : : ; � k�
yDk��1; : : : ; � k�. Then Z , � , � 

det Ak��1; : : : ; � k� dF ��k� � � m , k + 1� det �Ak,1��1 

; : : : ; � k,1� : �19� 

Proof. Let ���� � � ' 1���; : : : ; ' m����
y. Then the �i; j�th element o f Ak��1; : : : ; � k� is R R 

���i�
y���j 

�. Note that ����y���� dF ��� � m and ��������y dF ��� � Im. By 

the de�nition of the determinant X 

�,1�per��� 

Qkdet�Ak��1; : : : ; � k�� � i�1���i�
y����i 

� 

� 

where the sum is over all permutations � of f1; : : : ; k g. Let us separate the summation 

over � into k summations, those for which �j 

� k, j � 1; : : : ; k , and consider each 

sum in turn. For the jth sum, j � 1; : : : ; k , 1, �j 

� k for j 6� k. For such an � 

we can de�ne � as �i 

� �i 

for i 6� j; k, and �j 

� �k. Note that � ranges over all 

permutations of f1; : : : ; k , 1g and that per��� di�ers from per��� b y 1. X 

�,1�p er� �� 

Qk ���i�
y����i 

�i�1


�:�j 

�k
 �X � 

�,1�per��� 

Q
i� ���i�

y����i 

� ���j 

�y����j 

����k�
y����k 

�6�j;k


�:�j 

�k
 �X � 

� , �,1�per��� 

Q
i ���i�

y����i 

� ���j 

�y���k����k�
y����j 

�:6�j


�
 R 

Integrating over �k, and recalling ��������y dF ��� � Im, Z X 

�,1�per��� 

Qk 

X 

�,1�per��� 

Qk,1���i�
y����i 

� dF ��k� � , ���i�
y����i 

�i�1 i�1


�:�j 

�k �


� , det�Ak,1��1; : : : ; � k,1�� 
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So, the contribution of the �rst k ,1 sums to the integral in �19� is ,�k ,1� det�Ak,1�. 

For the last sum �k 

� k. De�ne � as �i 

� �i 

for i 6� k. As before � ranges over the 

permutations of f1; : : : ; k , 1g, but now per��� � per���. X X � � 

�,1�p er� �� 

Qk �,1�per��� 

Qk,1���i�
y����i 

� � ���i�
y����i 

� ���k�
y���k�:i�1 i�1


�:�k 

�k �
R 

Integrating over �k, and recalling ����y���� dF ��� � m, Z X 

�,1�per��� 

Qk 

X 

�,1�per��� 

Qk,1���i�
y����i 

� dF ��k� � m ���i�
y����i 

�i�1 i�1


�:�k 

�k �


� m det�Ak,1��1 

; : : : ; � k,1�� 

And so, the contribution of the last sum to the integral in �19� is m det�Ak,1�. The 

result now follows by adding the two contributions. 
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