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Abstract

We prove that in dimension one the non-real eigenvalues of the non-Hermitian
Anderson (NHA) model with a selfaveraging potential are regularly spaced. The
class of selfaveraging potentials which we introduce in this paper is very wide and in
particular includes stationary potentials (with probability one) as well as all quasi-
periodic potentials. It should be emphasized that our approach here is much simpler
than the one we used before. It allows us a) to investigate the above mentioned
spacings, b) to establish certain properties of the integrated density of states of the
Hermitian Anderson models with selfaveraging potentials, and ¢) to obtain (as a
by-product) much simpler proofs of our previous results concerned with non-real
eigenvalues of the NHA model.

1 Introduction

The non-Hermitian Anderson model (NHA model) was introduced by N. Hatano and
D. Nelson in 1996. It arises in the physics of vortex matter, [5, 6], and in many other
contexts, see e.g. [4, 12]. This model is described by the following operator

(Hio) = =901+ qrior —€ 91, 1<k<n (1)

with periodic boundary conditions

Do = Pny V1 = Prti1. (2)

Here ¢ is a real parameter, g > 0. The Hilbert space is l(1,n) with the standard
inner product: if ¢ = {¢;}7_; and ¥ = {¢;}7_, are two vectors from l5(1,7), then
(@7 lb) = Z?:l (qu/)j'

Hatano and Nelson considered the case when the values g; of the potential are taken
as a realization of a sequence of independent identically distributed random variables. By



conducting a numerical experiment they discovered a number of remarkable properties
both of the spectrum and the eigenfunctions of the operator HJ. It turns out that the
asymptotic behavior of the eigenvalues depends strongly on the value of the parameter
g. To demonstrate this statement we present in Fig.1 results of a similar numerical
experiment. These pictures are not so well predictable in the following sense. It is a
consequence of the Weyl criterion that the spectrum of the limiting random operator
(n = o0) contains with probability one the union of spectra of operators with constant
potentials, ¢; = ¢, for any real ¢ belonging to the support of the random variable ¢;. A
very simple calculation shows then that the spectrum of HZ would typically (i.e. with
probability 1) contain a two-dimensional subset of the complex plane (see [3] for more
on the spectrum of HY)). However numerical experiments reproduce pictures like that in
Fig.1 with remarkable stability also for large values of n (in [5, 6] n = 1000). They clearly
show that the eigenvalues of HY have no tendency to spread over any two-dimensional
region but rather tend to belong to smooth curves.
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Figure 1: The eigenvalues of HY, are presented by dots plotted in the complex plane.
Here n = 50 and {gx} is a fixed realization of independent samples from the uniform
distribution on [—4, —3] U [3, 4]; the values of g are: (a) g =0.2, (b) g =1.1, (c) g = 1.4.

Our attempt to understand whether this phenomenon would indeed persist as n — oo
or is due to the fact that n is not large enough stimulated the appearance of two papers
[8, 9] where the analysis of the spectra of operators HY for finite but large values of n was
carried out. We shall now briefly describe some of our results restricting ourselves to the
case of bounded potentials. Namely it turns out that there are critical values 9., and g,
depending only on the distribution of the random potential and such that:

1. If 0 < g < g_ then the eigenvalues of HJ are “asymptotically” real (see Theorem
3.2 for the exact meanlng of this statement). Moreover their limiting distribution does
not depend on g and is the same as in the Hermitian case (that is with g = 0).

2. If g < g < gor then a finite proportion of eigenvalues moves out of the real axes
and places itself on very smooth curves in the complex plane. These curves converge to
non-random limiting curves as n — oo. Moreover we found the limiting density of states
for non-real eigenvalues and proved that the “asymptotically” real eigenvalues have the
same limiting distribution as in the case of the self-adjoint model.

3. If g > g, then virtually all eigenvalues leave the real axes.

One thus concludes that the phenomenon described above persists as n is growing.



The fact that the spectrum of the limiting operator is two-dimensional means that on this
spectrum (but off the above mentioned curves) the resolvent of HY exists but its norm
tend to infinity as n — co. (See [14] where the spectrum and the norm of the resolvent
of random bidiagonal matrices were studied.)

In the present paper we investigate the spacings between neighboring non-real eigen-
values. We do this for models with selfaveraging (deterministic!) potentials which are
introduced below. The class of selfaveraging potentials is very wide and includes, in
particular, random stationary, quasi-periodic and many other potentials.

The approach used in [8, 9] was based on the theory of products of random matrices
and on the potential theory. We would like to emphasize that the present paper is self-
contained and that the technique we use here is much simpler and more straightforward
than that we used before. It allows us:

- To prove that the non-real eigenvalues of NHA model behave in a very regular way:
not only do they belong to very smooth curves as n — oo but also for any two neighboring
non-real eigenvalues z; and 2,

2m 1
Zk+1_zk:7+0(_): (3)

nf(z) n

where f(z) is an analytic function of z (see Theorem 3.5). This is our principal new result.

- To establish the log-Holder continuity of the density of states for Hermitian Anderson
models with selfaveraging potentials.

- To obtain (essentially as a by-product) much simpler proofs of our previous results
listed above.

Remarks.

1. In [8, 9] we considered tri-diagonal matrices with off-diagonal elements H(j, j + 1)
and H(j,7 — 1) depending on j. All results of this paper can be extended to these
models. The main additional condition that is needed is the existence of finite limits
lim, ,0on™' 372 InH(j,j + 1) and limg 0o n™" 3222, In H(j, j — 1).

2. We have already mentioned above that, apart of the fact that stationary potentials
provide natural examples of self-averaging potentials, randomness does not play any role
in this paper. However as soon as one wishes to understand the next order term in (3)
randomness becomes crucial. The very same thing applies to the properties of asymptot-
ically real eigenvalues. Namely, it is natural to conjecture that the asymptotically real
eigenvalues in fact are real for sufficiently large values of n. However there are reasons to
believe that in order to prove this conjecture one should restrict himself to the class of
random potentials with good properties.

3. Though the approach based on the theory of products of random matrices (TPRM)
is more difficult than that of the present work it should be said that all main results of this
paper can be obtained within the framework of this theory. Moreover this is what we did
first. The additional advantage of the TPRM approach is that the case of one-dimensional
differential Schrodinger operators can be treated by this method in exactly the same way
as the discrete case. The attempt to extend the approach of this paper to the differential
case would lead to the necessity of a certain regularization procedure (see [2]).
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The paper is organized as follows. We introduce the class of selfaveraging potentials
and discuss the log-Holder continuity of the relevant density of states in Section 2. Section
3 contains the statement of main results which are proved in Section 4. In Appendix A
we prove a well known property of Lyapunov exponents. We do this in order (a) to make
our exposition even more self-contained and (b) to demonstrate one more application of
the technique we use. Appendix B contains an example of calculation of the Lyapunov
exponent for models whose potentials have rare high peaks. We believe that these exam-
ples are of interest on their own but the initial purpose of finding them was to provide a
natural completion for the study of selfaveraging potentials.

2 The selfaveraging potentials

We introduce now a class of deterministic potentials for which the distribution of the
eigenvalues of the NHA model (1) — (2) will be investigated in this paper.

Given an infinite sequence of real numbers ¢ = {g;}32,, we consider the sequence of
selfadjoint operators H?, n = 2,3,..., with potential g. Let N,(E) be the distribution
function of the eigenvalues of H?,

1
N,(E) = ;#{EZ : F; € spectrum of H? and E; < E}. (4)

Definition We say that a real potential q is selfaveraging if the integrated density of
states of the self-adjoint Anderson model with this potential exists, i.e. there exists a
non-decreasing function N(E) such that N,(E) — N(FE) as n — oo at the points of
continuity of N(FE).

Remarks: 1. We have borrowed the name ‘selfaveraging’ from the theory of random
operators, where it is normally associated with convergence of N,(E) to a nonrandom
limiting function.

2. The class of selfaveraging potentials is very wide. For example, it contains decaying
potentials, periodic and almost periodic potentials, and stationary random potentials!,
see e.g. book [11] for proofs and more examples.

3. We do not require [ dN(E) = 1. However, in many cases (and in particular in
those mentioned above) the sequence of measures dN,(F) is tight and hence cannot lose
mass.

4. The choice of periodic boundary conditions for HY is not essential, for example
one could use the Dirichlet boundary conditions ¢y = ¢,4+1 = 0 instead. This is because
changing boundary conditions amounts to a rank two perturbation of H?, and hence has
no effect on N(F) provided the perturbed finite interval operators remain selfadjoint. Our
preference for the periodic boundary conditions will become apparent in the next section.

If {qx }32, is a strictly stationary sequence of random variables then N, (E) is weakly converging for
almost all realizations of ¢ with respect to the corresponding probability measure.



Let
) def [T 1 <
Unto,) [ info+ iy = EldN.(B) = Y lnla+ iy - By, (5)
oo i
where the summation is over all eigenvalues of HY, and
+00
U(z,y) & / In|z+iy — E|dN(E), z,y€R, (6)

Obviously the logarithmic integrals U(x, y) and U,(z,y) are the real parts of the analytic
functions

F(z) o /_+00 In(E — 2)dN(E) =Ul(z,y) + iV (z,y). (7)
F.(2) def /;+OO In(E — 2)dN,(E) = Up(z,y) +iVa(z,y). (8)

Here and below we consider analytic functions defined in the upper half-plane C, = {z €

C: Imz > 0}, and the branch of the In(E — z) is chosen so that In(—%) = —i%.

The functions defined in (5) — (8) play an important role in this paper. In this section
we study their properties under the following conditions

C1  The potential q is selfaveraging.
C2  sup,s % Yoo In(l+ |gi]) < C < +o0.

The main role of Condition C2 is to ensure that the functions U(z,y) and F(z) are well
defined. If ¢ is bounded then Condition C2 is trivially valid and Condition C1 immediately
implies that F,(z) converges to F(z) uniformly on compact sets in C\R. In this case the
technical statements of this Section can be omitted.

Proposition 2.1 Assume C1-C2. Then for every x,y € R the integral in (6) is converg-
mng.

Proof. Suppose first that y > 0 and let z = z 4+ iy. Note that
Iny <Up(z,y) <In(2+ |2]) +C forallz € Rand y > 0. (9)
The LHS inequality is trivial, and the RHS inequality is ensured by Condition C2. Indeed,
1 n
Un(z,y) < — 3 In(2+ 2] +|g51),
j=1
where the last inequality follows, e.g., from the representation U, (z,y) = %ln | det(z1, —

H?)| and Hadamard’s inequality for the determinants, see e.g. [7]. By Condition C2,

1 n
- > 2+ ]2+ lgj]) <In(2+2]) + C.

Jj=1



If A> —oc and B < 400 are points of continuity of N(E) then, in view of Condition
C1,

B B B
/ In|z — E|dN(F) = lim / In|z — E|dN,(E) < lim In|z +i— E|dN,(E)
A Tl—)OO' A n—oo A
< limsupU,(z,y + 1).
n—oc
Applying (9), we obtain that
B
/ In|z — E|dN(E) < In(3 + |2]) + C. (10)
A

As y # 0, the function In |z — E| is bounded from below, and (10) implies that the integral
in (6) is converging for y > 0. By the symmetry, it is also converging for y < 0.

We shall now make use of the following inequality which will be proved later (Theorem
2.6): U(z,y) > —cp for some ¢y > 0 and all z and y # 0. This inequality together with
the monotone convergence theorem yield that

-_l_w
limU(z,y) = / In|z — E|dN(E) > —c,, (11)
340 —0
hence the integral in (6) is also converging for y = 0. 0

In view of the inequalities

where @), is the operator of multiplication by ¢, (Q.¢); = ¢j¢;, j = 1,...,n, Condition
C2 also ensures that the sequence of measures dN,(E) is tight:

Proposition 2.2 Suppose that q satisfies Condition C2. Then for any ¢ > 0 there exists
B > 0 such that N, (B) — N,(—B) > 1 —¢ for all n.

Proof. Denote by xg(E) the indicator-function of the interval [B, +00), and let EY, ..., E,
be the eigenvalues of HY. Then for any B > 0

1 +E; In(1+2+ gy
1_1\7"(3):;;“( ZXB +B))S ;xBZJrq)ﬁ

where the last inequality follows from (12). We use here the following fact®: if f(E) is a
non-decreasing function and A < B then tr f(A) < tr f(B). Since xp(2+¢;) In(14+2+¢;) <
In(1+ |2+ ¢;|) we conclude, in view of Condition C2, that N, (B) > 1—C'/In(1+ B) for
some constant C' > 0 and all n. Similarly, N,(—B) < C"/In(1 + B) for some constant
C" > 0 and all n. a

2This fact is a straightforward consequence of the Courant-Fisher minimax theorem [7].
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Remark. 1t follows from (11) that N(-) is a continuous function. This, together with
just proved tightness of the sequence dN,(F), implies that, under Conditions C1 and
C2, N,(FE) converges pointwise to N(F) as n — oo, and the convergence is uniform in
E —c0o< F < o0.

We shall now investigate the relation between F),(z) and F(z) in the limit n — oc.

Proposition 2.3 Assume CI1-C2. Then for every real x and y # 0

lim inf Uy (7, y) > U(=, y)- (13)

Proof. For all B large enough (so that [x — 1,2 + 1] C [—B, B|) we have that for any n

B

400
Up(z,9y) =/ In|z + iy — E|dN,(E) > / In|z + iy — E|dN,(E)
_ B

00 —

and, by Condition C1,

B

liminfUn(:c,y)Z/ In|z + iy — E|dN(E).
n—oo B

By letting B — oo, we obtain (13). O

Under Conditions C1 and C2, the sequence {U,(x,y)} is not necessarily converging,
even for y # 0, and for some selfaveraging potentials the inequality in (13) is strict, for
examples see Appendix B.

In view of (9), for any compact set K C C,, supg |Fn(z)| < M(K) for some con-
stant M (K) < 400 and all n. Hence the sequence {F,(z)} has a uniformly converging
subsequence. We shall now describe all limit points of {F},(2)}:

Theorem 2.4 Assume C1-C2. Suppose that I, (2) is a converging subsequence of { F;,(2)}.
Then necessarily
lim F, (2) = F(z) +¢ (14)

j—oo
for all z € C, and some real constant ¢ satisfying the inequality 0 < ¢ < In3 + C where
C 1s the constant defined in Condition C2.

Proof. We note that F,(z) = [*2°(z — E)"'dN,(E) and F'(2) = [*°(2 — E)"'dN(E).

o0 00
Since the function h(E) def (

z— E)~! decays to zero at infinity, Condition C1 ensures that

lim F.(z) = F'(2)

n—o0

uniformly in z on compact sets in C,. Therefore there exists a sequence of complex
constants ¢, such that F,(z) — ¢, — F(z) as n — oo for all z € C;. Passing on to
the converging subsequence Fy, (z), we have that c,; is also converging. Putting ¢ =

7



lim; ¢,; we arrive at (14). It remains to prove that c is real, non-negative and satisfies the
inequality ¢ < In3 + C.

Due to our choice of the branch of the log-function we have that —7 < ImIn(EF—2) <0
for all z € C,. Thus

Im £, () = / ImIn(E — 2)dN,(E) — Im F(z), as n — oo,

because the integrand is bounded, the sequence of measures dNN,,(F) is tight and we have
Condition C1. Therefore the constant ¢ is real. The fact that it is non-negative follows
from Proposition 2.3. To complete the proof, note that Uy, (z,y) converges to U(z,y) + ¢
in the upper half of the xy-plane. Therefore, because of (9), U(z,y) +¢ <In(2+ |z|) + C.
Putting here z = 0 and y = 1, we obtain ¢ < In3+ ¢ —U(0,1) <In3+ C. (Obviously,
U(z,1) >0 for all z.) O

The following condition

7t
C2*  for any € > 0 there is a B > 0 such that + >~ x(|g;|) In(1+ |g;|) < € for all n
i=1

guarantees the convergence of F, (z) to F(z). It is obvious that Condition C2* is somewhat
more restrictive than C2. On the other hand it is satisfied by many popular classes of
potentials. For example, the random stationary potentials with finite expectation of
In(1 + |g;|) satisfy Condition C2* with probability one. It is also satisfied if

1 o . .
— E In'*%(1 + |¢;]) < C* < +00  for some § > 0.
n

i=1

Proposition 2.5 Assume CI and C2%. Then

F.(z) — F(z) uniformly in z on compact sets in C, (15)

n—oo

and, n particular,

Un(z,y) - U(z,y) wuniformly in z = x + 1y on compact sets in C,. (16)

Proof. If the potential ¢ is bounded then the statement of Proposition 2.5 is a straightfor-
ward corollary of Condition C1 and the fact that the functions F),(z) are equicontinuous
on any compact subset of C,. If ¢ is unbounded then one needs to show additionally
that the contribution of the tails of dN, (E) to F,(z) is negligible in the limit n — oc.
Obviously, it will suffice to prove that:

for any € > 0 there is a B > 0 such that + >~ xp(|Ex|) In(1 + |Eg|) < ¢ for all n, (17)
k=1



where the summation in (17) is effectively over all eigenvalues of H? such that |E;| > B.
To complete the proof note that, in view of the inequalities in (12), it is apparent that
Condition C2* implies (17). 0

We finish this Section with a proof of the log-Hélder continuity of N(F). This property
is well known for random potentials and in this case it follows from the fact that U(z,y) >
0 [2]. In turn, this inequality is a consequence of the Thouless formula according to which
U(z,y) coincides with the Lyapunov exponent of H® with n = oo, see e.g. [2, 11, 1].

In our case Conditions C1 and C2 are too weak to guarantee the existence of the
Lyapunov exponent even for non-real values of the spectral parameter, see examples in
Appendix B. However these two conditions ensure that the function U(z,y) is bounded
from below which, in turn, implies (very much in the same ways as in [2]) that N(E) is
log-Hoélder continuous.

Theorem 2.6 Assume C1-C2. Then:
(i) U(z,y) > —co for some co > 0 and all real x and y.

(it) N(E) is log-Hélder continuous: for any E and |o| < 5

IN(E +0) — N(E)| =c(E,o)|In|o]|™! where lin% c(E,0) =0. (18)
oc—

If E belongs to a compact set then c(E, o) < ¢, with the constant ¢, depending only
on this compact set and the constant C' in Condition C2.

Proof. Part (i). In view of (11) and the symmetry in y, it will suffice to prove the
inequality for y > 0 only. It follows from Theorem 2.4 that

liminf U, (z,y) = U(x,y) + co (19)
n—00

for some ¢y > 0 and all z and y # 0. To finish the proof, it is sufficient to show that
the LHS in (19) is non-negative. If the lim,,_, U, (z,y) exists then it coincides with the
Lyapunov exponent, and hence is non-negative. The general case can be treated similarly
(see Appendix A).

Part (ii). Since [In |z — E|dN(FE) > —cy, we have that

[ ml-ElaNE+ [ k- BlNGE) >
le—E[<1

Jz—E|>1

and

1
/ In 7 AN(E) < / In|z — B|dN(E) + co < U(z, 1) + co.
e-El<1 z—E|>1

Therefore, for any [6] < 3,
1

1
0 > > - — N(z — —
Ulz,1) + ¢y > / In — 5 dN(E) > |N(z 4+ 8) — N(z — 6)|In ol

lz—E|<|8]



and

IN(z +68) — N(z = 6)| < [U(x,1) + ¢ In|§]] 7" (20)
Note that for any compact set K C R, maxy U(z,1) < +oo. This is because U(x,1) is
continuous in z.

Now, define for |§| < %

T+6 1

Obviously,

; ; c(z, )
|IN(z+96) — N(z)| < o]

To complete the proof, note that (20) implies that the measure dN(FE) has no atoms, and
therefore

c(x,0) — 0 when 6 — 0.

3 Main results

For the sake of convenience and clarity of exposition, we shall formulate and prove our
results for the class of potentials ¢ satisfying Conditions C1 and C2*. We emphasize
however that our main results hold true, modulo trivial modifications, under Conditions
C1 and C2, and the corresponding proofs are identical to those given in Section 4. This is
a mere reflection of Theorem 2.4 and the fact that our proofs are based on the convergence
of F,(z) to F(z).

3.1 Notations and auxiliary statements

Let us fix any finite interval [a,b] of the real axis (a < b). Most of our results apply to
the part of the spectrum of H? belonging to the strip {z: Rez € [a,b]} in the complex
plane C.

We define several critical values of the parameter g:

g = infU(z,0), G =supU(z,0). (21)

¢ wes €S
where we have introduced the notation S for the support of the measure dN(E), and

a,b)= inf U(x,0), Ggola,b)= sup U(z,0). 22
9..(a,b) et (x,0),  Gerla,b) S (z,0) (22)

It may happen that g, = 4+0c, and it is obvious, in view of Propositions 2.5 and A.1,
that 9,20 for any potential satisfying Conditions C1 and C2%*.
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For every ¢g € R, define
Aj={zeR: U(z,0) < g} (23)

Since U(z,0) is upper-semicontinuous, see e.g. [2], A, is an open set. If g < g, then
Ay = 0, otherwise A, consists of (possibly infinitely many) disjoint open intervals:

Ag = U (G,j, b]) (24)

J

We note also that U(z,y) = U(z, —y) and that

s,
@U(x,y)>0 forany z € R, y > 0. (25)

Proposition 3.1 Suppose that g > 9, and let (aj,b;) be the intervals defined in (24).
Then the level set Ly = {(x,y): Ulz, yr) =g, y > 0} consists of disjoint analytic arcs

y=y,(z), a; <z <Dy, (26)
whose end-points lie on the real azis, i.e. y;(a;+0) = y,;(b;—0) =0, if —o0 < a;,b; < +00.

Proof. If zo ¢ A, then U(zg,y) > ¢ for all y # 0. Therefore the equation U(zg,y) = ¢
cannot be solved for y > 0.

Consider now any of the intervals (a;, b;). If o € (a;, b;) then U(zy,0) < ¢, and in view
of (25) and U(z, +00) = +00, there exists a unique positive solution y, f yi(z9) > 0 of
the equation U(zg,y) = g. As U(z,y) can be analytically continued into a neighborhood
of (zg,yo) in C?, the implicit function theorem asserts that y;(z) is analytic in a disk
|z — zo] < § in the complex z-plane. The union of all such disks, when xy runs through
(aj, b;) covers (a;,b;). Therefore the function y;(z) can be analytically continued into a
domain in the complex z-plane that contains (a;, b;), and, for any closed interval [, 5] C
(a;j, b;), this domain contains

Dyg={xeC: a—h<Rezx<f+h, |[Imz| <h} (27)

for some h > 0.

If a; > —oo then y;(a; +0) = 0. For, if not then g := limsup,_,, .-, ¥;(z) > 0.
But then U(a;,y) = g and hence U(z,0) < g for every z from some neighborhood of a;
which contradicts the definition of a; as the end point of our interval. The same argument
proves that if b; < +o0o then y;(b; —0) = 0. 0

11



3.2 Statement of results

We are now in a position to formulate our main results.

Theorem 3.2 For any g > 0 all the eigenvalues of HY belong to the level lines of the
function Uy, (x,y) defined by the equation

U(r,) =g+ 2In(1 - 7). (28)

Theorem 3.3 (i) Suppose that g < gcr(a, b). Then for any € > 0 there exists ny =
no(e, 9,4, a,b) such that for any n > ng all the eigenvalues z; of HY with Re z; € [a, ]
belong to the e-neighborhood of the real azis: |Imz;| <e.

(it) Suppose that g > g_and (a;,b;) is one of the intervals comprising Ag. Then for
any (o, B] C (aj,b;) there exists ny = n1(q, g, o, B) such that for any n > ny there exists a
solution y;n(x) to equation (28) which is analytic in the domain D, g defined in (27) and

lim y;.(z) = y;(x), uniformly in x € Dy p. (29)
n—0o0
The function y;,(x), for n > ny, is the only solution of (28) which is non-negative when
z € [a, .

Remarks. 1. The previous two theorems imply that if HJ has eigenvalues in the strip
a; <o <Rez < < by, then, for n > ny, they must lie on the analytic arc

An(e, 8) ={(z,9) : y=yjn(z), @ <z < B}

and on its reflection with respect to the real axis.
2. Relation (29) implies that the arcs A,(«, 8) converge to the level lines of U(z,y)
when n — oo together with all their derivatives.

The next two theorems describe the asymptotic distribution of the eigenvalues of Hf
along the arc A,(«, ). In particular they prove that HZ, for large n, has eigenvalues on

A, (a, B).

By v, (e, ) we denote the number of complex eigenvalues of HY lying on A, (¢, ).

Theorem 3.4 For any closed interval (o, B] C (a;,b;),

lim (0, 8) = 5 -[0(5) — 0(),

n—oo 1

where 0(z) = =V (z,y;(z)) and V(x,y) is the imaginary part of F(z).

12



Remark. Let | be the natural parameter on the curve y = y,(z), that is the length of
the part of this curve contained between say (¢, y;(c)) and (z, y;(z)). A simple calculation
involving the Cauchy-Riemann equations for F'(z) shows that df = | f(z(!)|dl, where

v, [dAN(E)
fe) =F ) = [ (30)
Hence .
| 1 [P Y 1 [Prw8) Midl a1
Jim e §) = o [0@ae= oo [ Sy (3

where the integration is carried out along the path y = y;(z) from a+iy,(a) to S+iy;(5).

Theorems 3.3 and 3.4 are not entirely new and can be inferred from Theorems 2.1 and
2.2 in [9]. We are now going to formulate our principal new result. Let [a, 8] be the same
as before. Let us label the eigenvalues zj, = z, + iy, of HY lying on the arc A,(a, ) so
that « <y < z5... <z, < B (we note that in fact the multiplicity of these eigenvalues
is one and the inequalities here are strict; this follows from the inequality 9;(’1)) >Cy>0
which is a part of the proof of Theorem 3.4).

Theorem 3.5 For any two consecutive eigenvalues z, and zx+y of HY lying on A, (o, B),

2m
n(zk41 — k) = (zr) + 0p (2, 2k41) (32)
where
lim 6, (2k, 2k+1) =0 uniformly in zg, 241 € An(a, B). (33)
n—oQ
4 Proofs
The eigenvalues and eigenfunctions of HJ are determined by the equation
—eIppi1 t qeor — € Y1 =z, 1<k <n (34)
where
Yo = Yn, P1 = Pnt1- (35)

The parameter g can be eliminated from (34) by making use of the standard substitution
@ = e F9, which transforms (34) into

Y1 + Gk — Yeo1 = 2Pk, 1 <k <m, (36)

and boundary conditions (35) into

Yo = e My, Y1 =e Y. (37)

Note that the transformed boundary conditions are asymmetric (unless g = 0).
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To solve equation (36) we shall follow the standard routine and rewrite it in the matrix

form:
Y1 | _ (2 (-2 -1
< i = Ak Gey ) 0<k<n, where A; = 1 0 -

Then

@L'n wO

On the other hand,
<wn+1> ] (¢1)
wn lbo

because of boundary conditions (37). Therefore the eigenvalues of HY are determined by
the equation
det[S,(z) — e™I] = 0. (38)

Since det S, (z) =1 for all z, we have that
det[Sn(z) — e™I] =1 — €™ tr S, (2) + 9.

Hence:

Lemma 4.1 2 is an eigenvalue of HY iff

trS,(z) =™ +e ™.

The trace of the matrix S,,(z) is a polynomial in z of degree n. The following represen-
tation of this polynomial, which is well known in the context of the discrete Hill equation
(see e.g. [13] or [10]) is useful for our purposes.

Lemma 4.2 Let E;, j =1,...,n, be the eigenvalues of HY. Then

n

trSu(z) = [[(B; - 2) + 2. (39)

i=1

Proof. For g = 0, Lemma 4.1 asserts that the polynomials [];_, (E; — z) and tr S,(2) — 2

have the same set of zeros. It is easy to verify both polynomials have the same coefficient,
(—=1)™, in front of the highest power of z, hence they must coincide. O

Here is our main technical lemma:

Lemma 4.3 Suppose that g > 0. Then z is an eigenvalue of HY iff

F.(z) = %ln (e%g’ — e;;g') + %T (mod %) (40)

where F,,(z) is the function defined in (8).

14



Proof. 1t follows from Lemmas 4.1 and 4.2 that z is an eigenvalue of HY iff

n

[IE -2 =—(% —e") (41)
j=1
Since Fy(2) = 5 Y7, In(Ej; — 2), equation (41) is equivalent to (40), provided g # 0. O
We are now in a position to prove Theorems 3.2 and 3.3.

Proof of Theorem 3.2: This theorem is a straightforward corollary of Lemma 4.3.

Proof of Theorem 3.3: (i) Let g(¢) = mingefe4 U(x,€). According to Proposition 2.5 one
can find ngy such that for all z € [a, b]

1
Un(a,) ~ Uler2)| < L[ofe) — g,,(ab)
if n > no. (Note that g(¢) > g_(a,b) because of (25).) Thus, foralla <z <bandy > ¢,

1

Un(z,y) > Up(z,€) > Uz, ) — §[g(s) - g.(a,b)] > %U(x,a) + %gcr(a, b) > g_[(a,b).

Recall that by the assumption g_(a,b) > g. Since g > g + 21n(1 — e™™) for any n > 0,
we conclude that, for all n > ng equation (28) has no solutions in the half-strip ¢ < z < b,
y > €. To complete the proof remember that U, (z, —y) = Uy,(z,y).

(i) First, note that for every real x equation (28) has one non-negative solution at
most.

Now, let g > g and la, B] C (aj, b;) where (a;,b;) is one of the intervals comprising
Ag. Recall that y;(x) is analytic in D, g, see Proposition 3.1. Because of the compactness
of [, A], it will suffice to prove the existence of the solution y;,(z) to equation (28) and
its convergence to y;(x) as n — oo in a small neighborhood of every point (z, y;(z)) where
z runs through [a, f].

Fix # € [a, 8] and consider the point (%,§) where § = y,(Z). It follows from the
integral representations for U, (x,y) and U(z,y) that these two functions are analytic in
the domain

~ def Y Y
We shall use the following general lemma. Put D, & {(z,y): |lz—2|<r ly—9g| <r}

Lemma 4.4 Let ®(z,y) and ®(x,y) be two functions analytic in D, and such that for
all (z,y) € D,

@ (2, 9)| < e, 0< e <0, (z,y)] < ¢35 |B(a,y)] < 1.

Suppose that ®(Z, 7) = 0. Then there is a positive eg which depends only on ¢y, ca, c3, and
r (but not on ®(-,-), ®(-,-)!) such that the equation

®(z,y) +P(z,y) = 0 (42)
has a unique solution y = y(z,e) which is analytic in (z,e) in the domain {(z,¢) :

|z — Z| < 2e9, €] < 2¢0} and y(Z,0) = 7.

15



Proof of Lemma 4.4. Consider the function G(z,¢,y) o ®(x,y) + ed(z,y) of three

complex variables z, ¢, and y. In the domain D: we have:

2
r

@;(x,y)‘ = (2m)7"

'/‘: ®(u,y)(z — u)2du| <

and similarly }(D;J‘ < % Hence, for ¢ sufficiently small, G; and G'y are close to <I>'m and
<I>;J correspondingly. It is clear that ‘G'E} < 1. The implicit function theorem for an
analytic function of three variables z, €, and y implies now the existence of the solution
y = y(z,¢e) to the equation G(x,¢,y) = 0. It should be emphasized that the domain
where this solution exists and is analytic depends only on the corresponding estimates of
G, G;j, and G.. O

To finish our proof of Theorem 3.3, note that in our case U(x,y) plays the role of
®(z,y) and equation (42) has the form

Un(x: y) - U('T/ y)

Ulz,y)+¢ =0.

Here we first choose €y so that to satisfy the conditions of Lemma 4.4, and then choose
no such that |U,(z,y) — U(z,y)| < g for all (z,y) € D and n > ny. The wanted result
follows from our Lemma when ¢ = &. O

Define
0,(z) = =Vo(z,yjn(z)) and O(z) = =V (z,y,(z))

for x € [, B] C (a;,b;) and n > ny with n; as in part (ii) of Theorem 3.3. As before,
Vo(z,y) and V(z,y) are the imaginary parts of the analytic functions F,(z and F(z), see
(7) and (8). In view of Theorem 3.3 and Proposition 3.1, we have that

lim 6,(z) = 6(z) uniformly in z € [, 8] (43)

n—o0

It follows from the Cauchy-Riemann equations for F,,(z) and F'(z) that

VU, )P _ VU, y)]?

0,(z) = —5 and 6'(z) = S . (44)
oy Un(®) y=Yj.n(z) oV (@) y=y; (@)
Therefore we also have that
lim 6 (z) =6 (z) uniformly in z € [a, 3]. (45)

n—oo

As g—yUn(:c, y) and (%U(x, y) are positive in the upper half of the zy-plane, the functions
0, (z) and 6(x) are monotone increasing. Moreover, in view of (45), it apparent that there
is a constant Cy > 0 such that

0 (x) >Co>0 forevery z € [o, 8] and n > ny. (46)
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Now we are in a position to prove Theorems 3.4 and 3.5.

Proof of Theorem 3.4: On the arc A4, (a, 8), i.e. when z = 2 +iy;,(z), @ <z < S, the
eigenvalue equation (40) reduces to

(@) = 1. (47)

When z runs through [a, 8] in the positive direction, 8,(z) gets positive increment and
w = ™) moves anticlockwise along the unit circle |w| = 1. Obviously, v,(a, 8), the

number of eigenvalues of H? on A,(«, ), is, up to £1, equal to the number of circuits
completed by w when x completes its run. Thus

n
infa, §) = | MOl
where |k| < 1. When n — o0, 6,(z) converges to §(x) = —V (x,y;(x)), and, therefore,
Lun(a, B) converges to 5=[0(8) — 6(c)). O

Proof of Theorem 3.5: Let z; = x;+ty;(z;) and 241 = zy41 +éy;(241) be two consecutive
eigenvalues of HJ on A, (e, §). We assume that x;41 > ;. It follows from equation (47)
that

en($l+1) - gn(l'l) = 7,

and therefore
2 1

g =T 48
Ti41 — 2y n 0;(10*) (48)
for some z* € (2, 241). In view of (46),
0< 2l
Ty — 1 < ——.
T IS A
for all n large. Hence z* — z; as n — oo, and (48) and (45) imply that
2m
'fl(.'L'l_|_1 - CL'[) = 9/ (J/[) + (5n(1;l,l'l+1) (49)
where
lim 6, (z;, 2;41) =0 uniformly in z;, 2,41 € [, B]. (50)
n—o0

To prove (32) — (33), note that
241 =2 = Ti41 — T+ ’iy;',n(ﬂf**)(l"lﬂ — x)

for some z** € (x;, 2;41). By making use of (49), one obtains that

27T Lt .
n(zip1 — ) = m[l + 1Y 1 (2] + On (1, T141).-
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Now (32) — (33) easily follow from Theorem 3.3 and the following relation

L4iay(z) 1 (51)
0 (x) iF'(z) ematiy; ()
To verify this relation, make use of the equation
/log |z + 1y;(z) — E|dN(E) = g,
to obtain (2.9)
, Uy(z,y
Uy(z,y) y=y; ()
Now, in view of (44),
1+iy;(z) 1
0@ Oy + 0@y, o
and (51) follows by the Cauchy-Riemann equations for F'(z). O
A Appendix
Proposition A.1 For all real z and y # 0 we have
liminf U, (z,y) > 0 (52)
n—oo

Proof. This result can be proved in many ways. We present here a proof based on (39).
It follows from (39) that

1 1 2
—IntrS,(2) — Fp(2) = —In |1 + =—7—— (53)
Sl 2T - )
Therefore for every z € C; such that Imz > 1
i 1
nll)rglo [ﬁ IntrS,(z) — Fn(z)] =0. (54)

The two functions in the LHS in (53) are analytic and uniformly bounded in 7 on compact
sets in C;.. Therefore, by the Vitali theorem, (54) must hold for every z € C,..

Consider now the eigenvalue equation for S, (z). If z ¢ R then S,(z) has no eigenvalues
on the unit circle. As det S,(z) = 1, we then have that for every non-real z the 2 x 2 matrix
Sn(z) has one eigenvalue, A, (2), in the exterior of the unit circle, i.e. |A\,(z)| > 1, and the
other one, 1/),(z), in the interior of the unit circle. Thus tr S,(z) = M\, (2) + X, '(2) and

1 1 1
SlnAg(z) — —IntrS,(z) = — In[1 + A2(2)].
- n A, (2) - ntrS,(z) - n[l 4+ A7%(2)] (55)
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It follows from (39) that |tr S,(z)| grows exponentially fast with n provided |Imz| > 1,
and then so does the dominant eigenvalue of S, (2). This is because | tr S, (z)] < [A,(2)]+1
(In fact, A,(z) grows exponentially fast with n for every non-real z.) Hence, for every
z € C; such that Imz > 1,

lim [% In A\, (z) — %ln tr Sn(z)] =0. (56)

n—0o0

The two functions in the LHS in (55) are analytic and uniformly bounded in n on compact
sets in C;. Therefore, by the Vitali theorem, (56) holds for every z € C,.. From (54) and
(56) we have that

n—o0

lim [% In A, (2) —Fn(z)] —0

for every z € C, . Taking the real part,

1
lim [T—L In | A, (z + iy)| — Un(z, y)] =0,

n—o0

and therefore (recall that |A,(z)] > 1)

1
liminf U,(x,y) = liminf —In |\, (z + iy)| > 0.
n—ooo 1

n—oo

B Appendix

Obviously the integrated density of states, N(FE), depends on the potential g. To make
this dependence explicit, we shall write in this section N,(E;¢q) and N(E;q) instead of
N,(F) and N(E).

Let kq, ko, ... be an increasing (infinite) sequence of natural numbers such that

#kjsnp
mn

as n — oo, (57)

and let v = {v;}2, be a potential supported by the sequence k;, i.e. v, = 0 unless
ke {k;}.

Proposition B.1 If g is a selfaveraging potential then so is ¢ = ¢ + v, and N(E;§) =
N(E,q).

Proof. According to the well known theorem from linear algebra, if A and B are two
selfadjoint n x n matrices then the number of eigenvalues of the matrix A + B in interval
A differs from that of the matrix A by rank(A — B) at most. Hence

#1{j: k; <n}
n 3

|No(E; §) — No(E; q)| <
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which proves the proposition. O
Let us now assume that the potential v satisfies Condition C2 and |vi,| — oo as
j — 00. Define
1
Sp = 7_L Z ln(l + "Ukj‘).
Jiki<n

and

N +0o0

Un(z,y) = / In|z +iy — E|dN(E;§), vy >0.

o

Theorem B.2 Let q be a selfaveraging potential with supy, |qx| = M, and § = q+v. Then

n—o
Proof. We prove this Theorem under the following additional condition on v: |vg,,,| >
|vg;| +2 + M for all j. The proof for the general case requires minor but cumbersome
modifications.
Let z = 2 + iy. By definition,

- 1 <& . 1 . 1 -
Un(m,y):EZln|z—Ek|:ﬁ > In|z — Byl + > Infz— Ey,
k=1

Ey|<2+M Ex|>2+M

where the Fj, are the eigenvalues of H? with the potential . By Proposition B.1 the first
sum converges to U(z,y) when n — oco. We note next that the eigenvalues Ej in the
interval |Ey| > 2 + M have the following property: for all but may be a finite number of
them there is a unique j such that [E, — vg;| < 2+ M. This is due to the fact that the
eigenvalues of the operator of multiplication by v differ from the eigenvalues of H? with

lz— Ex|
T+, — 0 when

the potential ¢ by 2 + M at most. Hence taking into account that In
|Ex| — oo, we obtain that

) 1 ~ 1
nll)n;o 0 Z In|z — Ex| — - Z In(1 + [vg,;|) | = 0.
|Ex|>2+M kj<n, vg; [>2+M

It is apparent that
) 1
lim |- Z In(1+ |vg;|) = sn| =0,
kj <n, "Ukj [>2+M

which completes the proof. O

It is easy now to construct examples showing that the statement of Proposition 2.3
cannot be improved.
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Ezample 1. Let k; = j2 and vz = €7, j = 1,2,.... Then lim,,0 $n = 5. Hence
limp o0 Un(2,y) = Uz, y) + 5.
Ezample 2. Let k; = 27 and vy = ¢, j=1,2,.... Then limsup,,_,, 8, = 2 and

liminf, s, = 1. Hence limsup,,_,., Un(z,y) = U(z,y) + 2 and liminf, o U,(z,y) =
U(x,y) +1. It is easy to check that for every 1 < ¢ < 2 there is a subsequence Uy, (z,y)
converging to U(z,y) + ¢ when j — o0.

References

[1] Carmona, R. and Lacroix, J., Spectral Theory of Random Schrédinger Operators.
Birkhauser, Boston, 1990.

[2] Craig W., and Simon B., Subharmonicity of the Lyapunov Index. Duke Math. Journ.
50 (1983) 551 — 560.

[3] Davies, E. B., Spectral theory of pseudo-ergodic operators. Commun. Math. Phys.
216, 687 — 704 (2001).

[4] Efetov K. B.: Directed quantum chaos. Phys. Rev. Lett. 79, 491 — 494 (1997).

[5] Hatano, N, and Nelson, D. R., Localization transitions in non-Hermitian quantum
mechanics. Phys. Rev. Lett. 77, 570 — 573 (1996).

[6] Hatano, N, and Nelson, D. R., Vortex pinning and non-Hermitian quantum mechan-
ics. Phys. Rev. B56, 8651 — 8673 (1997).

[7] Horn, R. A., and Johnson, C. R. Matriz Analysis. Cambridge: Cambridge University
Press, 1986.

[8] Goldsheid, I. Ya., and Khoruzhenko, B. A., Distribution of eigenvalues in non-
Hermitian Anderson models. Phys. Rev. Lett. 80, 2897 — 2900 (1998).

[9] Goldsheid, I. Ya., and Khoruzhenko, B. A., Eigenvalue curves of asymmetric tridiag-
onal random matrices. Electronic Journal of Probability 5, Paper 16, 26 p. (2000).

[10] Last, Y., On the measure of gaps and spectra for discrete 1D Schrédinger operators.
Commun. Math. Phys. 149, 347-360 (1992).

[11] Pastur, L.A., and Figotin, A.L., Spectra of random and almost-periodic operators.
Berlin, Heidelberg, New York: Springer 1992.

[12] Shnerb, N.M., and Nelson, D. R., Non-Hermitian localization and population biology.
Phys. Rev. B58, 1383 — 1403 (1998).

[13] Toda, M.: Theory of non-linear lattices. Berlin, Heidelberg, New York: Springer,
1981.

21



[14] Trefethen, L. N., Contendini, M., and Embree, M., Spectra, pseudospectra, and
localization for random bidiagonal matrices. Commun. Pure Appl. Math. 54, 595 -
623 (2001).

22



