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RANDOM MATRIX THEORY OVER FINITE FIELDS 

JASON FULMAN 

Abstract. The first part of this paper surveys generating functions methods 
in the study of random matrices over finite fields, explaining how they arose 
from theoretical need. Then we describe a probabilistic picture of conjugacy 
classes of the finite classical groups. Connections are made with symmetric 
function theory, Markov chains, Rogers-Ramanujan type identities, potential 
theory, and various measures on partitions. 
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1. Introduction 

A natural problem is to understand what a typical element of the finite general 
linear group GL(n, q) “looks like”. Many of the interesting properties of a random 
matrix depend only on its conjugacy class. The following list of questions one could 
ask are of this type: 

1. How many Jordan blocks are there in the rational canonical form of a random 
matrix? 

Received by the editors April 2000, and in revised form April 24, 2001.

2000 Mathematics Subject Classification. Primary 60B15, 20G40.


c�2001 American Mathematical Society 

51




52 JASON FULMAN 

2.	 What is the distribution of the order of a random matrix? 
3.	 What is the probability that the characteristic polynomial of a random matrix 

has no repeated factors? 
4.	 What is the probability that the characteristic polynomial of a random matrix 

is equal to its minimal polynomial? 
5. What is the probability that a random matrix is semisimple (i.e. diagonaliz­

able over the algebraic closure F̄  
q of the field of q elements)? 

As Section 2 will indicate, answers to these questions have applications to the study 
of random number generators, to the analysis of algorithms in computational group 
theory, and to other parts of group theory. Section 2 describes a unified approach to 
answering such probability questions using cycle index generating functions. As an 
example of its power, it is proved independently in [F1] and [W2] that the n � ∅
limit of the answer to question 4 is (1 − 1 

5 )/(1 + 1 
3 ). Although algebraic geometry q q

1 for large q, there is (at present) no accounts for the fact that this is roughly 1 − 3q

other method for deriving this result and generating functions give effective bounds 
on the convergence rate to the limit. Extensions of the cycle index method to the 
set of all matrices and to other finite classical groups are sketched. Limitations of 
cycle indices and other techniques in random matrix theory over finite fields are 
discussed. 

Section 3 gives a purely probabilistic picture of what the conjugacy class of a 
random element of GL(n, q) looks like. The main object of study is a probability 
measure MGL,u,q on the set of all partitions of all natural numbers. This measure 
is connected with the Hall-Littlewood symmetric functions. Exploiting this connec­
tion leads to several methods for growing random partitions distributed as MGL,u,q 

and gives insightful probabilistic proofs of group theoretic results. We hope to con­
vince the reader that the interplay between probability and symmetric functions 
is beautiful and useful. A method is given for sampling from MGL,u,q conditioned 
to live on partitions of a fixed size (which amounts to studying the Jordan form of 
unipotent elements) and for sampling from a q-analog of Plancherel measure (which 
is related to the longest increasing subsequence problem of random permutations). 

Section 3 goes on to describe a probabilistic approach to MGL,u,q using Markov 
chains. This connection is quite surprising, and we indicate how it leads to a simple 
and motivated proof of the Rogers-Ramanujan identities. The measure MGL,u,q 

has analogs for the finite unitary, symplectic, and orthogonal groups. As this is 
somewhat technical these results are omitted and pointers to the literature are 
given. However we remark now that while the analogs of the symmetric function 
theory viewpoint are unclear for the finite symplectic and orthogonal groups, the 
connections with Markov chains carry over. Thus there is a coherent probabilistic 
picture of the conjugacy classes of the finite classical groups. 

Section 4 surveys probabilistic aspects of conjugacy classes in T (n, q), the group 
of n×n upper triangular matrices over the field Fq with 1’s along the main diagonal. 
Actually a simpler object is studied, namely the Jordan form of randomly chosen 
elements of T (n, q). From work of Borodin and Kirillov, one can sample from 
the corresponding measures on partitions. We link their results with symmetric 
function theory and potential theory on Bratteli diagrams. 

The field surveyed in this article is young and evolving. The applications to 
computational group theory call for extensions of probability estimates discussed 
in Section 2 to maximal subgroups of finite classical groups. It would be marvellous 
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if the program surveyed here carries over; this happens for the finite affine groups 
[F9]. The first step is understanding conjugacy classes, and partial results can be 
found in the thesis [Mu].

We close with a final motivation for the study of conjugacy classes of random 
matrices over finite fields. The past few years have seen an explosion of interest in 
eigenvalues of random matrices from compact Lie groups. For the unitary group 
U (n, C) over the complex numbers, two matrices are in the same conjugacy class 
if and only if they have the same set of eigenvalues. Hence, at least in this case, 
which is related to the zeroes of the Riemann zeta function [KeaSn], the study of 
eigenvalues is the same as the study of conjugacy classes. 

As complements to this article, the reader may enjoy the surveys [Py1],[Py2], 
[Py3],[Sh2],[Sh3] on enumerative and probabilistic questions in group theory. The 
current article uses probabilistic language, but this is just enumeration in disguise. 
We do not describe the closely related field of computational group theory but refer 
the interested reader to the conference volume [FinkKa]. 

2. Cycle index techniques 

Before describing cycle index techniques for the finite classical groups, we men­
tion that the cycle index techniques here are modelled on similar techniques for the 
study of conjugacy class functions on the symmetric groups. For a permutation �, 
let ni(�) be the number of length i cycles of �. The cycle index of a subgroup G 
of Sn is defined as ⎜⎟1 ni (�)

x |G| 
��G i�1 

i 

and is called a cycle index because it stores information about the cycle structure 
of elements of G. Applications of the cycle index to graph theory and chemical 
compounds are exposited in [PoRe]. It is standard to refer to the generating function ⎜ un ⎜ ⎟ 

ni (�)1 +  xi n! 
n�1 ��Sn i�1 

as the cycle index or cycle index generating function of the symmetric groups. 
From the fact that there are Q 

n! elements in Sn with ni cycles of length i,ni !ini 
i 

m 

one deduces Polya’s result that this generating function is equal to m�1 e 
xmu 

.m 

This allows one to study conjugacy class functions of random permutations (e.g. 
number of fixed points, number of cycles, the order of a permutation, length of the 
longest cycle) by generating functions. We refer the reader to [Ko] for results in 
this direction using analysis and to [ShLl] for results about cycle structure proved 
by a probabilistic interpretation of the cycle index generating function. Historically 
important papers in random permutation theory are [ErT], [Gon], and [VeSc]. 

Subsection 2.1 reviews the conjugacy classes of GL(n, q) and then discusses cycle 
indices for GL(n, q) and  Mat(n, q), the set of all n ×n matrices with entries in the 
field of q elements. Subsection 2.2 describes applications of cycle index techniques. 
Subsection 2.3 discusses generalizations of cycle indices to the finite classical groups. 

It is useful to recall some standard notation. Let � be a partition of some non­
negative integer � into integer parts (row lengths) �1 ≤ �2 ≤  · · ·  ≤  0. We will also | |
write � ∈ n if � is a partition of n. Let  mi(�) be the number of parts of � of size i, 
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and let � be the partition dual to � in the sense that ��
i = mi(�) +  mi+1(�) +  · · · . 

Let n(�) be  the  quantity  u 
q
u 
i ).i�1(i − 1)�i and let ( u )i denote (1 −q q ) · · · (1 − 

2.1. The General Linear Groups. To begin we follow Kung [Kun] in defining a 
cycle index for GL(n, q). First it is necessary to understand the conjugacy classes 
of GL(n, q). As is explained in Chapter 6 of the textbook [Her], an element π →
GL(n, q) has its conjugacy class determined by its rational canonical form. This 
form corresponds to the following combinatorial data. To each monic non-constant 
irreducible polynomial � over Fq , associate a partition (perhaps the trivial partition) 
�� of some non-negative integer |�� . Let  deg(�) denote the degree of �. The  only  |
restrictions necessary for this data to represent a conjugacy class are that = 0|�z |

on which and � |��|
it acts uniquely decomposes as a direct sum of spaces V� 

deg(�) =  n. Note that given a matrix π, the vector space V 
where the characteristic 

polynomial of π on V� is a power of � and the characteristic polynomials on different 
summands are coprime. Each V� decomposes as a direct sum of cyclic subspaces, 
and the row lengths of �� are the dimensions of the subspaces in this decomposition 
divided by the degree of �. 

An explicit representative of this conjugacy class may be given as follows. Define 
the companion matrix C(�) of  a  polynomial  �(z) =  zdeg(�) + πdeg(�)−1z

deg(�)−1 + 
+ π1z + π0 to be: · · ·

����⎛ 

0 1 0 0· · ·  
0 0 1 0· · ·  
· · ·  · · ·  · · ·  · · ·  · · ·  
0 0 0 · · ·  1 

−π0 −π1 · · ·  · · ·  −πdeg(�)−1 

����⎝ 
. 

Let �1, · · ·  , �k be the polynomials such that |��i | > 0. Denote the parts of ��i 

Then a matrix corresponding to the above conjugacy class by ��i ,1 ≤ ��i ,2 ≤  · · · . 
data is � ��⎛ 

R1 0 0 0 
0 R2 0 0 
· · ·  · · ·  · · ·  · · ·  
0 0 0 Rk 

��⎝ 

where Ri is the matrix 

�⎛ 
C(� 

��i,1 ) 0 0i 

C(� 
��i,2 ) 00 i 

�⎝ . 

0 0 · · ·  

For example, the identity matrix has �z−1 equal to (1n) and  all other  �� equal to 
the empty set. An elementary transvection with a = 0  in  the  (1, 2) position, ones on ⊆
the diagonal and zeros elsewhere has �z−1 equal to (2, 1n−2) and  all other  �� equal 
to the empty set. For a given matrix only finitely many �� are non-empty. Many 
algebraic properties of a matrix can be stated in terms of the data parameterizing 
its conjugacy class. For instance the characteristic polynomial of π 

�� (π)
GL(n, q)→ 

F̄  
q ) precisely 

��,1 (π)is equal to �| , and the minimal polynomial of π is equal to | | |. 
Furthermore π is semisimple (diagonalizable over the algebraic closure 
when all ��(π) have largest part at most 1. 
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To define the cycle index for ZGL(n,q), let  x�,� be variables corresponding to 
pairs of polynomials and partitions. Define 

1 ⎟⎜ 
ZGL(n,q) = |GL(n, q)

x�,�� (π). | 
π�GL(n,q) �: �� (π) >0| |

Note that the coefficient of a monomial is the probability of belonging to the cor­
responding conjugacy class and is therefore equal to one over the order of the 
centralizer of a representative. It is well known (e.g. easily deduced from page 181 
of [Mac]) that one over the order of the centralizer of the conjugacy class of GL(n, q) 
corresponding to the data {��} is 

1 
P 

deg(�)· i (�
� 1 

. 
� q �,i )

2 � 
i�1( qdeg(�) )mi (�� ) 

The formulas given for conjugacy class size in [Kun] and [St1] are written in different 
form; for the reader’s benefit they have been expressed here in the form most useful 
to us. It follows that ⎩⎞ 

n=1 �=z n�1 �≤

⎜ ⎜⎜⎟ n·deg(�)u
1 +  1 +ZGL(n,q)u n = ⎤x�,� 

qdeg(�)· 
P 

i (�i
� )2 � . 

1 
qdeg(�)n i�1→

mi (�� ) 

This is called the cycle index generating function.

Let Mat(n, q) be  the  set  of  all  n × n matrices over the field Fq . Define


1 ⎟⎜ 
ZMat(n,q) = |GL(n, q)

x�,�� (π). | 
π�Mat(n,q) �: �� (π) >0| |

Analogous arguments [St1] show that ⎩⎞ ⎜ 

n=1 � n�1 �

⎜⎜⎟ n·deg(�)u
1 +  1 +ZMat(n,q)u n = ⎤x�,� 

qdeg(�)· 
P 

i (�i
� )2 � . 

1 
qdeg(�)n i�1→

mi (�� ) 

isThis will be used in Subsection 2.2. Note that the denominator in ZMat(n,q) 

|GL(n, q) , not  Mat(n, q) , since the formula follows from a formula for the size of | | |
the orbits of GL(n, q) acting  on  Mat(n, q) by conjugation. This makes no essential 
difference for applications. 

2.2. Applications. This subsection describes applications of cycle indices. The 
first example is treated in detail, and results for the other examples are sketched. 

Example 1 (Cyclic and Separable Matrices). Recall that a matrix π Mat(n, q) 
operating on a vector space V is called cyclic if there is a vector v0 

→ 
V such →

that v0, v0π, v0π
2 , · · ·  span V . As is explained in [NP2], this is equivalent to the 

condition that the characteristic and minimal polynomials of π are equal. 
The need to estimate the proportion of cyclic matrices arose from [NP1] in 

connection with analyzing the running time of an algorithm for deciding whether or 
not the group generated by a given set of matrices in GL(n, q) contains the special 
linear group SL(n, q). Cyclic matrices also arise in recent efforts to improve upon 
the MeatAxe algorithm for computing modular characters [NP4] and in Example 8 
below. John Thompson has asked if every matrix is the product of a cyclic matrix 
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and a permutation matrix, suggesting that the answer could have applications to 
finite projective planes. 

Letting cM (n, q) be the proportion of cyclic elements of Mat(n, q), the paper 
[NP2] proves that 

1 1 
q2(q + 1)  

< 1 − cM (n, q) < 
(q2 − 1)(q − 1) 

. 

The cycle index approach is also informative, yielding a formula for the n � ∅
limit of CM (n, q), denoted by cM (∅, q), together with convergence rates. For the 
argument two lemmas are useful, as is some notation. Let Nd(q) be  the  number  
of monic degree d irreducible polynomials over the field Fq . In all that follows � 
will denote a monic irreducible polynomial over Fq . Given a power series f(u), let 
[un]f(u) denote the coefficient of un in f(u). 

Lemma 1. 

⎟ udeg(�) 

(1 −
qdeg(�) 

) =  1  − u. 

1Proof. Expanding 
udeg(�) as a geometric series and using unique factorization in 

1− 
qdeg(�) 

1Fq [x], one sees that the coefficient of ud in the reciprocal of the left hand side is qd 

times the number of monic polynomials of degree d, hence 1. Comparing with the 
reciprocal of the right hand side completes the proof. 

Lemma 2. If the Taylor series of f around 0 converges at u = 1, then  

f(u)
limn��[u n]

1 − u 
= f(1). 

n=0 anun . Then observe that [un] f (u)Proof. Write the Taylor expansion f(u) =  � 
1−u 

n = i=0 ai. 

Theorem 1 calculates cM (∅, q). 

Theorem 1. ([F1],[W2]) 

⎟1 
� 1 

cM (∅, q) =  (1  −
q5 

) (1 −
qr 

). 
r=3 

Proof. Recall that π is cyclic precisely when its characteristic polynomial and mini­
mal polynomials are equal. From Subsection 2.1, these polynomials are equal when 
all �� have at most one part. In the cycle index for Mat(n, q) set  x�,� = 1  if  � has 
at most 1 part and x�,� = 0 otherwise. It follows that 

⎟ ⎜ uj·deg(�) 

cM (n, q) =  
|GL(n, q)|

[u n] (1 + 
q(j−1)deg(�) (qdeg(�) − 1)

).2 qn
� j=1 
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By Lemma 1 this equation can be rewritten as 
deg(�) �

u u

cM (n, q) =  
|GL(n, q)

� 
�(1 − 

qdeg(�) )(1 + � j·deg(�) 

| 
[u n] 

j=1 q(j−1)deg(�) (qdeg(�) −1) ) 
2 qn 1 − u � deg(�)u 

= 
|GL(n, q)| 

[u n] 
�(1 + 

qdeg(�) (qdeg(�) −1) ) 
2 qn 1 − u 

d u 

= 
|GL(n, q)| 

[u n] 
d�1(1 + qd (qd −1) )

Nd (q) 

.2 qn 1 − u 

n=1(1 + an) converges absolutely if the series n�1 |an|
d 

Recall that a product � 

converges. Thus using the crude bound Nd(q) √ q⎟ ud 

(1 + 
qd(qd − 1)

)Nd(q) 

d�1 

is analytic in a disc of radius greater than 1. Lemma 2 implies that 
d u 

d�1(1 + 
qd (qd −1) )

Nd (q) 

cM (∅, q) =  limn�� 
|GL(n, q)| 

[u n]
1 − u 2 qn⎟ 1 ⎟� 1 

= (1 − 
qr 

) (1 + . 
qd(qd − 1)

)Nd(q)

r=1 d�1 

11 , u = 2 and then u = 1 
5 ) gives  Applying Lemma 1 (with u = q q q⎟ 1 ⎟� 1 1 1 

cM (∅, q) =  (1 − 
qr 

) ((1 + 
qd(qd − 1)

)(1 − 
q2d 

)(1 − 
q3d 

))Nd (q) 

r=3 d�1 ⎟ 1 ⎟� 1 
= (1 − 

qr 
) (1 − 

q6d 
)Nd(q) 

r=3 d�1 ⎟1 
� 1

= (1  − 
q5 

) (1 − 
qr 

). 
r=3 

The next challenge is to bound the convergence rate of cM (n, q) to  c�(n, q). Wall 
[W2] found a strikingly simple way of doing this by relating the cycle index of cyclic 
matrices to the cycle index of the set of matrices whose characteristic polynomial is 
squarefree (these matrices are termed separable in [NP2]). To state the result, let 
sM (n, q) be the probability that an n × n matrix is separable. Next let CM (u, q) 
and SM (u, q) be the generating functions defined as ⎜ n n 2 

CM (u, q) =  1  +  
u q

cM (n, q) 
n�1 

|GL(n, q)| 

⎜ n n 2 

SM (u, q) =  1  +  
u q

sM (n, q). 
n�1 

|GL(n, q)| 

Lemma 3. ([W2]) 
(1 − u)CM (u, q) =  SM (u/q, q). 



� �

��

� � � �� 
� � � �� 

�

58 JASON FULMAN 

Proof. The proof of Theorem 1 shows that ⎟ du

− 1)
)Nd (q)(1 − u)CM (u, q) =  (1 + 

d�1 

. 
qd(qd 

A matrix is separable if and only if all �� have size 0 or 1. Hence ⎟ du

− 1
)Nd(q)SM (u, q) =  (1 + 

d�1 

The result follows. 

Corollary 1. ([W2])

. 
qd 

1
0 < cM (n, q) − cM (∅, q) <

qn+1(1 − 1/q) 
.|	 |

Proof. Taking coefficients of un+1 on both sides of Lemma 3 gives the relation 

cM (n + 1, q) − cM (n, q) =  
sM (n + 1, q) − cM (n, q) 

. 
qn+1 

Since 0 √ |sM (n + 1, q) − cM (n, q)| √ 1 for all n, it follows that ⎜ 
cM (n, q) − cM (∅, q)| √  cM (i + 1, q) − cM (i, q)| √|	 |

⎜ 

i=n 

1 
qi+1 

, 
i=n 

as desired. 

Remarks. 1. As mentioned in the introduction, an argument similar to that of 
Theorem 1 shows that the n � ∅ probability that an element of GL(n, q) is  

1cyclic is (1− 5 )/(1+ 1 
3 ). For large q this goes like 1−1/q3. The reason for this q q

is a result of Steinberg [Stei] stating that the set of non-regular elements in 
an algebraic group has co-dimension 3 (see also [GuLub]). In type A, regular  
(i.e. centralizer of minimum dimension) and cyclic elements coincide, but not 
always. For more discussion on this point, see [NP2], [FNP]. 

2. The generating functions	 SM (u, q) and  CM (u, q) have intriguing analytical 
properties. It is proved in [W2] that 

d 

d=1(1 − u (u d −1) 
qd (qd −1) )

Nd (q) 

SM (u, q) =  .
1 − u 

1Thus SM (u, q) has a pole at 1 and SM (u, q)−
to the circle of radius q. Analogous properties hold for CM (u, q) by  means  of  

can be analytically extended 1−u 

Lemma 3. 
3.	 The limits sM (∅, q) and  sGL(∅, q) are in [F1],[W2]. Bounding the rate of 

convergence of sM (n, q) to  sM (∅, q) leads to interesting number theory. Let�d 
p(d) be the number of partitions of d and let p2(d) =  i=0 p(d). It is proved 
in [W2] that 

sM (n, q)qn 2 
1	 4q + 27  2 
3
( 

2q − 3 
)(

3 
q)−n 

|GL(n, q)| − 1 √ 
⎜ 

d=n+1 

(p2(d) +  qp(d − 2))q−d √ . 
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4. Lehrer [Leh] expresses sM (n, q) and  sGL(n, q) as inner products of characters 
in the symmetric group and proves a stability result about their expansions in 
powers of q−1 . See also [W2]. The paper [LehSe] gives a topological approach 
to these stability results. 

5.	 The results of [F2] and [W2] surveyed above are extended to the finite clas­
sical groups in [FNP]. The paper [FlJ] gives (intractable) formulas for the 
chance of being separable in groups such as SL(n, q) (i.e. semisimple and 
simply connected). Forthcoming work of John Britnell shows that the SL 
and GL limiting cyclic and separable probabilities coincide and estimates the 
convergence rate of the SL probabilities to their limits. 

Example 2 (Eigenvalue-free matrices). The paper [NP3] studies eigenvalue-free 
matrices (i.e. matrices without fixed lines) over finite fields as a step in obtain­
ing estimates of cyclic probabilities in orthogonal groups [NP5]. It is interesting 
that the study of eigenvalue-free matrices was one of the motivations for the orig­
inal GL(n, q) cycle index papers [Kun],[St1], the latter of which proves that the 
n, q � ∅ limit of the chance that an element of GL(n, q) has no eigenvalues is 1 . e 

The n � ∅ probability that a random element of Sn has no fixed points is 
1 .	 This is not coincidence; in general the q � ∅ limit of the chance that also e 

the characteristic polynomial of a random element of Mat(n, q) factors into ni 

degree i irreducible factors is the same as the probability that an element of Sn 

factors into ni cycles of degree i. This is proved at the end of [St1] and is extended to 
finite Lie groups in [F1] using the combinatorics of maximal tori. There is another 
interesting line of argument which should be mentioned. It is easy to see from the 
cycle index that the factorization type of the characteristic polynomial of a random 
element of Mat(n, q) and the factorization type of a random degree n polynomial 
over Fq have the same distribution as q � ∅. Now the factorization type of a 
random degree n polynomial over Fq has the same distribution as the cycle type 
of a random permutation distributed as a q-shuffle on n cards [DiaMcPi], and as 
q � ∅ a q-shuffle converges to a random permutation. The connection of Lie 
theory with card shuffling may seem ad hoc, but is really the tip of a deep iceberg 
[F10]. 

Example 3 (Characteristic polynomials). The previous example is a special case 
of the problem of studying the degrees of the factors of the characteristic polynomial 
of a random matrix. Many results in this direction (all proved used cycle indices) 
can be found in Stong’s paper [St1]. Hansen and Schmutz [HSchm] use cycle index 
manipulations to prove that if one ignores factors of small degree, then the fac­
torization type of the characteristic polynomial of a random element of GL(n, q) 
is close to the factorization type of a random degree n polynomial over Fq . More  
precisely, let An,l be the set of sequences (πl+1, · · · , πn) where  πi is the number 
of degree i factors of a random polynomial chosen from some measure. Let Q(1) 

n 

be the measure on polynomials arising from characteristic polynomials of random 
elements of GL(n, q) and  let  Q(2) be the measure arising from choosing a degree nn 

polynomial over Fq uniformly at random. They prove 

Theorem 2. ([HSchm]) There exist constants c1, c2 such that for all l with c1log(n) 
√ l √ n and B � Nn−l , 

|Q(1)(An(B)) − Q(2)(An(B)) < c2/l. n n |
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The final section of their paper uses this principle to prove results about charac­
teristic polynomials of irreducible factors of random matrices using known results 
about random polynomials. A useful reference on the distribution of degrees of 
irreducible factors of random polynomials over finite fields is [ArBarT]. 

Example 4 (Generating transvections). Recall that the motivation behind Exam­
ple 1 was a group recognition problem, i.e. trying to determine whether or not the 
group generated by a given set X of matrices in GL(n, q) contains the special 
general linear group SL(n, q). However the problem still remains of making the 
recognition algorithm constructive. For instance if the group generated by X is 
GL(n, q), it would be desirable to write any element of GL(n, q) as  a  word  in  X . 

The paper [CeLg] proposes such a constructive recognition algorithm. An es­
sential step involves constructing a transvection, that is a non-identity element of 
SL(n, q) which has an n − 1 dimensional fixed space. This in turn is done in two 
steps. First, find an element π of GL(n, q) conjugate to diag(C((z − α )2), R) where  
C is the companion matrix as in Subsection 2.1 and R is semisimple without α as 
an eigenvalue. Second, one checks that raising π to the least common multiple of 
the orders of α and R gives a transvection. 

Thus it is necessary to bound the number of feasible π in the first step. Such π 
have conjugacy class data �z−κ = (2), and all other �� have  largest part at  most  
1. The cycle index approach gives bounds improving on those in [CeLg]; see [FNP] 
for the details. 

Example 5 (Semisimple matrices). A fundamental problem in computational 
group theory is to construct an element of order p. Given a group element g 
with order a multiple of p, this can be done by raising g to an appropriate power. 
It is proved in [IsKanSp] that if G is a permutation group of degree n with order 
divisible by p, then the probability that a random element of G has order divisible 

1 . 
Their proof reduces the assertion to simple groups and then uses the classification 

of simple groups. Let us consider the group GL(n, q), which is close enough to 
simple to be useful for the applications at hand. When p is the characteristic of 
the field of definition of GL(n, q), an element has order prime to p precisely when 
it is semisimple. Thus the problem is to study the probability that an element of 
GL(n, q) is semisimple. The paper [GuLub] shows that if G is a simple Chevalley 
group, then the probability of not being semisimple is at most 3/(q −1) + 2/(q −1)2 

and thus at most c/q for some constant c as conjectured by Kantor. 
As mentioned earlier, a matrix π is semisimple if and only if all ��(π) have  

largest part size at most 1. Stong [St1] used cycle indices to obtain crude asymptotic 
bounds for the probability that an element of GL(n, q) is semisimple. The thesis 
[F1] used the Rogers-Ramanujan identities to prove that the n � ∅ probability 
that an element of GL(n, q) is semisimple is 

by p is at least n 

� 1⎟ (1 − qr−1 ) 
1 .

(1 − qr )r=1 
r=0,±2(mod 5) 

The paper [FNP] gives effective bounds for finite n. 

Example 6 (Order of a matrix). A natural problem is to study the order of a 
random matrix. This has been done in [St2] and [Schm]; see also the remarks in 
Subsection 3.3 and the very preliminary calculations for other classical groups in 
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[F1]. Shalev [Sh1] uses facts about the distribution of the order of a random matrix 
together with Aschbacher’s study of maximal subgroups of classical groups [As] as 
key tools in studying the probability that a random element of GL(n, q) belongs to 
an irreducible subgroup of GL(n, q) that does  not  contain  SL(n, q). As explained 
in [Sh1] this has a number of applications; for instance it leads to a proof that if x 
is any non-trivial element of PSL(n, q), then the probability that x and a randomly 
chosen element y generate PSL(n, q) tends to 1 as q � ∅. Shalev [Sh1] asks for 
extensions of these results to other finite classical groups. 

It is also useful to count elements of given orders (e.g. 2 or 3) in classical 
groups and their maximal subgroups. The recent paper [CTY] uses cycle indices to 
perform such enumerations. One motivation for such enumerations is the study of 
finite simple quotients of PSL(2, Z); a group G is a quotient of PSL(2, Z) if  and  
only if G =< x, y  >  with x2 = y3 = 1. For further discussion, see [Sh2]. 

Example 7 (Random number generators). We follow [Mar],[MarTs] in indicating 
the relevance of random matrix theory to the study of random number generators. 
Suppose one wants to test a mechanism for generating a random integer between 
0 and  233 − 1. In base 2 these are length 33 binary vectors. Generating, say, 
n of these and listing them gives an n × 33 matrix. If the random generator 
were perfect, the arising matrix would be random. One could choose a statistic 
such as the rank of a matrix and compare the generation method with theory. 
Marsaglia and Tsay [MarTs] report that shift-register generators will fail such tests 
but that congruential generators usually pass. It would be interesting to see how 
various random number generators perform when tested using other conjugacy class 
functions of random matrices. 

Diaconis and Graham [DiaGr] analyze random walks of the form Xn = AXn−1 + 
λn where Xi is a length d 0 − 1 vector, A is an element of GL(n, 2), and λn is 
a random vector of disturbance terms. For more general A (in GL(n, q)) this 
includes the problem of running a pseudo-random number generator with recurrence 
Yn = a1Yn−1 + + adYn−d + λn with Yi → Fq and λn They show that · · · → {0,±1}. 
the rational canonical form of A is related in a subtle way to the convergence rate of 
the walk. It would be interesting to understand what happens when A is a random 
matrix. 

Example 8 (Product replacement algorithm). In recent years finite group theory 
has become much more computational. Given a generating set S of a finite group 
G, it is natural to seek random elements of G. One approach, implemented in 
the computer systems GAP and MAGMA, is the product replacement algorithm 
[CeLgMuNiOb]. Fixing G and some k, one performs a random walk on k-tuples 
(g1, · · ·  , gk ) of elements  of  G which generate the group. The walk proceeds by 
picking an ordered pair (i, j) with  1  √ i = j √ n uniformly at random and applying ⊆
one of the following four operations with equal probability: 

R±
i,j : (g1, · · ·  , gi, · · ·  , gk) �� (g1, · · ·  , gi · gj

±, · · ·  , gk ) 

L±
i,j : (g1, · · ·  , gi, · · ·  , gk) �� (g1, · · ·  , gj

± · gi, · · ·  , gk ). 
These moves map generating k-tuples to generating k-tuples. One starts from any 
generating k-tuple, applies the algorithm for r steps, and then outputs a random 
entry of the resulting k-tuple (i.e. a group element). 

The product replacement algorithm has superb practical performance (often 
converging more rapidly than random walk on the Cayley graph), in spite of the 
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theoretical defects that a random entry of a random generating k-tuple does not 
have the same distribution as a random element of G and that the convergence 
rate of the chain on k-tuples to its stationary distribution is unknown. The paper 
[CeLgMuNiOb], aware of these issues, tests the algorithm against theory, using con­
jugacy class statistics such as the order of an element, the number of factors of the 
characteristic polynomial of a random matrix, the degree of the largest irreducible 
factor of the characteristic polynomial of a random matrix, and the proportion of 
cyclic matrices in the finite classical groups. In short, understanding properties of 
random matrices is crucial to their analysis. 

A recent effort to understand the performance of the product replacement al­
gorithm uses Kazhdan’s property T from the representation theory of Lie groups 
[LubPa]; the paper [Pa] is a useful survey. Much remains to be done. 

Example 9 (Running times of algorithms). One of the main approaches to com­
puting determinants and permanents of integer matrices involves doing the com­
putations for reductions mod prime powers. Section 4.6.4 of [Kn] gives a detailed 
discussion with references to literature on upper bounds of running times. If one 
believes that typical matrices one encounters in the real world are like random ma­
trices, this motivates studying random matrices over finite fields. In fact von Neu-
mann’s interest in eigenvalues of random matrices with independent normal entries 
arose from the same heuristic applied to questions in numerical analysis (the intro­
duction of [Ed] gives further discussion of this point). 

Examples of algorithms in which properties of random matrices were really 
needed to bound running times include recognizing when a group generated by a 
set of matrices contains SL(n, q) [NP1] and the MeatAxe algorithm for computing 
modular characters [NP4]. 

Example 10 (Isometry classes of linear codes). Fripertinger [Frip1], [Frip2] con­
siders cycle indices (in the permutation sense) of matrix groups acting on lines. 
His interest was in understanding properties of random isometry classes of linear 
codes–a harder problem than understanding random linear codes. The cycle indices 
he obtains seem quite intractable for theorem proving, but are useful in conjunction 
with computers. He also gives references to the switching function literature. 

Curiously, understanding the permutation action of random matrices of lines 
comes up in another context. Wieand [Wi] has shown that the eigenvalues of ran­
dom permutation matrices possess a structure similar to the eigenvalues of matrices 
from compact Lie groups. Persi Diaconis has suggested that the eigenvalues of rep­
resentations of finite groups of Lie type (such as the permutation action on lines) 
may possess similar structure; see [F5] for more in this direction. 

2.3. Generalization to the Classical Groups. This subsection will focus on the 
finite unitary groups, with remarks about symplectic and orthogonal groups at the 
end. These cycle indices were derived in [F1],[F2] and were applied to the problem 
of estimating proportions of cyclic, separable, and semisimple matrices (these terms 
were defined in Subsection 2.2) in [FNP]. John Britnell (in preparation) has pushed 
cycle index techniques through for groups such as SL(n, q). 

The unitary group U(n, q) can be defined as the subgroup of GL(n, q2) preserv­
ing a non-degenerate skew-linear form. Recall that a skew-linear form on an n 

2 2dimensional vector space V over Fq is a bilinear map <, >: V × V � Fq such that 
x, � y, �< � y >=< � x >q (raising to the qth power is an involution in a field of order 
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n2). One such form is given by < �x, � q 
i . Any two non-degenerate y >=q i=1 xiy

skew-linear forms are equivalent, so that U (n, q) is unique up to isomorphism. 
Wall [W1] parametrized the conjugacy classes of the finite unitary groups and 

computed their sizes. To describe his result, an involution on polynomials with 
non-zero constant term is needed. Given a polynomial � with coefficients in Fq

and non-vanishing constant term, define a polynomial �̃ by: 

˜ zdeg(�)�q ( 1 )
� = z 

[�(0)]q 

where �q raises each coefficient of � to the qth power. Writing this out, a polyno­
mial �(z) =  zdeg(�) + πdeg(�)−1z

deg(�)−1 + + π1z + π0 with π0 = 0  is  sent  to  · · ·  ⊆
�̃(z) =  zdeg(�) +(  π1 )q zdeg(�)−1 + · · ·+(  

πdeg(�)−1 )q z +(  π
1 
0 
)q . An  element  π U (n, q)π0 π0 

→ 
2associates to each monic, non-constant, irreducible polynomial � over Fq a par­

tition �� of some non-negative integer |��| by means of rational canonical form. 
The restrictions necessary for the data �� to represent a conjugacy class are that 
�z | = 0,  �� = � ̃�, and  � |�� deg(�) =  n.||

Using formulas for conjugacy class sizes from [W1] together with some combina­
torial manipulations, one obtains the following unitary group cycle index generating 
function. The products in the theorem are as always over monic irreducible poly­
nomials. The pair {�, �̃} is unordered. 

Theorem 3. 

n=1 

⎜ 

|
nu ⎟⎜ 

1 +  
U (n, q)

x�,�� (π)| 
π�U (n,q) �: �� (π) >0| |⎞ ⎩ ⎜⎜⎟ n·deg(�)u

1 + ⎤= x�,� 
qdeg(�)· 

P 

i (�i
�)2 � 

1 
˜ �� n�1 qdeg(�)n i�1�=z,�=≤ →

mi (�) ⎩ �� 

u��−u,q ��−q⎞ ⎜⎜⎟ n·deg(�)u
1 +  x�,�x ̃�,�

⎤ 
i )

2 � 
i (�

�
.· P 

1 
� n{�, ̃�},�=� n�1 qdeg(�)· →≤ ˜ qdeg(�)i�1 

mi (�) ,q ��q2u��u2 

One interesting theoretical result concerning the cycle index of U (n, q) is  the  
following functional equation. Letting CGL(u, q) and  CU (u, q) be the cycle index 
generating functions for cyclic matrices in the general linear and unitary groups 
respectively, the functional equation states that 

2CGL(u, q)CU (−u, −q) =  CGL(u , q  2). 

The paper [FNP] proves that this relation holds whenever the condition on the 
partitions �� is independent of the polynomial �. In the current example, a matrix 
is cyclic if and only if all �� have at most one row. This condition is independent 
of �. 

Cycle indices for the symplectic and orthogonal groups are a bit trickier to es­
tablish from Wall’s formulas. To the treatment in [F1],[F2] we add a remark which 
should be very helpful to anyone trying to use those cycle indices. Those papers 
only wrote out an explicit formula for the cycle index for the sum of +,− type 
orthogonal groups. To solve for an individual orthogonal group, it is necessary 
to average that formula with a formula for the difference of +,− type orthogonal 
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groups (this procedure is carried out in a special case in [FNP]). In general, the 
formula for the difference of orthogonal groups is obtained from the formula for the 
sum of orthogonal groups as follows. First, for the polynomials z ±1, replace terms 
corresponding to partitions with an odd number of odd parts by their negatives. 
Second, for polynomials invariant under ,̃ replace terms corresponding to partitions 
of odd size by their negatives. 

2.4. Limitations and Other Methods. Cycle index techniques, while very use­
ful, also have their limitations and are not always the best way to proceed, as the 
following examples demonstrate. 

Example 1 (Primitive prime divisor elements). For integers b, e > 1 a primitive  
prime divisor of be − 1 is a prime dividing be − 1 but not dividing bi − 1 for any 
i with 1 √ i < e. An  element  of  GL(n, q) is called a primitive prime divisor 
(ppd) element if its order is divisible by a primitive prime divisor of qe − 1 with  
n/2 < e  √ n. This is a conjugacy class function. The analysis in [NiP] derives 
elegant bounds on the proportions of ppd elements in the finite classical groups 
and applies them to the group recognition problem for classical groups over finite 
fields (determining when a group generated by a set of matrices contains SL(n, q)). 
We do not see how to get comparable bounds using generating function techniques. 

Example 2 (Proportions of semisimple elements in exceptional groups). Although 
Example 5 of Section 2.2 was estimating proportions of semisimple matrices, this 
was only for the finite classical groups, where the index n can take an infinite 
number of values. Cycle indices don’t seem useful unless there is a tower of groups 
of varying rank available. 

Fortunately the computer package CHEVIE permits calculations precisely in fi­
nite rank cases such as the exceptional groups. Indeed this is how [GuLub] obtained 
estimates of the proportions of semisimple elements in the exceptional groups. 

Example 3 (Non-uniform distributions on matrices). The cycle indices give use­
ful information about conjugacy class functions when the matrix is chosen uniformly 
at random. However there are other distributions on matrices which one could study 
and for which cycle index methods (at present) cannot be applied. 

One example is random n×n matrices where the matrix entries are chosen inde­
pendently according to a given probability distribution on Fq . Charlap, Rees, and 
Robbins [ChReRo] show that if the probability distribution is not concentrated on 
any proper affine subspace of Fq , then  as  n � ∅ the probability that the matrix is 
invertible is the same as for a uniform matrix. They use Moebius inversion on the 
lattice of subspaces of an n dimensional vector space and the Poisson summation 
formula. Is the same true for other natural conjugacy class functions? We expect 
that the answer is yes, which can be regarded as a type of “universality” result for 
the asymptotic description of random elements of GL(n, q) to be given in Subsec­
tion 3.1. Analogous universality results are known for matrices with complex entries 
[So]. For further information on the rank of random 0 − 1 matrices, see [BKW] for 
sparse matrices, [Bo] for a survey of results on the rank over the real numbers, and 
also the discussion of work of Rudvalis and Shinoda in Subsection 3.2. Elkies [El] 
studies the rank of Hankel random matrices with non-uniform entries, and Chap­
ter 15 of [MaSl] relates the rank of random matrices to the weight distribution of 
Reed-Muller codes. 
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It is conceivable that cycle index techniques will be able to handle certain natu­
ral non-uniform distributions on GL(n, q). Non-uniform distributions which de­
pend only on the conjugacy class of an element can be handled by rescaling. 
(This happens for the Ewens distributions on permutations–important in popu­
lation genetics–which picks a permutation with probability proportional to βn(�) 

where 0 < β  √ 1 and  n(�) is the number of cycles of �). For the symmetric groups 
one can make a cycle index for distributions such as a q-riffle shuffle on a deck of 
cards [DiaMcPi],[F10], even though the underlying distribution on permutations is 
not a conjugacy class function! 

Example 4 (Random generation and maximal subgroups). As the survey [Sh3] 
explains, understanding the maximal subgroups of a finite group G gives one ap­
proach to studying quantities such as the probability P2,3(G) that  x, y generate 
G where x is a random element of order 2 and y is a random element of order 3. 
Letting ir(G) denote the number of elements of order r in a group G, one can easily 
see that 

1 − P2,3(G) √ 
⎜ i2(M )i3(M ) 

i2(G)i3(G) 
, 

M �G 
M maximal 

since if x, y do not generate G, then they lie in some maximal subgroup M . Using  
this, Liebeck and Shalev [LiSh] show that if G is a simple classical group other than 
PSp4(q), then P2,3(G) � 1 as  The paper [LiSh2] is another excellent |G| � ∅. 
example in which understanding the maximal subgroups of finite classical groups 
leads to powerful results. 

3. Running example: General linear groups 

The purpose of this section is to give different ways of understanding the conju­
gacy class of a random element of GL(n, q). The analogous theory for other finite 
classical groups is mentioned in passing but is not treated in detail as many of the 
main ideas can be communicated using GL(n, q). Subsection 3.1 will show how this 
leads naturally to the study of certain probability measures MGL,u,q on the set of 
all partitions of all natural numbers. Connections with symmetric function theory 
lead to several ways of growing random partitions distributed according to MGL,u,q. 
One consequence is a motivated proof of the Rogers-Ramanujan identities. 

3.1. Measures on Partitions. The goal is to obtain a probabilistic description 
of the conjugacy class of a random element of GL(n, q). The ideas are based on 
[F1]. The following definition will be fundamental. 

Definition. The measure MGL,u,q on the set of all partitions of all natural numbers 
is defined by ⎟ u �

MGL,u,q(�) =  
�

(1 − 
qr 

) P 

u| | 
. 

q i (�
�
i )

2 � 
i( 

1 )mi (�)r=1 q 

The motivation for this definition will be clear from Theorem 4. The measure 
MGL,u,q, while seemingly complicated, does have some nice combinatorial proper­
ties. For instance for partitions of a fixed size, this measure respects the dominance 
order on partitions (in this partial order � ≤ µ if and only if �1 + + �i· · ·  ≤ 
µ1 + + µi for all i ≤ 1). In work with Bob Guralnick we actually needed this · · ·
property. 



�

�

66 JASON FULMAN 

Lemma 4 proves that for q >  1 and  0  < u  <  1, the measure MGL,u,q is in fact a 
probability measure. There are at least three other proofs of this fact: an argument 
using q series, specializing an identity about Hall-Littlewood polynomials, or a slick 
argument using Markov chains and an identity of Cauchy. This third argument will 
be given in Subsection 3.4. 

Lemma 4. If q >  1 and 0 < u  <  1, then  MGL,u,q defines a probability measure. 

Proof. MGL,u,q is clearly non-negative when q >  1 and  0  < u <  1. Stong [St1] 
established an equation which is equivalent to the sought identity 

� ⎟ 1⎜ 
P 

u| | 
= ( u q	 i (�

�

q� 
i )

2 � 
i( 

1 )mi (�) r=1 
1 − qr 

). 

As some effort is required to see this equivalence, we derive the identity directly 
using Stong’s line of reasoning. 

First observe that unipotent elements of GL(n, q) correspond to nilpotent n× n 
matrices (subtract the identity matrix), and that the number of nilpotent n ×

n(n−1)n matrices is q by the Fine-Herstein theorem [FineHer]. The number of 
unipotent elements in GL(n, q) can be evaluated in another way using the cycle 
index of the general linear groups. Namely set x�,� = 1  if  � = z − 1 and  set  
x�,� = 0 otherwise. One concludes that ⎜ 1 qn(n−1) 

P = 
i )

2 � 
i( 

1 )mi (�) |GL(n, q)
. 

� n 
q i (�

�

q	
|

→

Now multiply both sides by un, sum  in  n, and apply Euler’s identity (page 19 of 
[A1]): 

�
2 ) �⎜ unq(
n ⎟ 1 

= ( u(qn 
n=0 

− 1) · · · (q − 1) 
r=1 

1 − qr 

). 

The measure MGL,u,q is a fundamental object for understanding the probability 
theory of conjugacy classes of GL(n, q). This emerges from Theorem 4. 

Theorem 4. 1. Fix u with 0 < u <  1. Then choose a random natural num­
nber N with probability of getting n equal to (1 − u)u . Choose π uniformly 

in GL(N, q). Then  as  � varies, the random partitions ��(π) are independent 
random variables, with �� distributed according to the measure 
MGL,udeg(�) ,qdeg(�) . 

2.	 Choose π uniformly in GL(n, q). Then  as  n � ∅, the random partitions 
��(π) converge in finite dimensional distribution to independent random vari­
ables, with �� distributed according to the measure MGL,1,qdeg(�) . 

Proof. Recall the cycle index factorization ⎞ ⎩ ⎜ ⎟ ⎜⎜ n·deg(�) 
P	

� . 
i (�

� 1
1 +  ZGL(n,q)u n = �1 +  x�,� � 
� q

deg(�)· 
u

i )
2 � 

i�1( qdeg(�) )mi
n=1 �=z n�1 � n≤ →

Setting all x�,� equal to 1 and using Lemma 4 show that ⎟⎟ 11 
�

=	 ). 
udeg(�)1 − u 

(
1 − 

qr·deg(�)�=z r=1≤



�

�	 � 

� 

� 

67 RANDOM MATRIX THEORY OVER FINITE FIELDS 

Taking reciprocals and multiplying by the cycle index factorization show that ⎜ 
n(1 − u) +  ZGL(n,q)(1 − u)u


n=1
⎟ ⎜ ⎝ .= ⎛MGL,udeg(�) ,qdeg(�) (∪) +  MGL,udeg(�) ,qdeg(�) (�)x�,� 

�=z	 �: � >0≤	 | |

This proves the first assertion of the theorem. For the second assertion, use 
Lemma 2 from Subsection 2.2. 

Remarks. 1. Theorem 4 has an analog for the symmetric groups [ShLl]. The 
statement is as follows. Fix u with 0 < u  <  1. Then choose a random natural 
number N with probability of getting n equal to (1 −u)un . Choose � uniformly 
in SN . Letting ni be the number of i-cycles of �, any finite number of the 
random variables ni are independent, with ni distributed as a Poisson with 

i 

mean u . Furthermore if one chooses � uniformly in Sn and lets n � ∅, then  i 
the random variables ni are independent random variables, with ni distributed 
as a Poisson( 1 

i ). 
2.	 The idea of performing an auxiliary randomization of n is a mainstay of 

statistical mechanics, known as the grand canonical ensemble. For a clear 
discussion see Sections 1.7, 1.9, and 4.3 of [Fey]. 

3.2. Symmetric Function Theory and Sampling Algorithms. The aim of 
this subsection is two-fold. First, the measures MGL,u,q are connected with the 
Hall-Littlewood symmetric functions. Then we indicate how this connection can be 
exploited to give probabilistic methods for growing random partitions distributed 
as MGL,u,q. The purpose is not to drown the reader in formulas, but rather to show 
that the connection between symmetric functions and probability is deep, beautiful, 
and useful in both directions. The results on this section are based on [F1] and 
[F3], except for the remark on how to make the algorithms terminate in finite time, 
which is joint with Mark Huber. 

To begin, we recall the Hall-Littlewood symmetric functions, which arise in many 
parts of mathematics: enumeration of p groups, representation theory of GL(n, q), 
and counting automorphisms of modules. The basic references for Hall-Littlewood 
polynomials P� is Chapter 3 of [Mac], which offers the following definition for a 
partition � with at most n parts: �	 ⎧ � ⎜ ⎟1 �1	 ⎝ n; t) =  � �mi (�) 1−tr 

w⎛x1 x �n 
xi − txj 

.nP�(x1, · · ·  , x 	 · · ·
i�0 r=1 1−t w�Sn i<j 

xi − xj 

Here w is a permutation acting on the x-variables by sending xi to xw(i). Recall 
that mi(�) is the number of parts of � of size i. Also  m0(�) is defined as n − �1

� . 
At first glance it is not obvious that these are polynomials, but the denominators 
cancel out after the symmetrization. The Hall-Littlewood polynomials interpolate 
between the Schur functions (t = 0) and the monomial symmetric functions (t = 1).  

Theorem 5 relates the measures MGL,u,q to the Hall-Littlewood polynomials. 
iRecall that n(�) =  i(i − 1)�i = 

� �
��� 

.i	 2 



� 

68 JASON FULMAN 

Theorem 5. 

u )⎟ P�( u , 2 ,
�

u q q q
MGL,u,q(�) =  (1 − 

i 
) 

· · ·  ; 1 

. 
q qn(�) 

i=1 

Proof. From the above formula for Hall-Littlewood polynomials, it is clear that the 
only surviving term in the specialization P�( u , q

u ) is  the  term  when  w is the 2 ,q q· · ·  ; 1 

identity. The rest is a simple combinatorial verification. (Alternatively, one could 
use “principal specialization” formulas for Macdonald polynomials on page 337 of 
[Mac].) 

Remark. The paper [F3] gives symmetric function theoretic generalizations of the 
measure MGL,u,q on partitions. In the case of Schur functions s�, this  measure  
depends on two infinite sets of variables xi, yi and assigns a partition � mass equal to 
s�(xi)s�(yi) i,j (1 − xiyj ). It is remarkable that this measure arose independently 
in work of the random matrix community relating the distribution of the lengths of 
increasing subsequences of random permutations to the distribution of eigenvalues 
of random GUE matrices (these matrices have complex entries). To elaborate, 
the Robinson-Schensted-Knuth correspondence associates a random partition of 
size n to a random permutation of size n, and the shape of the partition encodes 
information about the longest increasing subsequence of the permutation. Choosing 
the size of the symmetric group randomly (according to a Poisson distribution) gives 
a probability measure on the set of all partitions of all natural numbers which is 
a special case of the above Schur function measure. Then the coordinate change 
hj = �� + �j −j maps the set of row lengths {�j } of the partition to a set of distinct 1 
integers {hj }. These  hj can be viewed as positions of electrostatic charges repelling 
each other, and from this viewpoint the measure on subsets of the integers bears 
a striking resemblance to the eigenvalues of a random GUE matrix. This fantastic 
heuristic can be made precise and led to a solution of the long-standing conjecture 
relating lengths of increasing subsequences of permutations to eigenvalues of random 
matrices. For these developments see [BOOl],[Jo] and the many references therein. 

Now we return to the measure MGL,u,q and describe an algorithm for growing 
random partitions according to this measure. 

The Young Tableau Algorithm 

Step 0: Start with N = 1  and  � the empty partition. Also start with a collec­
tion of coins indexed by the natural numbers, such that coin i has probability 
u

qi qi
of heads and probability 1 − u of tails. 

Step 1: Flip coin N . 
Step 2a: If coin N comes up tails, leave � unchanged, set N = N + 1  and  go  

to Step 1. 
Step 2b: If coin N comes up heads, choose an integer S > 0 according to the 

1 −1following rule. Set S = 1 with probability q N −��

. Set  S = s > 1 with  qN −1 

s −q N −��

probability q N −��

qN −1 
s−1 . Then increase the size of column s of � by 1 and 

go to Step 1. 
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As an example of the Young Tableau Algorithm, suppose we are at Step 1 with 
� equal to the following partition: 

Suppose also that N = 4 and that coin 4 had already come up heads once, at which 
time we added to column 1, giving �. We flip coin 4 again and get heads, going 

q−1to Step 2b. We add a box to column 1 with probability q −1 , to  column  2  with  4 

2 3 2 

probability q 
−1 , to column 3 with probability q −q−q 

−1 , to column 4 with probability 4 4


4 3


4


q q

0, and to column 5 with probability q
q
−q . We then return to Step 1. −1 

Theorem 6. For 0 < u <  1 and q >  1, the Young Tableau Algorithm generates 
partitions which are distributed according to the measure MGL,u,q. 

To give insight into the proof of Theorem 6, we remark that it was deduced by 
proving a stronger result (Theorem 7) inductively and then taking the N � ∅
limit. As is clear from the statement of Theorem 7, the connection with Hall-
Littlewood polynomials (in particular the ability to truncate them) was crucial. It 
is unlikely that the Young Tableau Algorithm would have been discovered without 
this connection. 

Theorem 7. Let PN (�) be the probability that the algorithm outputs � when coin 
N comes up tails. Then ⎥⎣ � 

N ,0,··· ;0, 1 1 )u| | ( uq )N P� ( 1 
q q q)N ( 1 

q 
,··· , 

( 1 
q )N −�� qn(�) if ��

1 √ N 
1PN (�) =  

0 if �� > N.  1 

Next we explain why the Young Tableau Algorithm is called that. A standard 
Young tableau T of size n is a partition of n with each box filled by one of {1, · · ·  , n}
such that each of {1, · · ·  , n} appears exactly once and the numbers increase in each 
row and column of T . For instance, 

1 3 5 6 

2 4 7 

8 9 

is a standard Young tableau. Standard Young tableaux are important in combi­
natorics and representation theory. The Young Tableau Algorithm is so named 
because numbering the boxes in the order in which they are created gives a stan­
dard Young tableau. Thus although our initial interest was in the measure MGL,u,q 

on partitions, the Young Tableau Algorithm yields more: a probability measure 
on standard Young tableaux. One consequence of this is a (new) representation 
of prinicipally specialized Hall-Littlewood polynomials as a sum of certain weights 
over standard Young tableaux. 

Let us indicate an application of this probability measure on standard Young 
tableaux. Rudvalis and Shinoda [RuShi] studied the distribution of fixed vectors 
for the classical groups over finite fields. Let G = G(n) be a classical group (i.e. one 
of GL, U , Sp, or  O) acting  on  an  n dimensional vector space V over a finite field 
Fq (in the unitary case Fq2 ) in its natural way. Let PG,n(k, q) be the chance that 
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an element of G fixes a k dimensional subspace and let PG,�(k, q) be the  n � ∅
limit of PG,n(k, q). They found (in a 76-page unpublished work) beautiful formulas 
for PG,�(k, q). Their formulas are (setting x = 1 ):q �	 k2 

x �� r=1(1 − xr ⎦)] (1−x)2 ···
2 
(1−x

1.	 PGL,�(k, q) = [  � 
k )2 

2.	 PU,�(k, q) =  � 1 x k

r=1 1+x2r−1 (1−x 2k )2)···(1−x�� ⎦ k2+k 
1 x 23.	 PSp,�(k, q) =  � 

r=1 1+xr k )(1−x)···(1−x
2�� ⎦ k −k 

1 x 24.	 PO,�(k, q) =  � 
r=0 1+xr k ) .(1−x)···(1−x

From a probabilistic perspective, it is very natural to try to interpret the factoriza­
tions in these formulas as certain random variables being independent (the paper 
[RuShi] gives no insight as to why these formulas have a product form). The Young 
Tableau Algorithm leads to such an understanding for the finite general linear and 
unitary groups; see [F3] for details. 

Remarks. 1. A skew diagram is the set theoretic difference between partitions 
µ, � with µ ∞ �, and a horizontal strip is a skew diagram with at most 
one square in each column. There is another algorithm for growing random 
partitions distributed according to MGL,u,q in which one tosses coins and adds 
horizontal strips (as opposed to a box at a time). Details are in [F3]. 

2.	 (Joint with Mark Huber) We indicate how to make the Young Tableau Algo­
rithm run on a computer, so as to terminate in finite time (clearly one can’t 
flip infinitely many coins). Let aN be the number of times that coin N comes 
up heads; the idea is to first determine the random vector (a1, a2, · · · ) and  
then grow the partitions as in Step 2b of the Young Tableau Algorithm. So 
let us explain how to determine (a1, a2, · · · ). For N ≤ 1 let  t(N ) be the prob­
ability that all tosses of all coins numbered N or greater are tails. For N ≤ 1 
and j ≤ 0 let  t(N ) be the probability that some toss of a coin numbered N orj 
greater is a head and that coin N comes up heads j times. It is simple to write 
down expressions for t(N ), t

(N )
, t

(N ) 
, · · ·  and clearly t(N ) + 

� 
j�0 t

(
j
N ) = 1.  0 1 

The basic operation a computer can perform is to produce a random vari­
able U distributed uniformly in the interval [0, 1]. By dividing [0, 1] into 

(1)intervals of length t(1), t(1), t , · · ·  and seeing where U is located, one arrives 0 1 

at the value of a1. Furthermore,  if  U landed in the interval of length t(1), 
then all coins come up tails and the algorithm is over. Otherwise, move on to 

(2)coin 2, dividing [0, 1] into intervals of length t(2), t(2), t and so on. 0 1 , · · ·  
For 0 < u  <  1 and  q the size of a finite field, this algorithm terminates 

quickly. The probability of the algorithm stopping after the generation of the 

i=1(1−u/qi) ≤ �first uniform in [0, 1] is �
i=1(1−1/qi) > 1−1/q−1/q2 ≤ 1/4 

where the second inequality is Corollary 3.6 of [NP2]. Should it be necessary 
to generate future uniforms, the same argument shows that the algorithm 
stops after each one with probability at least 1/2. 

3.3. Sampling for a Given Size: Unipotent Elements. An element of GL(n,q) 
is called unipotent if all of its eigenvalues are 1; a theorem of Steinberg asserts that 
the number of unipotent elements in GL(n, q) is  qn(n−1) (this is the square of the 
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order of a q-Sylow subgroup if q is prime). Unipotent elements are interesting be­
cause any element π in GL(n, q) can be written uniquely as the product πsπu where 
πs is semisimple and πu is unipotent. 

Thus it is natural to study the random partition �z−1 for unipotent elements 
in GL(n, q). This is the same as conditioning the measure MGL,u,q to live on 
partitions of size n. This subsection explains how to modify the sampling method 
of Subsection 3.2 to sample from this conditioned version of MGL,u,q and also from 
a q-analog of Plancharel measure (related to the longest increasing subsequence 
problem). These results are joint with Mark Huber. 

Algorithm for sampling from MGL,u,q given that |�| = n 

Step 0: Start with N = 1  and  � the empty partition. 
1Step 1: If n = 0, then stop. Otherwise set h = 1  − . qn 

Step 2: Flip a coin with probability of heads h. 
Step 2a: If the toss of Step 2 comes up tails, increase the value of N by 1 and 

go to Step 2. 
Step 2b: If the toss of Step 2 comes up heads, decrease the value of n by 1, 

increase � according to the rule of Step 2b of the Young Tableau Algorithm 
(which depends on N ),  and then go  to  Step 1.  

Theorem 8 will show that the above algorithm samples from MGL,u,q conditioned 
to live on partitions of size n. It is perhaps surprising that unlike the Young Tableau 
Algorithm, the probability of a coin coming up heads is independent of the coin 
number; it depends only on the number of future boxes needed to get a partition 
of size n. 

Lemma 5. Let Ni be the number of times that coin i comes up heads in the Young 
Tableau Algorithm with u = 1, and  let  Ni be the infinite vector with ith component 
Ni. 

Q 

P 

q1. The probability that Ni = n�i is r=1(1− 1 
i ) 

. 
q i ini 

2.
 ⎜ 1
 1 

q 
P 

ini 
= 

qa( 1 )a 
. 

P 

i 
ni : ni=a q 

Proof. The first assertion is clear. The second assertion is well known in the theory 
1of partitions, but we argue probabilistically. Multiply both sides by � 
qi ).r=1(1 −

Then note from the first assertion that the left hand side is the MGL,1,q chance of 
having a partition of size a. Now use the second equation in the proof of Lemma 4 
in Subsection 3.1. 

For Theorem 8 the notation Prob. is shorthand for the probability of an event. 

Theorem 8. The algorithm for sampling from MGL,u,q conditioned to live on par­
titions on size n is valid. 

Proof. From the formula for MGL,u,q, the conditioned measure for MGL,u,q is the 
same as for MGL,1,q. Now  let  ni be the number of times that coin i comes up heads 
in the Young Tableau Algorithm. Letting | denote conditioning, it suffices to show 
that ⎜ 1 

Prob.(ni ≤ 1 nj = s) =  1  − 
qs 

.| 
j�i 
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In fact (for reasons to be explained later) we compute a bit more, namely the 
conditional probability that ni = a given that j�i nj = s. By definition this 
conditional probability is the ratio 

Prob.(ni = a, j�i nj = s) 
Prob.( 

� 
j�i nj = s) 

. 

The numerator and denominator are computed using Lemma 6 as follows: ⎜ ⎜ � 

PProb.(ni = a, nj = s) =  r=i(1 − 1/qr) 

qiaq j�i+1 jaj 
j�i ai+1+··· =s−a ⎜ 

r=i(1 − 1/qr)
= P 

qisq j�i+1 (j−i)aj 
ai+1+··· =s−a ⎜ � 

r=i(1 − 1/qr)
= P 

qisq j�1 aj 
a1 +� ··· =s−a 

r=i(1 − 1/qr)
= 

qisqs−a( 1 . 
q )s−a 

⎜ ⎜ � 

Prob.( nj = s) =  r=i(1 − 1/qr) 
P 

q j�i jaj 
j�i ai + =s··· ⎜ � 

r=i(1 − 1/qr)
= P 

q(i−1)s+ j�i (j−(i−1))aj 
ai + =s··· �⎜ � 

r=i(1 − 1/qr)
= P 

q(i−1)s+ j�1 jaj 
a1 + =s � ··· 

r=i(1 − 1/qr)
= 

qis( 1 .
)sq 

1Thus Prob.(ni = 0| j�i nj = s) =  qs and the result follows. 

As mentioned in Subsection 3.2 there is a natural measure MPl,q  on the set 
of all partitions of all integers which when conditioned to live on partitions of 
a given size gives a q-analog of Plancherel measure, which is related to longest 
increasing subsequences in non-uniform random permutations [F3]. It is beyond 
the scope of this paper to survey the literature on longest increasing subsequences, 
but an accessible introduction is [AlDia]. In what follows Ja(q) is the polynomial 
discussed on pages 52-54 of [F1], h(s) denotes the hook-length of a box in � [Mac] 

n −1 is the q-analog of the number n. Recall that a skew diagram is the 
set theoretic difference between partitions µ, � with µ ∞ � and that a horizontal 
strip is a skew diagram with at most one square in each column. 

and [n] =  qq−1 

Algorithm for sampling from MPl,q  for q >  1 given  that  |�| = n 

Step 0: Start with � the empty partition.

Step 1: If n = 0, then stop. Otherwise choose a with 0 √ a √ n with probability


2 n 1 1 q (1 − qn−a+1 )2 
qn )2 

Jn−a(q)· · · (1 − 

Jn(q) 
. 

q(n−a)2 +n( 1 )aq 
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Then increase � to � with probability 

1
1 1 qn(�) 

s��(1 − 
qh(s) )

(1 − 
q 
) · · · (1 − 

qa 
) 
qn(�) 

� 
s��(1 − 1 

h(s) )q

if � −� is a horizontal strip of size a and with probability 0 otherwise. Finally 
replace n by n − a and repeat Step 1. 

Using Lemma 6, Theorem 9 proves that the algorithm for sampling from MPl,q  

conditioned to live on |�| = n works. We omit the details, which (given the back­
ground material in [F1]) are analogous to the case of MGL,u,q. 

Lemma 6. Let Ni be the number of times that coin i comes up heads in the al­
gorithm from [F3] for sampling from the measure MPl,q  and let Ni be the infinite 
vector with ith component Ni. 

Q Q �
j=r (1− 

q

1 
j )

�
=1r1. The probability that Ni = n�i is P .Q 

i ini 
i ( 1 )niqq 

2. ⎜ 1 Ja(q) 
.P 

2 1 )2 1 
i( 

1 )ni qa (1 − qa )2 
q q · · · (1 −ini P q i 

ni: ni=a 

Theorem 9. The algorithm given for sampling from MPl,q  with q >  1 conditioned 
to live on � = n is valid. | | 

3.4. Markov Chain Approach. The main result in this subsection is a third 
method for understanding the measure MGL,u,q probabilistically [F7]. The idea 
is to build up the random partition a column at a time; if the current column 
has size a, then the next column will have size b (with b √ a) with probability 
K(a, b). The surprise is that this transition rule turns out to be independent of the 
columns, yielding a Markov chain on the natural numbers. This Markov chain is 

2 u u . It will be used to give a probabilistic diagonalizable with eigenvalues 1, q , q4 , · · ·
proof of the Rogers-Ramanujan identities in Subsection 3.5. 

It is convenient to set �� (the height of an imaginary zeroth column) equal to 0 
∅. For the entirety of this subsection, let P (a) be the  MGL,u,q probability that 
�� = a. Theorem 10, which makes the connection with Markov chains, is proved in 
a completely elementary way. The argument re-proves that MGL,u,q is a probability 
measure (Lemma 4 of Subsection 3.1), shows that the asserted Markov transition 
probabilities add to one, and gives a formula for P (a). 

Theorem 10. Starting with �� = ∅, define in succession �1
� , �2

� , · · ·  according to 0 
the rule that if ��

i = a, then  �� = b with probability i+1 

b( 1 u )a( u )aq q
K(a, b) =  

qb2 ( 1 )a−b( 1 )b( u )b 
. 

q q q 

Then the resulting partition is distributed according to MGL,u,q. 

Proof. Suppose we know that MGL,u,q is a probability measure and that 

ua( u 
q )�

P (a) =  
qa ( 1 )a( u )a 

.2 

q q 
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Then the MGL,u,q probability of choosing a partition with �� = r� for all i isi i 

Prob.(�� = ∅) 
Prob.(�� = ∅, �� = r1)0 1 

0 Prob.(�� = ∅)0 ⎟ Prob.(�� = ∅, ���
0 1 i

�
+1 = ri+1 )= r1, · · ·  , �

× 
Prob.(�� = ∅, ��

i=1 0 1 i
� = ri) 

. 
= r1, · · ·  , �

Thus it is enough to prove that 

Prob.(�� = ∅, ��
i
�
−1 = ri−1, �

� = a, �� = b) ub( 1 )a( u )a0 1 i i+1 = q q 

Prob.(�� = ∅
= 

, �

r
�
1, · · ·  , �

i
�
−1 = ri−1 , �� = a) qb2 ( 1 )a−b( 1 )b( u )b 

, 
0 1	 i q q q 

= r1, · · ·  , �

for all i, a, b, r1, · · ·  , ri−1. One calculates that ⎜ 
MGL,u,q(�) 

�:��
i−1=ri−11=r1 ,··· ,��

=a
i 

r1 +u ···+ri−1 

=	 P (a).2 
i−1 ( 1···q r1 + +r2 

q )r1 −r2 q )ri−2 −ri−1 ( 
1 )ri−1 −aq· · · ( 1 

Similarly, observe that ⎜ 
MGL,u,q(�) 

�:��
i−1=ri−1


��=a,��

1=r1 ,··· ,��

i	 i+1=b 

r1+u	 ···+ri−1 +a 

=	 P (b).2 2 
q r1 + +ri−1 +a2 

( 1 
q q 

···
q )r1 −r2 q )ri−2 −ri−1 ( 

1 )ri−1 −a( 1 )a−b· · · ( 1 

Thus the ratio of these two expressions is 
b( 1 u )a( u )aq q 

qb2 (	1 )a−b( 1 )b( u )b 
, 

q q q 

as desired. Note that the transition probabilities must sum to 1 because 

�:��
i−1=ri−1 MGL,u,q(�)⎜ 1=r1 ,··· ,��


��=a,��
� i i+1=b 

= 1  
b∈a 

�:��
i−1=ri−1 MGL,u,q(�)

1=r1 ,··· ,��

=a
i 

for any measure MGL,u,q on partitions. 
Thus to complete the proof, it must be shown that MGL,u,q is a probability 

measure and that 
ua( u 

q )�
P (a) =  

qa ( 1 )a( u )a 
.2 

q q 

Since � 
�:��

i−1=ri−1 MGL,u,q(�)
1=r1 ,··· ,��

a � 
��

i =a,��
i+1=b	 P (b)u

= 
1=r1 ,··· ,�� =ri−1 MGL,u,q(�) P (a)qa2 ( 1 )a−b�:��

i−1	 q 
=a

i 

it follows that 
a⎜ P (b)u

= 1. 
P (a)qa2 ( 1 

q )a−bb∈a 
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From this recursion and the fact that P (0) = ( u )�, one  solves  for  P (a) inductively, q 
finding that 

ua( u 
q )�

P (a) =  
qa2 ( 1 .

)a( u )aq q 

(We remark that a more probabilistic understanding of this formula for P (a) is  
available [F3].) Cauchy’s identity (page 20 of [A1]) gives that P (a) = 1, so that a 
MGL,u,q is a probability measure. 

Theorem 11 diagonalizes the transition matrix K, finding a basis of eigenvectors, 
which is fundamental for understanding the Markov chain (part 3 is stated as a 
lemma in [A2]). Since the matrix K is upper triangular with distinct eigenvalues, 
this is straightforward. 

Theorem 11. 1. Let C be the diagonal matrix with (i, i) entry ( 1 )i( u )i. Let  M q q 

ube the matrix 
qj2 ( 1 

j 

. Then  K = CMC−1, which reduces the problem of 
q )i−j 

diagonalizing K to that of diagonalizing M .⎤ � 
12.	 Let A be the matrix 

( 1 )i−j ( u )i+j 
. Then the columns of A are eigenvectors 

q q 

uof M for right multiplication, the jth column having eigenvalue 
qj

j 

2 . ⎨	 ⎢ 
q3. The inverse matrix A−1 is 

(1−u/q2i )(−1)i−j ( u )i+j−1 .(i−j)( 12q q )i−j 

Corollary 2 (immediate from Theorem 11) will be useful for the proof of the 
Rogers-Ramanujan identities in Section 3.5. In the case L � ∅  and j = 0,  it  is  
the so-called Rogers-Selberg identity. 

i

Corollary 2. Let E be the diagonal matrix with (i, i) entry u 
i2 . Then  Kr = 

q

CAEr A−1C−1. More  explicitly,  

( 1 )L( u )L ⎜ urn(1 − u/q2n)(−1)n−j ( u )n+j−1q q	 q
Kr(L, j) =  

( 1 )j ( u )j qrn ( 1 )L−n( u )L+nq(
n−j)( 1 

. 
2 2 q q n=0 q q q )n−j 

Proof. This is immediate from Theorem 11. 

Remarks. 1. One of our motivations for seeking a Markov chain description of 
MGL,u,q is work of Fristedt [Fris], who had a Markov chain approach for the 
measure Pq on the set of all partitions of all natural numbers defined by 
Pq (�) =  �

i=1(1 − qi)q| | where q <  1. Fristedt’s interest was in studying 
what a uniformly chosen partition of an integer looks like, and conditioning 
Pq to live on partitions of size n gives a uniform partition. The measure Pq 

is related to the vertex operators [O1] and to the enumeration of ramified 
coverings of the torus [Dij]. In this regard the papers [O1] and [BlO] prove 
that the k point correlation function 

n⎜ ⎟⎜ 1 

kF (t1, · · ·  , tk ) =  q| | 
�

t 
�i −i+ 2 

� k=1 i=1 
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is a sum of determinants involving genus 1 theta functions and their deriva­
tives and give connections with quasi-modular forms. It would be marvel­
lous if the measure MGL,u,q (being related to modular forms via the Rogers-
Ramanujan identities) is also related to enumerative questions in algebraic 
geometry. 

2.	 As mentioned in the introduction, the Markov chain approach gives a unified 
description of conjugacy classes of the finite classical groups. For the sym­
plectic and orthogonal groups it is necessary to use two Markov chains, K1 

and K2. For the symplectic case, steps with column number i odd use K1 and 
steps  with column number  i even use K2. For the orthogonal case, steps with 
column number i odd use K2 and steps with column number i even use K1. 
The Markov chains K1, K2 are the same for both cases! (This construction is 
reminiscent of transfer matrices in statistical mechanics.) Details are in [F6]. 
The Markov chain approach is also related to quivers [F7]. 

3.5. Rogers-Ramanujan Identities. The Rogers-Ramanujan identities [Ro] 
�

q
2
⎜ n ⎟ 1


1 +  =

(1 − q5n−1)(1 − q5n−4)

n=1 
(1 − q)(1 − q2) · · · (1 − qn) 

n=1
⎜ qn(n+1)
�	 ⎟ 1
1 + 	 = 

(1 − q5n−2)(1 − q5n−3)
n=1 

(1 − q)(1 − q2) · · · (1 − qn) 
n=1 

are among the most interesting partition identities in number theory and combina­
torics, with connections to Lie theory and statistical mechanics (see the discussions 
in [A2] and [F7] for many references). In terms of partitions, they are often stated 
as 

1. The partitions of an integer n in which the difference between any two parts 
is at least 2 are equinumerous with the partitions of n into parts congruent 
to 1 or 4 mod 5. 

2. The partitions of an integer n in which each part exceeds 1 and the difference 
between any two parts is at least 2 are equinumerous with the partitions of 
n into parts congruent to 2 or 3 mod 5. 

One ongoing challenge in the subject (posed by Hardy) has been to find a proof 
of the Rogers-Ramanujan identities which is both motivated and simple. The pur­
pose of this subsection is to describe such a proof ([F7]), which is also the first 
probabilistic proof of the Rogers-Ramanujan identities. 

To illustrate the idea we give the proof of the following generalization of the first 
Rogers-Ramanujan identity (called the Andrews-Gordon identity [A3],[Gor]): ⎜ 1	

�⎟ 1 
= 

N 2 
1 + +N 2 

n1 ,··· ,nk−1 �0 q ··· k−1 (1/q)n1 · · · (1/q)nk−1	
1 − (1/q)r 

r=1 
r=0,±k(mod 2k+1) ⊂

where Ni = ni + +nk−1. Setting k = 2 and replacing q by its reciprocal specialize · · ·
to the first Rogers-Ramanujan identity. 

The idea is simple. We study the distribution of the length of the first row 
of a random partition distributed as MGL,1,q. From the definition of MGL,1,q the 
probability that the first row has length less than k is equal to ⎟ 1 ⎜�	 1

) 
1 )

2 +···+(�k
�
−1 )

2 
(1/q)��

2 k−1 −��
. 

r=1 

(1 − 
qr

�:�� =0 q
(��	

1 −��
kk 

· · · (1/q)��
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Letting ni denote �i
� − �i

�
+1 and Ni denote �i

� , this becomes ⎟ 1 ⎜� 1
(1 − 

qr 
) 

1 + +N 2 ,
N 2 

n1 ,··· ,nk−1 �0 q ··· k−1 (1/q)n1 · · · (1/q)nk−1r=1 

which is essentially the left hand side of the Andrews-Gordon identity. On the 
other hand the probability that the first row has length less than k is equal to the 
probability that the Markov chain of Section 3.4 is 0 at time k. Since we diagonal­
ized the matrix associated to this Markov chain, it is straightforward to compute 
this probability. To get it into product form it is necessary to apply Jacobi’s triple 
product identity, which has a simple combinatorial proof [A1]. Further details are 
in [F7]. 

Next we argue that this proof is motivated. Certainly the measure MGL,1,q is a 
natural object to study, given that it is the n � ∅  limit law of �z−1 for a random 
element of GL(n, q). It was natural to try to build up the random partitions � 
column by column as in Section 3.4. Observing that the resulting Markov chain 
is absorbing at 0 with probability one, the time to absorption (equivalent to the 
distribution of the length of the first row) is the most natural quantity one could 
examine. The final step is applying Jacobi’s triple product identity, and thus going 
from a “sum = sum” identity to a “sum = product” identity. As mentioned above 
Jacobi’s triple product identity is easy to verify, but one still wants a motivation 
for trying to write the left hand side of the Andrews-Gordon identity in product 
form. The best motivation is Baxter’s work on statistical mechanics (surveyed in 
[A2],[Bax1],[Bax2]) in which he really needed “sum = product” identities and was 
led to conjecture analogs of Rogers-Ramanujan type identities. Although a proof of 
the Rogers-Ramanujan identities doesn’t emerge from his work, it is clearly one of 
the truly great accomplishments in mathematical physics, and his book [Bax1] has 
been very influential. A second motivation is our work on the n � ∅  asymptotic 
probability that an element of GL(n, q) is semisimple. The argument, recorded in 
[F1] or the more readily available [F4], needed a “sum = product” identity. The 
corresponding computation in [F9] for the finite affine groups needed both Rogers-
Ramanujan identities. 

Andrews’ paper [A4] notes that many proofs of the Rogers-Ramanujan identities 
make use of the following mysterious result called Bailey’s Lemma, alluded to in 
[Bai] and stated explicitly in [A3]. A pair of sequences {πL} and {κL} is called a 
Bailey pair if 

L⎜ πr
κL = 

(1/q)L−r(u/q)L+r 
. 

r=0 
L r�L uBailey’s Lemma states that if π� = u 

L2 πL and κ� = r=0 qr2 (1/q)L−r 
κr, then  L Lq

L} and {κL} form a Bailey pair. From the viewpoint of Markov chains, this case {π� �

of Bailey’s Lemma is clear. To explain, let A, D, M be as in Theorem 11 (recall 
that M = ADA−1). Viewing π = π�L and κ = κL as column vectors, the notion of 
a Bailey pair means that κ = Aπ. This case of Bailey’s Lemma follows because 

κ� = Mκ  = ADA−1κ = ADπ = Aπ�. 

As Andrews explains in [A2], the power of Bailey’s Lemma lies in its ability to be 
iterated. This gives a short but unmotivated proof of the Rogers-Selberg identity 
(Corollary 2 in Section 3.4). Partition theorists refer to this iteration of Bailey’s 
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Lemma as a Bailey chain. From the remarks of the preceding paragraph it is clear 
that the Bailey chain under consideration is really the Markov chain K, stripped  
of its probabilistic origin. The fact that the Markov chain approach has analogs for 
other finite classical groups and for quivers is further evidence of its naturality. 

4. Upper triangular matrices 

This section surveys probabilistic aspects of conjugacy classes in the group 
T (n, q) of upper triangular matrices over finite fields with 1’s along the main diago­
nal. At present little is known about conjugacy in T (n, q). For instance the number 
of conjugacy classes, their size, or even a natural indexing are provably elusive (par­
tial results on numbers of conjugacy classes can be found in [VAr],[VArV]). It seems 
as if the best description is “it’s a mess”. This makes a probabilistic description 
natural. 

Kirillov’s survey [Kir] calls for an extension of his method of coadjoint orbits for 
groups over real, complex, or p-adic fields to the group T (n, q) and gives preliminary 
connections with statistical physics; the paper [IsKar] gives a counterexample to one 
of his conjectures. As we do not see how to further develop those results or improve 
on their exposition, we instead focus on a simpler problem: the probabilistic study 
of Jordan form of elements of T (n, q). 

Subsection 4.1 describes a probabilistic growth algorithm for the Jordan form of 
upper triangular matrices over a finite field. This is linked with symmetric function 
theory and potential theory on Bratteli diagrams in Subsection 4.2. 

4.1. Growth Algorithm for Jordan Form. Theorem 12 gives a probabilistic 
growth algorithm for the Jordan form of random elements of T (n, q). Its proof uses 
elementary reasoning from linear algebra. 

Theorem 12. ([Kir],[B]) The Jordan form of a uniformly chosen element of 
T (n, q) can be sampled by stopping the following procedure after n steps: Starting 
with the empty partition, at each step transition from a partition � to a partition � 
by adding a box to column i chosen according to the rules 

1 • i = 1  with probability 
�� , 

q 1 

1 1 • i = j >  1 with probability 
�� �� . 

q j 
− 

q j−1 

Theorem 12 leads to the following central limit theorem about the asymptotic 
Jordan form of an element of T (n, q). 

Theorem 13. ([B]) Let � be the partition corresponding to the Jordan form of a 
random element of T (n, q). Let  Probn denote probability under the uniform measure 

1 1on T (n, q) and let pi = qi−1 − qi . Then  

k 1 
2 2 <Qt,t>dtlimn��Probn( 

�i − pin √ xi, i  = 1, · · ·  , k) = (2�)− 
x1 xk 

⊂
n 

· · ·  e− 

−� � 

for any (x1, · · ·  , xk ) → Rk, where the covariance matrix equals 

Q = diag(p1, · · ·  , pk ) − (pipj )k 
i,j=1. 
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4.2. Symmetric Functions and Potential Theory. Given the usefulness of 
symmetric functions in the probabilistic study of the measure MGL,u,q, it is natural 
to seek an analogous understanding of Theorem 12. That is the topic of the present 
subsection. The ideas here are from the report [F8]. 

The first step is to link the probability that an element of T (n, q) has Jordan 
form of type � with symmetric function theory. For the rest of this section, P�(q, t) 
denotes a Macdonald polynomial, Kµ�(q, t) denotes a Kostka-Foulkes polynomial, 
and fµ is the dimension of the irreducible representation of Sn corresponding to 
the partition µ (see [Mac] for background). Note that when q = 0 the Macdonald 
polynomial is our friend, a Hall-Littlewood polynomial. 

Theorem 14. ([F5]) The probability that a random element of T (n, q) has Jordan 
form of type � is ⎜1 1 1 1 

P�(1 − , ) fµKµ�(0, 1/q). 
q q 

− 
q2 

, · · ·  ; 0,
q 

nµ→

Next we give some background on potential theory on Bratteli diagrams. This 
is a beautiful subject, with connections to probability and representation theory. 
We recommend [Ke1] for background on potential theory with many examples and 
[BOl] for a survey of recent developments. The basic set-up is as follows. One starts 
with a Bratteli diagram, that is an oriented graded graph � = �n�0�n such that 

1. �0 is a single vertex ∪. 
2. If the starting vertex of an edge is in �i, then its  end vertex  is  in �i+1. 
3. Every vertex has at least one outgoing edge. 
4. All �i are finite. 
For two vertices �, � → �, one writes � � � if there is an edge from � to �. Part 

of the underlying data is a multiplicity function φ(�, �). Letting the weight of a 
path in � be the product of the multiplicities of its edges, one defines the dimension 
dim(�) of a vertex � to be the sum of the weights over all maximal length paths 
from ∪ to � (this definition clearly extends to intervals). Given a Bratteli diagram 
with a multiplicity function, one calls a function � harmonic if �(0) = 1, �(�) ≤ 0 
for all � �, and ⎜→ 

�(�) =  φ(�, �)�(�). 
�:�∞� 

An equivalent concept is that of coherent probability distributions. Namely a set 
{Mn} of probability distributions Mn on �n is called coherent if 

Mn−1(�) =  
⎜ dim(�)φ(�, �) 

Mn(�). 
dim(�) 

�:�∞� 

Mn (�)The formula allowing one to move between the definitions is �(�) =  dim(�) . 
One reason the set-up is interesting from the viewpoint of probability theory is 

the fact that every harmonic function can be written as a Poisson integral over the 
set of extreme harmonic functions. For the Pascal lattice (vertices of �n are pairs 
(k, n) with  k = 0, 1, · · ·  , n  and (k, n) is connected to (k, n + 1)  and  (k + 1, n  + 1)), 
this fact is the simplest instance of de Finetti’s theorem, which says that an infinite 
exchangeable sequence of 0 −1 random variables is a mixture of coin toss sequences 
for different probabilities of heads. When the multiplicity function φ is integer 
valued, one can define a sequence of algebras An associated to the Bratteli diagram, 
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and harmonic functions correspond to certain characters of the inductive limit of 
the algebras An. 

Next we define a branching for which the probability that an element of T (n, q) 
has Jordan type � is a harmonic function. First some notation is needed. For 
� � �, let R�/� (resp. C�/�) be the  boxes  of  � in the same row (resp. column) as 
the boxes removed from � to get �. This notation differs from that in [Mac]. Let 
a�(s), l�(s) be  the  number  of  boxes  in  � strictly to the east and south of s, and  let  
h�(s) =  a�(s) +  l�(s) + 1.  

Definition 1. For 0 √ q <  1 and  0  < t  <  1, the underlying Bratteli diagram � 
has as level  �n all partitions � of n. Letting i be the column number of the box 
removed  to go from  � to �, for � � �, define the multiplicity function as 

φ(�, �) = 
t�

�

⎟ 1 − qa� (s)+1tl� (s) ⎟ a� (s)tl� (s)+11 1 − q
. 

i −1 1 − qa� (s)+1tl� (s) 1 − qa� (s)tl� (s)+1 
s�R�/� s�C�/� 

Equation I.10 of [GarsH] proves that ⎜1 
dim(�) = 

tn(�) 
fµKµ�(q, t). 

nµ→

Definition 2. For 0 √ q <  1, 0 < t <  1 and  0  √ x1, x2, · · ·  such that xi = 1,  
define a family {Mn} of probability measures on partitions of size n by 

(1 − q)|�|P�(x; q, t) fµKµ�(q, t)nµ→
Mn(�) = � 

s��(1 − qa� (s)+1tl� (s)) 

(1 − q)|�|P�(x; q, t)tn(�)dim(�) 

s��(1 − qa� (s)+1tl� (s)) 
1Consider the specialization that q = 0  and  t = q , where this second q is the 

1size of a finite field. Further, set xi = qi−1 − 1 
i . Then Theorem 14 implies that q

Mn(�) is the probability that a uniformly chosen element of T (n, q) has Jordan 
type �. The multiplicities have a simple description; letting i be the column to 

i i −1 +which one adds in order to go from � to �, it follows that φ(�, �) = q��
+ q��

i+1 . Second, dim(�) reduces to a Green’s polynomial Q�(q) =  Q�+ q �
�

(1n )(q)· · ·  
as in Section 3.7 of [Mac]. These polynomials are important in the representation 
theory of the finite general linear groups. This specialization was the motivation for 
Definition 2. 

The connection with potential theory is given by the following result. 

Theorem 15 ([F8]). The measures of Definition 2 are harmonic with respect to 
the branching of Definition 1. 

It is elementary and well known that if one starts at the empty partition and 
transitions from � to � with probability φ(�,�)Mn (�)dim(�) , one  gets  samples from  Mn−1 (�)dim(�) 

any coherent family of measures {Mn}. Applying this principle to the above spe­
cialization in which Mn(�) is T (n, q) and using Macdonald’s principal specialization 
formula (page 337 of [Mac]) give the advertised proof of Theorem 12 by means of 
symmetric functions and potential theory. 

Remarks. 1. The example of Schur functions (q = t <  1) is also interesting. 
The measure Mn(�) reduces to s�f�, where  s� is a Schur function. Setting 
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1x1 =	 = xn = n and letting n � ∅, one obtains Plancherel measure, which · · ·  
is important in representation theory and random matrix theory. Letting x1 = 

= xn satisfy xi = 1  (all  other  xj = 0) gives a natural deformation of · · ·  
Plancherel measure, studied for instance by [ItTWi]. Stanley [Sta] shows that 
this measure on partitions also arises by applying the Robinson-Schensted-
Knuth algorithm to a random permutation distributed after a biased riffle 
shuffle (in other words, this measure encodes information about the longest 
increasing subsequences of permutations distributed as shuffles). 

2.	 It has been pointed out to the author that the branchings φ(�, �) of 
Definition 1 are related to the branchings α (�, �) of [Ke2] by the formula 

φ(�, �) = f (�)α (�, �)f (�)−1 , 

for a certain positive function f (�) on the set of vertices, which implies by 
[Ke3] that the boundaries of these two branchings are homeomorphic and that 
the branchings of Definition 1 are multiplicative. Kerov [Ke2] has a conjec­
tural description of the boundary. It has been verified for Schur functions 
[T], Kingman branching [Kin], and Jack polynomials [KeOOl], but remains 
open for the general case of Macdonald polynomials. In particular, it is open 
for Hall-Littlewood polynomials, the case related to T (n, q). It is interesting 
that the φ(�, �) of Definition 1 are integers for Hall-Littlewood polynomials, 
whereas the α (�, �) of [Ke2] are not. 
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